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In [K. Gokhberg, V. Vysotskiy, L. S. Cederbaum, L. Storchi, F. Tarantelli, and V. Averbukh, J. Chem.
Phys. 130, 064104 (2009)] we introduced a new L 2ab initio method for the calculation of total
molecular photoionization cross-sections. The method is based on the ab initio description of dis-
cretized photoionized molecular states within the many-electron Green’s function approach, known
as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev mo-
ment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. Here we establish the
accuracy of the new technique by comparing the ADC-Lanczos-Stieltjes cross-sections in the va-
lence ionization region to the experimental ones for a series of eight molecules of first row elements:
HF, NH3, H2O, CO2, H2CO, CH4, C2H2, and C2H4. We find that the use of the second-order ADC
technique [ADC(2)] that includes double electronic excitations leads to a substantial systematic im-
provement over the first-order method [ADC(1)] and to a good agreement with experiment for photon
energies below 80 eV. The use of extended second-order ADC theory [ADC(2)x] leads to a smaller
further improvement. Above 80 eV photon energy all three methods lead to significant deviations
from the experimental values which we attribute to the use of Gaussian single-electron bases. Our
calculations show that the ADC(2)-Lanczos-Stieltjes technique is a reliable and efficient ab initio
tool for theoretical prediction of total molecular photo-ionization cross-sections in the valence region.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4824431]

I. INTRODUCTION

The molecular single-photon ionization cross-section is
defined as the probability per unit time and per unit inci-
dent photon flux density of ionizing a molecule by absorb-
ing a photon.1 Electron emission is a strongly dominant de-
cay mechanism for molecules excited a few eV and higher
above the ionization threshold, such that the photoabsorption
and photoionization cross-sections become nearly coincident
in this energy range. Here we consider photoionization within
the vertical transition approximation, i.e., assuming that
molecular geometry is fixed at the equilibrium geometry of
the neutral and does not change in the course of the electronic
transition. In this framework, the cross-section can be viewed
as the probability of one-photon absorption leading to a state
in the electronic continuum. In the case of randomly oriented
molecules, the expression for the ground state photoabsorp-
tion cross-section in SI units is given by

σ (E) = πe2¯

2ε0mec

df (E)

dE
, (1)

where df (E)
dE

is the oscillator strength density and E = ¯ω is the
photon energy. Within the dipole approximation in the length
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gauge, the oscillator strength is given by the dipole matrix el-
ement between the ground state (�0) and the final continuum
state (�E) of the N-electron system:

df (E)

dE
= 2meE

3¯2

∣∣∣∣
〈
�E

∣∣∣∣
N∑
j

�rj

∣∣∣∣�0

〉∣∣∣∣
2

, (2)

where the final continuum states are normalized to δ-function
in energy:

〈�E | �E′ 〉 = δ(E − E′). (3)

If more than a single state of the cation is accessible at the
photon energy E, an incoherent summation over all open ion-
ization channels should be included into Eq. (2). The calcula-
tion of photoionization cross-sections requires the knowledge
of many-electron wave functions belonging to the continuum
part of the spectrum. The basic computational problem one
faces here is taking into account both the scattering character
of the photoionized state wave function and the electron cor-
relation. While many well-developed theoretical techniques
exist for the description of atomic photoionization,2 the multi-
centre molecular problem still poses a formidable challenge to
the theory. The state of the art theoretical methods for calcula-
tion of molecular photoionization cross-sections either do not
take into account sufficiently the electronic correlation, see,
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e.g., Ref. 3, or treat the photo-ionization continuum rather ap-
proximately, see, e.g., Ref. 4. Highly accurate many-electron
wave functions and transition matrix elements are routinely
obtained by the post-Hartree-Fock (post-HF) methods of
ab initio quantum chemistry.5 However, these methods are
based on the use of finite sets of square-integrable (typi-
cally Gaussian) single-electron basis functions. As a result,
the computed molecular eigenstates in the continuum energy
region are discrete and L 2-normalized. Such states cannot
be used directly in the photoionization cross-section compu-
tation [see Eq. (1)]. Nevertheless, it turns out that the dis-
cretized continuum can be utilized for computing the spectral
moments of the dipole oscillator strength (2). Mathematical
technique of Stieltjes-Chebyshev moment theory or Stieltjes
imaging (SI) can then be used to reconstruct the true pho-
toionization cross-section from a finite series of moments.6

The SI technique can be seen as a practical and mathemati-
cally well defined procedure for renormalization and interpo-
lation of the oscillator strength density, starting from a gen-
eral discretized spectrum formed by energies and oscillator
strengths obtained from an L 2 calculation.

