Computational and Theoretical Issues of Multiparameter Persistent Homology for Data Analysis [article]

The basic goal of topological data analysis is to apply topology-based descriptors to understand and describe the shape of data. In this context, homology is one of the most relevant topological descriptors, well-appreciated for its discrete nature, computability and dimension independence. A further development is provided by persistent homology, which allows to track homological features along a oneparameter increasing sequence of spaces. Multiparameter persistent homology, also called
more » ... rsistent homology, is an extension of the theory of persistent homology motivated by the need of analyzing data naturally described by several parameters, such as vector-valued functions. Multipersistent homology presents several issues in terms of feasibility of computations over real-sized data and theoretical challenges in the evaluation of possible descriptors. The focus of this thesis is in the interplay between persistent homology theory and discrete Morse Theory. Discrete Morse theory provides methods for reducing the computational cost of homology and persistent homology by considering the discrete Morse complex generated by the discrete Morse gradient in place of the original complex. The work of this thesis addresses the problem of computing multipersistent homology, to make such tool usable in real application domains. This requires both computational optimizations towards the applications to real-world data, and theoretical insights for finding and interpreting suitable descriptors. Our computational contribution consists in proposing a new Morse-inspired and fully discrete preprocessing algorithm. We show the feasibility of our preprocessing over real datasets, and evaluate the impact of the proposed algorithm as a preprocessing for computing multipersistent homology. A theoretical contribution of this thesis consists in proposing a new notion of optimality for such a preprocessing in the multiparameter context. We show that the proposed notion generalizes an already known optimality notion from the one-parameter case. Under this definition, we show that the algorithm we propose as a preprocessing is optimal in low dimensional domains. In the last part of the thesis, we consider preliminary applications of the proposed algorithm in the context of topology-based multivariate visualization by tracking critical features generated by a discrete gradient field compatible with the multiple scalar fields under study. We discuss (dis)similarities of such critical features with the state-of-the-art techniques in topology-based multivariate data visualization. i
doi:10.15167/scaramuccia-sara_phd2018-05-23 fatcat:n7pxzauqpbcfjntulfcaogthni