Link prediction for interdisciplinary collaboration via co-authorship network

Haeran Cho, Yi Yu
<span title="2018-03-27">2018</span> <i title="Springer Nature"> <a target="_blank" rel="noopener" href="" style="color: black;">Social Network Analysis and Mining</a> </i> &nbsp;
We analyse the Publication and Research data set of University of Bristol collected between 2008 and 2013. Using the existing co-authorship network and academic information thereof, we propose a new link prediction methodology, with the specific aim of identifying potential interdisciplinary collaboration in a university-wide collaboration network.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.1007/s13278-018-0501-6</a> <a target="_blank" rel="external noopener" href="">fatcat:jlygaaeoyra7nmgu474cax5gyi</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> </button> </a>