

DISSERTATION

How Do Engineers Analyze Netlists? – Human Problem-Solving

Processes in Hardware Reverse Engineering

Carina Yasmin Wiesen

Ruhr-Universität Bochum

Mai 2021

How Do Engineers Analyze Netlists? – Human Problem-Solving

Processes in Hardware Reverse Engineering

DISSERTATION

zur Erlangung des Grades eines Doktor-Ingenieurs

der Fakultät für Elektrotechnik und Informationstechnik

an der Ruhr-Universität Bochum

vorgelegt von

Carina Yasmin Wiesen

geboren in Langenfeld (Rhld.)

Bochum, 31. Mai 2021

To my beloved family.

Erstgutachter: Prof. Dr.-Ing. Christof Paar

Zweitgutachterin: Prof. Dr. Nikol Rummel

Vorgelegt am: 31.05.2021

Verteidigt am: 21.09.2021

I

Abstract

Digital hardware systems are the foundation of our modern digital society with its innumerable

interconnected digital devices, ranging from smartphones to the emerging Internet of Things

(IoT) as well as traditional PCs and cloud servers. Digital hardware is realized in form of

integrated circuits (ICs), i.e., microchips, that often perform various security-critical functions.

They are, thus, attractive targets for attacks and malicious manipulations. This dissertation is

concerned with a specific method to understand the inner structures and functionalities of

microchips – hardware reverse engineering (HRE). On the one hand, HRE supports the analysis

of ICs, for example, for the detection of malicious manipulations such as hardware Trojans or

intellectual property (IP) theft. On the other hand, HRE can be applied to illegitimate ends that

include, for example, product piracy, or the injection of malicious hardware backdoors and

Trojans. Such malicious manipulations can have far-reaching consequences such as monetary

losses, reputational damage for chip manufacturers, or security threats for critical

infrastructures in which the manipulated chips are implemented. As tools that automate the

entire HRE process do not yet exist, hardware reverse engineers have to make sense out of

semi-automated HRE steps that are driven by human problem-solving processes and cognitive

factors, such as intelligence or prior domain-specific knowledge. Consequently, the success of

HRE strongly depends on the analysts’ cognitive processes. However, the understanding of the

underlying cognitive processes and factors in HRE have thus far not gained much attention in

the research community, and remain largely unexplored and opaque.

In this doctoral thesis, I aim to analyze these poorly understood human problem-solving

processes in HRE. An underlying motivation is to focus on the malicious aspects of HRE (e.g.,

IP theft; insertion of backdoors), as they are associated with severe consequences, and to

prevent analysts from performing HRE with malicious goals. For this, it will be essential to

provide ICs with appropriate protection mechanisms (i.e., obfuscation). We argue that a

comprehensive understanding of not only the technical but especially the unexplored cognitive

processes in HRE can help to derive ideas for future developments of appropriate obfuscation

methods impeding HRE – which we coin cognitive obfuscation.

In the first part of this thesis, we present a methodological approach in order to circumvent

the methodological problem that HRE experts are rare and thus, not widely available. In this

context, we derive guidelines from educational and psychological research on skill acquisition

to develop a university-level HRE course. Within two studies, we show that our HRE course

II

promotes HRE skill acquisition in students with backgrounds in cyber security and thus, enable

them to participate in our main study.

The second part forms the core of the dissertation. In this, we conduct our main study to

systematically investigate human problem solving of hardware reverse engineers on different

levels of expertise (i.e., eight intermediates; one HRE expert). All participants are asked to

analyze a realistic gate-level netlist of an unknown IC. In order to investigate applied problem-

solving strategies and their efficiency, we apply an iterative open coding scheme to analyze

2.445 single HRE actions of the nine participants. Our results reveal, for example, that two

intermediates with above-average test results in the intelligence sub-factor working memory

complete the HRE task in a solution time that is comparable to the solution time of the HRE

expert.

In the final part of this thesis, I discuss our results on HRE problem-solving processes in

the light of established psychological theories and taxonomies of human problem solving.

Based on our findings, I conclude, for example, that HRE problem-solving performance may

be a function of both expertise and cognitive abilities, that is also relevant in the context of

cognitive obfuscation. In the context of our results, I develop initial ideas for cognitively

challenging tasks that may raise the cost of HRE to an unattractive level, and therefore, may

serve as an impulse for the development of cognitive obfuscation.