The main computational bottleneck of SI in its original
formulation6 is the need to fully diagonalize the Hamilto-
nian of the system to extract the full spectrum of discretized
final states. This effectively restricts the use of the tech-
nique to either small systems (e.g., atoms, diatomics) or to
low-accuracy ab initio approximations for the photoionized
states (e.g., single-excitation schemes). Indeed, Hamiltonian
matrix dimensions for polyatomic molecules represented us-
ing high-quality single-electron basis sets in computational
schemes going beyond single excitations easily exceed the
millions, making these Hamiltonians not amenable to full di-
agonalization. This drawback of the Stieltjes imaging tech-
nique was realized early on by Nesbet8 and a number of
methods for overcoming this problem has been proposed
since then.8–10 In Ref. 11 we described a new general ap-
proach for application of the SI technique to problems involv-
ing Hamiltonian matrices of large dimension. Our method
is based on applying the SI procedure to a relatively small
block-Lanczos pseudospectrum12–14 instead of the full spec-
trum of the molecular Hamiltonian. In our study we used
a hierarchy of ab initio methods of the algebraic diagram-
matic construction (ADC) type,15 our proof-of-concept ap-
plications included photoionization cross-sections of He, Ne,
and benzene11 (we have also shown that a similar technique
can be used for the SI computations of the decay widths16).
Very recently, an analogous Lanczos-Stieltjes approach has
been developed for the coupled cluster pseudospectra by
Cukras et al.17 Here we present a systematic study of the
accuracy of the ADC-Lanczos-Stieltjes technique using a
test set of eight molecules of first-row elements, for which
high-quality experimental cross-sections are available in the
literature.

This article is organized as follows. The relevant as-
pects of the ADC approach to electronic excited states is
presented in Sec. II. The Lanczos iterative diagonalization
method is briefly reviewed in Sec. III. Section IV is devoted to
testing the accuracy of the molecular photoionization cross-
sections obtained by SI of block-Lanczos pseudospectra of

a hierarchy of ADC Hamiltonians. Conclusions are given in
Sec. V.

II. ADC-STIELTJES-LANCZOS METHOD FOR
MOLECULAR PHOTOIONIZATION CROSS-SECTIONS

A. ADC ab initio schemes within the intermediate
state representation

The ADC schemes for excited states of closed-shell sys-
tems were originally derived as approximations to the polar-
ization propagator, based on an algebraic reformulation of
its diagrammatic perturbation theory. The ADC(n) polariza-
tion propagator is complete up to order n of perturbation
theory in the electron interaction and includes also higher-
order diagrams in the form of infinite partial (incomplete)
summations.18 It was later recognized19 as being interpretable
as a wave-function method as well. In fact, ADC establishes a
connection between propagator and wave-function methods.
The latter interpretation comes from the explicit construction
of the intermediate states representation (ISR) that gives rise
to the ADC form of the propagator, providing an alternative
approach to the hierarchy of the ADC schemes.19, 20 The start-
ing point is the construction of the so-called correlated excited
states (CES), defined as∣∣�0

I

〉 = Ĉ
†
I |�0〉, (4)

where the operators Ĉ
†
I denote the physical excitation opera-

tors corresponding respectively to 1p1h, 2p2h etc. excitations,

Ĉ
†
I = {

â†
aâi ; â†

aâ
†
bâj âk (a < b, j < k) . . . . . .

}
, (5)

and |�0〉 is the exact correlated ground state of the system.
This non-orthogonal CES basis set is complete in the

space of the excited states of the N-electron system21 and has
the advantage that ground state correlation is already built into
every basis vector. It can be orthonormalized in a two-step
procedure. First one performs Gram-Schmidt orthogonaliza-
tion of each excitation class with respect to all the lower ex-
citation classes. The states |�m#

y 〉 formed in this first step are
referred to as precursor states. The second step is symmet-
ric orthonormalization of the resulting precursor states within
each excitation class. As an example the procedure for the first
(1h1p) excitation class gives the following precursor states:∣∣�1#

ai

〉 = â†
aâi |�0〉 − |�0〉〈�0|â†

aâi |�0〉. (6)

The second step gives∣∣�̃1
ai

〉 =
∑
bj

∣∣�1#
bj

〉
(S− 1

2 )bj,ai , (7)

where S is the overlap matrix of the first excitation class pre-
cursor states, i.e.,

Sbj,ai = 〈
�1#

bj

∣∣�1#
ai

〉
. (8)

In a compact notation the excitation class orthogonalized
(ECO) states can be written as

∣∣�̃m
x

〉 = Q̂m−1
∑

y

∣∣�m
y

〉 (
Sm

yx

)− 1
2 , (9)
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where Sm
yx is defined as

Sm
yx = 〈

�m
y

∣∣Q̂m−1
∣∣�m

x

〉
(10)

and

Q̂m = 1̂ −
m∑

l=0

P̂ l (11)

is the projector operator onto the space orthogonal to the first
m excitation classes. Finally, every intermediate state can be
expressed as

|�̃I 〉 = C̃
†
I |�0〉, (12)

where all the effects of the consecutive orthonormalizations
are encoded in the new creation operators C̃

†
I .

The ADC secular matrix is the representation of the
shifted electronic Hamiltonian operator Ĥ − E0 in the ECO-
CES space:

HIJ = 〈�̃I |Ĥ − E0|�̃J 〉 = 〈�0|C̃I

[
Ĥ , C̃

†
J

]|�0〉. (13)

At this point Møller-Plesset (MP) perturbation theory is intro-
duced to describe the ground state correlation, i.e., |�0〉 and
E0:

|� ′
0〉 = ∣∣�HF

0

〉 + ∣∣�[1]′
0

〉 + ∣∣�[2]′
0

〉 + ∣∣�[3]′
0

〉 + . . . , (14)

in which the first order correction |�[1]′
0 〉 contains only double

excitations (2h2p) with respect to |�HF
0 〉, while |�[2]′

0 〉 con-
tains single, double, triple, and quadruple excitations.

