Motivic Tambara Functors [article]

Tom Bachmann
<span title="2018-07-09">2018</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Let k be a field and denote by SH(k) the motivic stable homotopy category. Recall its full subcategory HI_0(k) of effective homotopy modules. Write NAlg(HI_0(k)) for the category of normed motivic spectra with underlying spectrum an effective homotopy module. In this article we provide an explicit description of NAlg(HI_0(k)) as the category of sheaves with generalized transfers and \'etale norms, and explain how this is closely related to the classical notion of Tambara functors.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="">arXiv:1807.02981v1</a> <a target="_blank" rel="external noopener" href="">fatcat:4uba7qqrijhplmk3prow5hy6wa</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="" title=" access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> </button> </a>