A longitudinal study of kinematic stride characteristics in maximal sprint running

Klaus Mattes, Nele Habermann, Nina Schaffert, Thomas Mühlbach
2014 Journal of Human Sport and Exercise  
Mattes, K., Habermann, N., Schaffert, N. & Mühlbach, T. (2014) . A longitudinal study of kinematic stride characteristics in maximal sprint running. J. Hum. Sport Exerc., 9(3), pp.686-699. Purpose of the present study was to measure the kinematic stride characteristics of track-and-field-sprinters and jumpers in maximal sprint-running during different training periods (TP) of a double-periodisation (DP). 26 participants (7 females, age: 22.7 ± 5.7yrs, body mass: 60.1 ± 6.7kg, body height: 172.1
more » ... body height: 172.1 ± 4.4cm; 19 males, age: 20.9 ± 3.3yrs, body mass: 73.7 ± 6.5kg, body height: 182.3 ± 7.5cm) participated in flying 30-meter-sprints. Kinematic stride parameters (stride-velocity, stride-length, stride-frequency, contact-time, flight-time and stride-rhythm) were measured for every single stride with Optojump (Microgate S.r.L., Italy). The training data were collected via protocol. A variance analysis with repeated measures was calculated for 3 respectively 6 TPs as well as multiple regression functions for the stride-velocity. The longitudinal results showed significant values for the 6 TPs, however cyclic increase of maximal sprint-velocity (on average 0.42 ± 0.08m/s) with a DP that corresponded with the recorded training data. 3 TPs differed significantly in average stride-velocity, stride-length, stride-frequency and contact-time of the maximal sprint, but not in flight-time and stride-rhythm. Our findings suggest that kinematic stride characteristics depend on TP. A systematic training control to increase the sprint-speed must take into account these changes of the kinematic parameter during the training year.
doi:10.14198/jhse.2014.93.02 fatcat:rm4avwnow5awfc43wpmijk46ya