The vertical excitation energies are obtained solving the
eigenvalue problem HV = ωV and the excited eigenstates of
the system are, therefore, given on the basis of the intermedi-
ate states:

|�n〉 =
∑

I

VI,n|�̃I 〉. (15)

Having this explicit expression for the excited states of the
system the transition moments of the type 〈�m|D̂|�0〉 are
given by

〈�m|D̂|�0〉 = V†
m · F =

∑
rs

drsV†
m · frs , (16)

where drs are the matrix elements of the dipole operator on
the basis of the one particle orbitals. The matrix of effective
transition amplitudes f and the associated vector F are defined
correspondingly by

fI,rs = 〈�̃I |â†
r âs |�0〉, FI = 〈�̃I |D̂|�0〉 . (17)

The hierarchy of ADC(n) approximations is obtained for
each order n by truncating the intermediate state manifold at
some limiting excitation class and, also, by truncating the re-
sulting perturbation expansions for the included classes in a
way consistent with the polarization propagator approach. For
example, at the ADC(2) level the matrix in the whole space of
the system can be represented as

H ADC[2] = H [0] + H 1,1[1] + H 1,1[2] + H 1,2[1] + H 2,1[1].

(18)

Thus, in ADC(2) the perturbation expansion of the sec-
ular matrix elements extends through second, first, and ze-
roth order in the 1h1p block, the 1h1p-2h2p coupling block

and the diagonal 2h2p block, respectively. In a similar way
the 1h1p and 1h2p parts of the effective transition amplitudes
have perturbation expansions through second and first order,
respectively. An extension of the ADC scheme, not strictly
consistent with the polarization propagator and referred to as
ADC(2) extended [ADC(2)x], is obtained by using the first
order expansion for the 2h2p block that accounts for the cou-
plings between the 2h2p intermediate states. The ADC(n)
schemes are size consistent and compact relative to the cor-
responding truncated CI expansions.22

B. Stieltjes-Chebyshev moment theory

The SI approach to photoionization cross-sections is
based on the assumption that the discretized L 2 spectrum
above the ionization threshold allows one to obtain good ap-
proximations for lower spectral moments, S(n):

S(n) = 〈�0|D̂†Ĥ n+1D̂|�0〉. (19)

It is possible to express the moments (19) in terms of the exact
bound {� j} and continuum {�E} eigenstates of the Hamilto-
nian using the resolution of identity:

S(n) =
∑

j

En+1
j |〈�0|D̂|�j 〉|2

+
∫ ∞

Ethreshold

En+1|〈�0|D̂|�E〉|2dE. (20)

Assuming that the function D̂|�0〉 is non-zero only within a
finite interaction region, one can express the spectral moments
using the resolution of identity in terms of the variationally
calculated discrete L 2 eigenstates {�α} spanning the same
finite region:

S(n) ≈
∑

α

En+1
α |〈�0|D̂|�α〉|2. (21)

The moment problem consists in recovering the continuous
function E|〈�0|D̂|�E〉|2 from a finite number of its spectral
moments obtained within the L 2 approximation (21). It is
important to note that within the non-relativistic theory the
spectral moments diverge for n > 1,23 and thus the SI ap-
proach must rely on the use of negative spectral moments.

The SI computational procedure7 includes construction
of the quadrature pseudospectrum defined by the following
2n equations:

S(−2k) =
n∑

i=1

f
(n)
i[

ε
(n)
i

]2k
, k = 1, 2, . . . , 2n. (22)

Thus, the first 2n moments reconstructed from the L 2 cal-
culation give rise to an n-term smoothed (n � N) princi-
pal pseudospectra {ε(n)

i , f
(n)
i } i = 1, . . . , n. These quadrature

pseudospectra are then used to determine the cumulative os-
cillator strength, F(n)(ε), which is a histogram-like multi-step
function. The cumulative oscillator strength obtained in this
way approximates the exact one, converging to it for large
values of n if the first 2n moments are accurately reproduced
by the L 2 calculation. This is formally expressed by the
Chebyshev relation6, 7 which shows that F(n)(ε) gives upper
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and lower bounds on F(ε) at the points ε
(n)
i . The SI approx-

imation to the oscillator strength is found by differentiating
the Stieltjes-Chebyshev cumulative function, according to the
Stieltjes derivative definition (different from the Dirac con-
vention for stepwise functions).

