New properties of the multivariable H^∞ functional calculus of sectorial operators
[article]
Olivier Arrigoni, Christian Le Merdy
<span title="2021-04-16">2021</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
This paper is devoted to the multivariable H^∞ functional calculus associated with a finite commuting family of sectorial operators on Banach space. First we prove that if (A_1,..., A_d) is such a family, if A_k is R-sectorial of R-type ω_k∈(0,π), k=1,...,d, and if (A_1,..., A_d) admits a bounded H^∞(Σ_θ_1×⋯×Σ_θ_d) joint functional calculus for some θ_k∈ (ω_k,π), then it admits a bounded H^∞(Σ_θ_1×⋯×Σ_θ_d) joint functional calculus for all θ_k∈ (ω_k,π), k=1,...,d. Second we introduce square
more »
... tions adapted to the multivariable case and extend to this setting some of the well-known one-variable results relating the boundedness of H^∞ functional calculus to square function estimates. Third, on K-convex reflexive spaces, we establish sharp dilation properties for d-tuples (A_1,..., A_d) which admit a bounded H^∞(Σ_θ_1×⋯×Σ_θ_d) joint functional calculus for some θ_k<π/2.
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2007.04580v2">arXiv:2007.04580v2</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/nozf5576w5b23g6d2mzfpq4b7q">fatcat:nozf5576w5b23g6d2mzfpq4b7q</a>
</span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200901163721/https://arxiv.org/pdf/2007.04580v1.pdf" title="fulltext PDF download [not primary version]" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<span style="color: #f43e3e;">✱</span>
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/45/9b/459ba4bf2d9afb830e705396bd3e767aaf3d9873.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2007.04580v2" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>