A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is `application/pdf`

.

##
###
Matrix rigidity of random Toeplitz matrices

2016
*
Computational Complexity
*

We prove that random n-by-n Toeplitz (alternatively Hankel) matrices over F 2 have rigidity Ω( n 3 r 2 log n ) for rank r ≥ √ n, with high probability. This improves, for r = o(n/ log n log log n), over the Ω( n 2 r · log( n r )) bound that is known for many explicit matrices. Our result implies that the explicit trilinear [n] × [n] × [2n] function defined by F (x, y, z) =

doi:10.1007/s00037-016-0144-9
fatcat:jwuajua4nnajlojbcchrucuzhe