III. CALCULATION OF SPECTRAL MOMENTS USING
LANCZOS DIAGONALIZATION PROCEDURE

Direct application of the SI procedure requires full di-
agonalization of the many-electron [e.g., ADC(n)] Hamilto-
nian matrix. This is typically not feasible for ab initio meth-
ods going beyond single electronic excitations, e.g., ADC(2).
In Ref. 11, we have proposed to overcome this difficulty by
applying the SI procedure to the relatively low-dimension
block-Lanczos pseudospectrum of the full ADC(n) Hamil-
tonian. Within the Lanczos method,12–14 the Hamiltonian is
represented on the basis of the so-called Lanczos states,
|ψ j〉, which are obtained by Gram-Schmidt orthogonalization
of the Krylov states, |ϕk〉 = Ĥ k|φ0〉, k = 0, 1, 2, . . . , N − 1.
The initial state |ϕ0〉 is usually chosen to have maximal over-
lap with the Hamiltonian eigenstates that are of interest in the
given physical problem. The Lanczos states of successive or-
ders can be used to construct a series of approximations to the
Hamiltonian. The Nth order Lanczos approximation to Ĥ is
of the form

Ĥ (N) =
N∑

j,k=0

|�j 〉〈�j |Ĥ |�k〉〈�k|, (23)

and is a tridiagonal matrix, i.e., 〈�j |Ĥ |�k〉 = 0 for |j − k|
> 1. The eigenvalues and eigenvectors of the operator Ĥ (N)

form Lanczos pseudospectrum. With increasing N, the Lanc-
zos pseudospectrum becomes a successively better approxi-
mation to the spectrum of Ĥ . A generalization of the Lanczos
technique to the case of a set of initial states is called block-
Lanczos method.13 The Lanczos (block-Lanczos) method is
useful not only for diagonalizing Hamiltonian matrices of
large dimensions, but can also be used for the calculation of
the spectral moments of the type of (21). To this end, the orig-
inal Hamiltonian has to be substituted by its Lanczos repre-
sentation:

Sn ≈ S(N)
n =

N∑
α=0

(
E(N)

α

)n ∣∣〈�0|D̂
∣∣χ (N)

α

〉∣∣2
. (24)

While the non-negative moments of the order 0 ≤ n ≤ 2N
can be calculated exactly by Eq. (24) with the appropriate
choice of the initial state (or block of states),13 the negative
moments required for the Stieltjes imaging can be calculated
only approximately. Since the Lanczos (block-Lanczos) algo-
rithm approximates most effectively the eigenstate subspace
spanned by the starting vector (or vectors), one has to con-
sider the physical properties of the system when choosing the
initial guess. In the case of photoionization cross-section the
final states of the process that we wish to resolve are of 1h1p
type and have the symmetry of the D̂|�0〉 state. Therefore, we
choose our starting vectors for the block-Lanczos iterations as

the full set 1h1p ADC intermediate states of the appropriate
symmetry.

IV. MOLECULAR PHOTOIONIZATION
CROSS-SECTIONS BY ADC-LANCZOS-STIELTJES
METHOD

The primary goal of this work is to test the accuracy of
the ADC-Lanczos-Stieltjes method at the ADC(1), ADC(2),
and ADC(2)x levels of ab initio theory using a test set of
molecules for which accurate experimental total ionization
cross-sections are available. Construction of the ADC Hamil-
tonian matrices requires carrying out restricted HF calcula-
tions and transforming the electron repulsion integrals from
the atomic orbital (AO) basis to the molecular orbital (MO)
basis. Throughout this work, these tasks are performed us-
ing MOLCAS 7.6 quantum chemical program package.24 The
standard Gaussian basis sets used in the present study have
been obtained from Ref. 25. Kaufmann-Baumeister-Jungen
(KBJ) continuum-like diffuse Gaussian functions26 are sys-
tematically used in each calculation to augment the standard
basis sets for a strictly necessary better representation of the
discretized electronic continuum.

We restrict the calculated cross-sections to the energy
range of up to 100 eV, thus including valence-type excita-
tions but excluding excitations of the core electrons. Stieltjes
imaging procedure is carried out in quadruple precision us-
ing the algorithm of Ref. 7. The presented photoionization
cross-sections are obtained as interpolation of the discrete
points corresponding to several (up to a maximum of five)
successive Stieltjes orders for which approximate stationarity
of the results is achieved. The interpolation procedure ana-
lyzes the points generated by each Stieltjes order and finds
which orders satisfy the stationarity condition within a pre-
determined maximal deviation. The procedure then merges
the cross-section values belonging to different orders in the
stationarity region into a single data set and finally performs
the merged data set interpolation. For all of the molecules
studied in the present work, the approximate stationarity is
reached for several consecutive Stieltjes orders between n = 5
and n = 15. This gives an idea of the number of principal rep-
resentation states and the energy resolution it is possible to
achieve with the method presented.

We quantify the deviation of the ADC-Lanczos-Stieltjes
cross-sections from the experimental ones computing their
energy-dependent and energy-averaged relative discrepancies
over the covered photon energy region. For all systems we
have used correlation consistent basis sets of the cc-pCVnZ
type, with n = T or n = Q depending on the system and on
the specific atom within the molecule; we have seen that the
inclusion of large exponents for the accurate description of
the localized core electrons can lead to a significant improve-
ment in the cross-section. In some cases we have noticed that
uncontracting the basis set leads to an improvement in the
cross-section, while in other cases it did not make substantial
difference. For every molecule we have checked the conver-
gence of the results of the spectral moments and of the cross-
section, with respect to the choice of the details of the basis
sets, i.e., with respect to the choice of the number of KBJ
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TABLE I. Details of the ADC-Lanczos-Stieltjes photoionization cross-section calculations: the basis sets, the dimensions of the ADC(2) matrices, and the
dimensions of the Lanczos pseudospectra for which the converged cross-sections have been obtained.

