Mechanical stretch regulates cell survival in human bladder smooth muscle cells in vitro

David J. Galvin, R. William G. Watson, James I. Gillespie, Hugh Brady, John M. Fitzpatrick
2002 AJP - Renal Physiology  
Mechanical stretch regulates cell survival in human bladder smooth muscle cells in vitro. Our understanding of the pathophysiology of the overactive bladder is poor. It has been proposed that localized contractions result in the abnormal stretching of bladder smooth muscle. We hypothesize that stretch regulates the cellular processes that determine tissue size. The purpose of this study was to investigate the effect of stretch on apoptosis, proliferation, cell hypertrophy, and growth factor
more » ... uction in human bladder smooth muscle cells in vitro. Normal human detrusor muscle was obtained from patients undergoing radical cystectomy for invasive bladder cancer, and primary cultures were established. Cells were mechanically stretched on flexible plates at a range of pressures and times. Apoptosis was assessed by propidium iodide incorporation and flow cytometry. Radiolabeled thymidine and amino acid incorporation were used to assess proliferation and cell hypertrophy. ELISA and RT-PCR were used to assess growth factor production. Mechanical stretch inhibits apoptosis in a time-and dose-dependent manner and was associated with increases in the antiapoptotic proteins heat shock protein-70 and cIAP-1. Stretch also increases smooth muscle cell proliferation and hypertrophy, but hypertrophy is the more dominant response. These changes were associated with increases in IGF-1 and basic FGF and a decrease in transforming growth factor-␤1. Mechanical stretch regulates apoptosis, proliferation, and cell hypertrophy in human bladder smooth muscle cells. overactive bladder; apoptosis; heat shock proteins; hypertrophy
doi:10.1152/ajprenal.00168.2002 pmid:12388384 fatcat:pdtei75w5ffjbejjzlwlcfooxe