Link prediction for interdisciplinary collaboration via co-authorship network

Haeran Cho, Yi Yu
<span title="2018-03-27">2018</span> <i title="Springer Nature"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/3xvqvdkqejfvdeozx2l3c3rxti" style="color: black;">Social Network Analysis and Mining</a> </i> &nbsp;
We analyse the Publication and Research data set of University of Bristol collected between 2008 and 2013. Using the existing co-authorship network and academic information thereof, we propose a new link prediction methodology, with the specific aim of identifying potential interdisciplinary collaboration in a university-wide collaboration network.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s13278-018-0501-6">doi:10.1007/s13278-018-0501-6</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/jlygaaeoyra7nmgu474cax5gyi">fatcat:jlygaaeoyra7nmgu474cax5gyi</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20181030083348/https://link.springer.com/content/pdf/10.1007%2Fs13278-018-0501-6.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/df/cf/dfcf28fb0a2d78599f6c3bf6048f013dfa22427a.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s13278-018-0501-6"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>