Molecule Basis set ADC(2) matrix dim. Krylov space dim.

H2O O:cc-pCVQZ + (10s10p4d); H:cc-pVQZ + (5s5p5d) 157 653 3390
HF F:UN-cc-pCVQZ + (10s10p10d4f); H:UN-cc-pVQZ + (6s6p6d2f) 181 236 3800
NH3 N:UN-cc-pCVTZ + (5s5p5d); H:UN-cc-pVTZ + (3s3p) 121 376 3920
CH4 C:UN-cc-pCVQZ + (6s6p6d2f); H:UN-cc-pVTZ + (4s4p2d) 209 682 3980
C2H2 C:cc-pCVTZ + (10s10p10d4f); H:cc-pVTZ + (6s6p6d2f) 252 025 3170
C2H4 C:cc-pCVTZ + (7s10p10d4f); H:cc-pVTZ + (3s3p3d) 411 931 3870
CH3OH C,O:UN-cc-pCVTZ + (2s4p3d); H:UN-cc-pVTZ + (1s1p) 182 194 3960
CO2 C,O:cc-pCVTZ + (5s6p6d2f) 391 838 3920

exponents and the quality of the cc-type basis set; we report
in the present work only the results obtained using the basis
set at which the convergence has been achieved. In Table I we
denote a fully uncontracted basis set by the prefix UN.

Experimental total photo-ionization cross-section as well
as a series of SI results obtained via full diagonalization of
the ADC(1) matrix and block Lanczos diagonalization of the
ADC(2) and ADC(2)x matrices are reported in Figs. 1–8 for
the molecules considered. The basis set employed, as well as
the dimension of the ADC(2)x matrices and that of the Lanc-
zos pseudospectrum space for which the convergence in the
cross-section has been obtained are reported in Table I. The
average relative deviations are reported in Table II.

A. Water

Figure 1 shows the experimental total photoionization
cross section of the H2O molecule as well as a series of
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FIG. 1. Total photoionization cross-section of H2O. Triangles – experimen-
tal result of Ref. 27, crosses – experimental results of Ref. 28, squares –
experimental result of Ref. 29, dashed-dotted line – ADC(1)-Stieltjes result,
dashed line – ADC(2)-Lanczos-Stieltjes cross-section obtained using block-
Lanczos pseudospectrum of 3390 eigenvalues and eigenvectors, full line
– ADC(2)x-Lanczos-Stieltjes cross-section obtained using block-Lanczos
pseudospectrum of 3390 eigenvalues and eigenvectors.

Stieltjes imaging results obtained via full diagonalization of
the ADC(1) matrix and block-Lanczos diagonalization of
the ADC(2) and ADC(2)x Hamiltonian matrices. The de-
tails of the calculations can be found in Table I. One can
see that the agreement between the experimental and the the-
oretical cross sections improves dramatically from ADC(1)
to ADC(2) level, but not nearly as much when going from
ADC(2) to the ADC(2)x level. The experimental measure-
ment in Ref. 27 were performed using the dipole (e,2e)
electron scattering technique, in the more recent study29 the
dipole (e,e) spectroscopy technique has been used, while in
Ref. 28 the cross-section is measured directly with photo-
absorption techniques, by use of a double ionization cham-
ber. The ADC(2) and the ADC(2)x results essentially coincide
with the newer experimental data28, 29 (apart from the sharp
feature at 15 eV), but show visible deviation from the older
experimental results around 20–30 eV.27 In Table II we cite
relative deviations of the theoretical results from the newer
experimental data.
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FIG. 2. Total photoionization cross-section of HF. Squares – experimen-
tal result of Ref. 30, dashed-dotted line – ADC(1)-Stieltjes result, dashed
line – ADC(2)-Lanczos-Stieltjes cross-section obtained using block-Lanczos
pseudospectrum of 3800 eigenvalues and eigenvectors, full line – ADC(2)x-
Lanczos-Stieltjes cross-section obtained using block-Lanczos pseudospec-
trum of 3800 eigenvalues and eigenvectors.
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FIG. 3. Total photoionization cross-section of NH3. Squares – experimen-
tal result of Ref. 32, crosses – experimental result of Ref. 33, dashed-dotted
line – ADC(1)-Stieltjes result, dashed line – ADC(2)-Lanczos-Stieltjes cross-
section obtained using block-Lanczos pseudospectrum of 3920 eigenval-
ues and eigenvectors, full line – ADC(2)x-Lanczos-Stieltjes cross-section
obtained using block-Lanczos pseudospectrum of 3920 eigenvalues and
eigenvectors.

