Characterization of the Precursor of Prostate-specific Antigen

Thomas K. Takayama, Kazuo Fujikawa, Earl W. Davie
1997 Journal of Biological Chemistry  
The precursor or zymogen form of prostate-specific antigen (pro-PSA) is composed of 244 amino acid residues including an amino-terminal propiece of 7 amino acids. Recombinant pro-PSA was expressed in Escherichia coli, isolated from inclusion bodies, refolded, and purified. The zymogen was readily activated by trypsin at a weight ratio of 50:1 to generate PSA, a serine protease that cleaves the chromogenic chymotrypsin substrate
more » ... osine-p-nitroaniline-HCl (S-2586). In this activation, the amino-terminal propiece Ala-Pro-Leu-Ile-Leu-Ser-Arg was released by cleavage at the Arg-Ile peptide bond. The recombinant pro-PSA was also activated by recombinant human glandular kallikrein, another prostate-specific serine protease, as well as by a partially purified protease(s) from seminal plasma. The recombinant PSA was inhibited by ␣1-antichymotrypsin, forming an equimolar complex with a molecular mass of approximately 100 kDa. The recombinant PSA failed to activate single chain urokinase-type plasminogen activator, in contrast to the recombinant hK2, which readily activated single chain urokinase-type plasminogen activator. These results indicate that pro-PSA is converted to an active serine protease by minor proteolysis analogous to the activation of many of the proteases present in blood, pancreas, and other tissues. Furthermore, PSA is probably generated by a cascade system involving a series of precursor proteins. These proteins may interact in a stepwise manner similar to the generation of plasmin during fibrinolysis or thrombin during blood coagulation.
doi:10.1074/jbc.272.34.21582 pmid:9261179 fatcat:gg2znkbxhbgsla34p2wx5jl3ha