Targeting the Microenvironment in High Grade Serous Ovarian Cancer

Nkechiyere Nwani, Livia Sima, Wilberto Nieves-Neira, Daniela Matei
2018 Cancers  
Cancer–stroma interactions play a key role in cancer progression and response to standard chemotherapy. Here, we provide a summary of the mechanisms by which the major cellular components of the ovarian cancer (OC) tumor microenvironment (TME) including cancer-associated fibroblasts (CAFs), myeloid, immune, endothelial, and mesothelial cells potentiate cancer progression. High-grade serous ovarian cancer (HGSOC) is characterized by a pro-inflammatory and angiogenic signature. This profile is
more » ... related with clinical outcomes and can be a target for therapy. Accumulation of malignant ascites in the peritoneal cavity allows for secreted factors to fuel paracrine and autocrine circuits that augment cancer cell proliferation and invasiveness. Adhesion of cancer cells to the mesothelial matrix promotes peritoneal tumor dissemination and represents another attractive target to prevent metastasis. The immunosuppressed tumor milieu of HGSOC is permissive for tumor growth and can be modulated therapeutically. Results of emerging preclinical and clinical trials testing TME-modulating therapeutics for the treatment of OC are highlighted.
doi:10.3390/cancers10080266 pmid:30103384 fatcat:3rniacrrrbbopjn47u3p4frgnq