B. Hydrogen fluoride

Figure 2 shows the experimental total photoionization
cross section of the HF molecule as well as a series of Stielt-
jes imaging results obtained via full diagonalization of the
ADC(1) matrix and block-Lanczos diagonalization of the
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FIG. 4. Total photoionization cross-section of CH4. Squares – experimen-
tal result of Ref. 34, dashed-dotted line – ADC(1)-Stieltjes result, dashed
line – ADC(2)-Lanczos-Stieltjes cross-section obtained using block-Lanczos
pseudospectrum of 3980 eigenvalues and eigenvectors, full line – ADC(2)x-
Lanczos-Stieltjes cross-section obtained using block-Lanczos pseudospec-
trum of 3980 eigenvalues and eigenvectors.
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FIG. 5. Total photoionization cross-section of C2H2. Squares – experimen-
tal results of Ref. 36, dashed-dotted line – ADC(1)-Stieltjes result, dashed
line – ADC(2)-Lanczos-Stieltjes cross-section obtained using block-Lanczos
pseudospectrum of 3170 eigenvalues and eigenvectors, full line – ADC(2)x-
Lanczos-Stieltjes cross-section obtained using block-Lanczos pseudospec-
trum of 3170 eigenvalues and eigenvectors.

ADC(2) and ADC(2)x Hamiltonian matrices. The details of
the calculations can be found in Table I. The most recent ex-
perimental result we have found is from 1981 and the experi-
mental method used in that work30 is the magic-angle dipole
(e,2e) spectroscopy technique. Our results show that, although
the higher-order schemes lead to a much improved peak
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FIG. 6. Total photoionization cross section of C2H4. Squares – experimen-
tal results of Ref. 37, dashed-dotted line – ADC(1)-Stieltjes result, dashed
line – ADC(2)-Lanczos-Stieltjes cross-section obtained using block-Lanczos
pseudospectrum of 3870 eigenvalues and eigenvectors; full line – ADC(2)x-
Lanczos-Stieltjes cross-section obtained using block-Lanczos pseudospec-
trum of 3870 eigenvalues and eigenvectors.



144107-7 Ruberti et al. J. Chem. Phys. 139, 144107 (2013)

20 40 60 80 100
Photon energy  (eV)

0

10

20

30

40

50
σ 

 (M
b)

ADC(1), full diagonalization
ADC(2), 3960 BL eigenvectors
ADC(2)x, 3960 BL eigenvectors
experimental

FIG. 7. Total photoionization cross-section of CH2O. Squares – experimen-
tal result of Ref. 38, Dashed-dotted line – ADC(1)-Stieltjes result, dashed
line – ADC(2)-Lanczos-Stieltjes cross-section obtained using block-Lanczos
pseudospectrum of 3960 eigenvalues and eigenvectors, full line – ADC(2)x-
Lanczos-Stieltjes cross-section obtained using block-Lanczos pseudospec-
trum of 3960 eigenvalues and eigenvectors.

20 40 60 80 100
Photon energy  (eV)

0

10

20

30

40

50

60

σ 
 (M

b)

ADC(1), full diagonalization
ADC(2), 3920 BL eigenvectors
ADC(2)x, 3920 BL eigenvectors
experimental

FIG. 8. Total photoionization cross-section of CO2. Squares – experimen-
tal result of Ref. 39, dashed-dotted line – ADC(1)-Stieltjes result, dashed
line – ADC(2)-Lanczos-Stieltjes cross-section obtained using block-Lanczos
pseudospectrum of 3920 eigenvalues and eigenvectors, full line – ADC(2)x-
Lanczos-Stieltjes cross-section obtained using block-Lanczos pseudospec-
trum of 3920 eigenvalues and eigenvectors.

position, they do not reproduce precisely the cross-section
peak height and the cross-section shoulder above 40 eV (see
Table II for the average relative deviations of the computed
hydrogen fluoride cross-sections from the experimental one).
We observe, however, that our theoretical results are in good
agreement with the previous theoretical multichannel random
phase approximation (MC-RPA) results of Cacelli et al.31 and
the most recent coupled cluster results of Cukras et al.17 This
may call for a revision of the experimental cross-section for
HF.

C. Ammonia

Figure 3 shows the experimental total photoionization
cross section of the NH3 molecule as well as a series of
Stieltjes imaging results obtained via full diagonalization of
the ADC(1) matrix and block-Lanczos diagonalization of the
ADC(2) and ADC(2)x Hamiltonian matrices. The details of
the calculations can be found in Table I. As in the case of
water and hydrogen fluoride, one can see that the agreement
between the experimental and the theoretical cross sections
improves with the order of the ADC scheme, with the differ-
ence between ADC(1) and ADC(2) being more critical than
between ADC(2) and ADC(2)x. The experimental measure-
ments in Ref. 33 were performed using the dipole (e,e) spec-
troscopy technique, while in Ref. 32 the cross-section is mea-
sured directly by use of a double ionization chamber. Average
relative deviations of the computed ammonia cross-sections
from the experimental one33 are given in Table II. The main
contribution to the deviation comes from the tail of the cross-
section in the energy range above 60 eV.

