Implementing a strand of a scalable fault-tolerant quantum computing fabric

Jerry M. Chow, Jay M. Gambetta, Easwar Magesan, David W. Abraham, Andrew W. Cross, B R Johnson, Nicholas A. Masluk, Colm A. Ryan, John A. Smolin, Srikanth J. Srinivasan, M Steffen
2014 Nature Communications  
Quantum error correction (QEC) is an essential step towards realising scalable quantum computers. Theoretically, it is possible to achieve arbitrarily long protection of quantum information from corruption due to decoherence or imperfect controls, so long as the error rate is below a threshold value. The two-dimensional surface code (SC) is a fault-tolerant error correction protocol} that has garnered considerable attention for actual physical implementations, due to relatively high error
more » ... ly high error thresholds ~1%, and restriction to planar lattices with nearest-neighbour interactions. Here we show a necessary element for SC error correction: high-fidelity parity detection of two code qubits via measurement of a third syndrome qubit. The experiment is performed on a sub-section of the SC lattice with three superconducting transmon qubits, in which two independent outer code qubits are joined to a central syndrome qubit via two linking bus resonators. With all-microwave high-fidelity single- and two-qubit nearest-neighbour entangling gates, we demonstrate entanglement distributed across the entire sub-section by generating a three-qubit Greenberger-Horne-Zeilinger (GHZ) state with fidelity ~94%. Then, via high-fidelity measurement of the syndrome qubit, we deterministically entangle the otherwise un-coupled outer code qubits, in either an even or odd parity Bell state, conditioned on the syndrome state. Finally, to fully characterize this parity readout, we develop a new measurement tomography protocol to obtain a fidelity metric (90% and 91%). Our results reveal a straightforward path for expanding superconducting circuits towards larger networks for the SC and eventually a primitive logical qubit implementation.
doi:10.1038/ncomms5015 pmid:24958160 fatcat:tzgmor3nobfnpewq4lconksfhu