D. Methane

Figure 4 shows the experimental total photoionization
cross section of the CH4 molecule as well as a series of
Stieltjes imaging results obtained via full diagonalization of
the ADC(1) matrix and block-Lanczos diagonalization of the
ADC(2) and ADC(2)x Hamiltonian matrices. The details of
the calculations can be found in Table I. The experimental
measurement in Ref. 34 were performed using the dipole
(e,e) spectroscopy technique. One can see that the agreement
between the experimental and the theoretical cross sections
improves with the order of the ADC scheme. The highest-
order ADC(2)x result essentially coincides with the experi-
mental one apart from the value at the peak that is underesti-
mated by about 5 Mb. This underestimation of the maximum
height of the peak is characteristic to some degree of the com-
puted photo-absorption cross-sections of acetylene and ethy-
lene (see below). Average relative deviations of the computed

TABLE II. Relative deviations of the ADC-Stieltjes photoionization cross-sections from the experimental results across the energy range of ionization thresh-
old to 100 eV.

Ab initio level C2H4 (%) C2H2 (%) CH4 (%) CO2 (%) CH2O (%) H2O (%) HF (%) NH3 (%) Average (%)

ADC(1) 19.3 29.5 27.5 17.8 24.9 16.8 8.1 22.7 20.5
ADC(2) 15.8 18.6 22.5 7.0 17.5 7.9 7.2 19.0 14.0
ADC(2)x 12.4 14.6 17.7 7.1 16.4 7.8 7.6 17.6 12.1



144107-8 Ruberti et al. J. Chem. Phys. 139, 144107 (2013)

methane cross-sections from the experimental one are given
in Table II.

E. Acetylene

Figure 5 shows the experimental total photoionization
cross section of the C2H2 molecule as well as a series of
Stieltjes imaging results obtained via full diagonalization of
the ADC(1) matrix and block-Lanczos diagonalization of the
ADC(2) and ADC(2)x Hamiltonian matrices. The details of
the calculations can be found in Table I. Acetylene pho-
toionization has been well studied theoretically, in particular
sharp resonance features in the fixed-geometry valence cross-
sections has been revealed.35 The limited resolution of the SI
procedure does not allow to reproduce such fine structures,
however, due to vibrational broadening the experimental val-
ues can be directly compared to the SI results. Among the
available experimental data, the most recent and extended set
has been reported by Cooper et al.,36 who deduced it using
dipole (e,e) and (e,e-ion) spectroscopies and we have chosen
these data to compare our theoretical cross-section with. The
same experimental method has been used by Cooper et al. to
measure the photo-absorption cross-sections of ethylene and
methane. One can see that the agreement between the exper-
imental and the theoretical cross sections improves with the
order of the ADC scheme. In particular, the position of the
cross-section main peak at 15.5 eV is reproduced essentially
exactly by the ADC(2)x scheme. The height of the peak is
smaller with respect to the experimental measured value, be-
ing underestimated by about 5 Mb as in the case for methane.
This difference is due to the energy resolution of the SI pro-
cedure. For the same reason also the double hump structure
in the energy region between 13 eV and 16 eV is only ap-
proximately reproduced by our SI cross-section, resulting in
a small shoulder at 13 eV. Average relative deviations of the
computed acetylene cross-sections from the experimental one
are given in Table II.

F. Ethylene

Figure 6 shows the experimental total photoionization
cross section of the ethylene molecule as well as a series of
Stieltjes imaging results obtained via full diagonalization of
the ADC(1) matrix and block-Lanczos diagonalization of the
ADC(2) and ADC(2)x Hamiltonian matrices. The details of
the calculations can be found in Table I. The experimental
measurement in Ref. 37 were performed using the dipole (e,e)
spectroscopy technique. One can see that the agreement be-
tween the experimental and the theoretical cross sections im-
proves significantly from the ADC(1) to the ADC(2) scheme.
The highest-order ADC(2)x result, while more accurate in the
tail region from 30 eV to 100 eV, does not improve the agree-
ment with the experimental one in the main peak region. As in
the case of acetylene, also the ethylene cross-section exhibits
a sharp double hump structure in the energy region around
18 eV at the top of the peak, which is missed by both ADC(2)
and ADC(2)x and is attributed to the resolution of the SI.
On the contrary, the maximum value of the measured cross-

section (≈61 Mb) is better reproduced, comparing to methane
and acetylene. Average relative deviations of the computed
ethylene cross-sections from the experimental one are given
in Table II.

G. Formaldehyde

Figure 7 shows the experimental total photoionization
cross section of the H2CO molecule as well as a series of
Stieltjes imaging results obtained via full diagonalization of
the ADC(1) matrix and block-Lanczos diagonalization of the
ADC(2) and ADC(2)x Hamiltonian matrices. The details of
the calculations can be found in Table I. The experimental
measurements in Ref. 38 were performed using the dipole
(e,e) spectroscopy technique. One can see that the agree-
ment between the experimental and the theoretical cross sec-
tions improves with the order of the ADC scheme. Both
ADC(2) and ADC(2)x methods struggle to reproduce the very
sharp peak near 13 eV and the structure of the main peak at
18–20 eV, but give a better representation of the tail of the
cross-section than the ADC(1) result. Average relative devia-
tions of the computed formaldehyde cross-sections from the
experimental one are given in Table II. As in the case of am-
monia, the main contribution to the average deviation comes
from the tail of the cross-section, in the energy range above
30 eV.

H. Carbon dioxide

Figure 8 shows the experimental total photoionization
cross section of the CO2 molecule as well as a series of
Stieltjes imaging results obtained via full diagonalization of
the ADC(1) matrix and block-Lanczos diagonalization of the
ADC(2) and ADC(2)x Hamiltonian matrices. The details of
the calculations can be found in Table I. The experimental
measurements in Ref. 39 were performed using the dipole
(e,e) spectroscopy technique. One can see that the agreement
between the experimental and the theoretical cross sections
improves with the order of the ADC scheme. The double nar-
row peak at near 20 eV is reproduced by Stieltjes imaging as
a single peak. The main difference between the ADC(2) and
ADC(2)x results is in the region of the cross-section minimum
that is described more accurately by the ADC(2)x scheme.

Finally, the oscillations present in the experimental cross
section in the 30–60 eV range are missed completely by the
ADC(1) result and they are not yet fully reproduced by the
second order ADC(2) and ADC(2)x SI results. More specif-
ically we observe that the first plateau around 35 eV is well
reproduced by both second order methods, while the second
one at 55 eV is not. This is due to the low resolution of the
converged Stieltjes orders, interpolated to obtain the cross-
sections, in the 45–65 eV energy range. Average relative de-
viations of the computed carbon dioxide cross-sections from
the experimental one are given in Table II.

V. CONCLUSIONS

Stieltjes imaging has been long established as an efficient
way of calculation of total photoionization cross-sections
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using discretized continuum pseudospectra of the final states.
However, the accuracy of this technique is limited by both
the ability of the chosen L 2 basis set to represent contin-
uum functions within the interaction volume and the numeri-
cal instability of the computational algorithm of the Stieltjes-
Chebyshev moment theory. In view of these limitations, it
could be doubted that improving the many-body theoreti-
cal description of the ionized system leads to significantly
better cross-sections justifying the required higher numerical
effort. Indeed, the resulting difference in the calculated cross-
sections might fall within the margins of the inaccuracy in-
curred by the basis set and the Stieltjes imaging procedure.
Our first results on ADC-Lanczos-Stieltjes method,11 indicate
that this is actually not the case and full inclusion of dou-
ble electronic excitations does lead to more accurate Stieltjes
imaging cross-sections. However, our initial work dealt only
with two atomic and one molecular system. In the present
paper, we have shown beyond doubt that the trend seen in
Ref. 11 is characteristic of molecules of first row atoms in
the valence energy region. Within the specific family of post-
HF many-electron methods used here (ADC), ADC(2) leads
to clear, substantial improvement over the single-excitation
ADC(1) theory for all molecules considered, while for some
of them, even a more demanding ADC(2)x level of theory
leads to better agreement with the available experimental data
(see Table II). On average, the precision gain achieved with
ADC(2)x relative to ADC(2) in the considered energy win-
dow (from ionization threshold up to 100 eV) is about three
times smaller than the precision gain of ADC(2) relative to
the single-excitation ADC(1) method. It is instructive to an-
alyze the relative deviations of the three ab initio methods
as function of photon energy (Fig. 9). Indeed, one observes
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FIG. 9. Relative deviations of the ADC-Stieltjes photoionization cross-
sections from the experimental results averaged on the eight molecules calcu-
lated as a function of the energy in the energy range of ionization threshold to
100 eV. Dashed-dotted line – ADC(1)-Stieltjes result, dashed line – ADC(2)-
Lanczos-Stieltjes cross-section, full line – ADC(2)x-Lanczos-Stieltjes
cross-section.

that below 60 eV both ADC(2) and ADC(2)x methods lead
to impressive agreement with experiment with the relative de-
viations below 10%. At higher photon energies inaccuracy of
all the ADC schemes grows reaching 20% level around 80 eV.
Since this behavior does not depend on the level of ab initio
theory, we conclude that it has to do with the limitations of
the Gaussian single-electron basis sets.

The present work establishes the ADC-Lanczos-Stieltjes
method as an efficient and reasonably accurate technique for
molecular cross-sections in the valence region. Indeed, even
within an unoptimized straightforward implementation of the
method on the Intel Core i7-2600 processor, typical CPU time
required for the cross-section calculations presented here is
of the order of a few hours. Generalizations of the ADC-
Lanczos-Stieltjes method to core ionization and to photoion-
ization of excited molecular states are currently under de-
velopment. Another promising direction for future research
has to do with the most serious drawback of the Stieltjes-
Chebyshev moment theory method, i.e., with its limited en-
ergy resolution. This can only be overcome by employing
single-electron bases better adapted to bound-continuum tran-
sition calculations than the standard Gaussian ones. Specifi-
cally the B-spline based basis sets40 can provide the needed
energy resolution and thus development of the B-spline tech-
niques going beyond single excitations is most desirable.
This, we believe, will also allow accurate description of the
high-energy tails of the valence cross-sections.
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