III

Kurzfassung (German Summary)

Digitale Hardwaresysteme sind die Grundlage unserer modernen digitalen Gesellschaft mit

ihren unzähligen und miteinander verbundenen digitalen Geräten, die von Smartphones über

das sich entwickelnde Internet der Dinge (IoT) bis hin zu traditionellen PCs und Cloud-Servern

reichen. Digitale Hardware wird in Form von integrierten Schaltkreisen (ICs), d. h. Mikrochips,

realisiert, die oft verschiedene sicherheitskritische Funktionen ausführen. Daher sind sie

attraktive Ziele für Angriffe und bösartige Manipulationen. Diese Dissertation beschäftigt sich

mit einer speziellen Methode, um die inneren Strukturen und Funktionalitäten von Mikrochips

zu verstehen – dem Hardware Reverse Engineering (HRE). HRE unterstützt einerseits die

Analyse von ICs, z.B. zur Erkennung von bösartigen Manipulationen wie Hardware-Trojanern

oder von Diebstahl geistigen Eigentums (IP). Andererseits kann HRE auch zu illegitimen

Zwecken eingesetzt werden, z. B. zur Produktpiraterie oder zum Einschleusen von bösartigen

Hardware-Backdoors und Trojanern. Solche böswilligen Manipulationen können

weitreichende Folgen haben, wie etwa monetäre Verluste, Reputationsschäden für Chip-

Hersteller oder Sicherheitsbedrohungen für kritische Infrastrukturen, in denen die

manipulierten Chips eingesetzt werden.

Aktuell gibt es kein Werkzeug, das den gesamten HRE-Prozess automatisiert, wodurch

AnalystInnen gezwungen sind halbautomatisierten HRE-Schritten einen Sinn zu verleihen.

Dies ist abhängig von menschlichen Problemlöseprozessen und kognitiven Faktoren wie

Intelligenz oder domänenspezifischem Vorwissen. Demnach hängt der Erfolg von HRE stark

von den kognitiven Prozessen der AnalystInnen ab. Das Verständnis der zugrundeliegenden

kognitiven Prozesse und Faktoren in HRE hat jedoch bisher in der Forschungsgemeinschaft

nicht viel Aufmerksamkeit erhalten und bleibt weitgehend unerforscht und undurchsichtig.

In dieser Dissertation ziele ich darauf ab, diese kaum verstandenen menschlichen

Problemlöseprozesse in HRE zu analysieren. Eine zugrundeliegende Motivation ist es, sich auf

die bösartigen Aspekte von HRE (z.B. IP-Diebstahl; Einfügen von Backdoors) zu

konzentrieren, da diese mit schwerwiegenden Konsequenzen verbunden sind. Zudem sollen

AnalystInnen perspektivisch davon abgehalten werden, HRE mit bösartigen Zielen

durchzuführen. Dazu wird es unerlässlich sein, ICs mit geeigneten Schutzmechanismen (z. B.

Obfuskation) auszustatten. Um HRE zu erschweren, argumentieren wir, dass ein umfassendes

Verständnis nicht nur der technischen, sondern vor allem der unerforschten kognitiven Prozesse

IV

bei HRE helfen kann, Ideen für zukünftige Entwicklungen geeigneter Obfuskationsmethoden

abzuleiten – die wir als kognitive Obfuskation bezeichnen.

Im ersten Teil dieser Arbeit stellen wir einen methodischen Ansatz vor, um das

methodische Problem zu umgehen, dass HRE-ExpertInnen rar und daher nicht allgemein

verfügbar sind. In diesem Zusammenhang leiten wir Richtlinien aus der pädagogischen und

psychologischen Forschung zum Erwerb von Fähigkeiten ab, um einen HRE-Kurs auf

Universitätsniveau zu entwickeln. Im Rahmen von zwei Studien zeigen wir, dass unser HRE-

Kurs den Erwerb von HRE-Fähigkeiten bei Studierenden mit einschlägigem Hintergrund im

Bereich der IT-Sicherheit fördert und sie somit befähigt, an unserer Hauptstudie teilzunehmen.

Der zweite Teil bildet den Kern der Dissertation. In diesem führen wir unsere Hauptstudie

durch, um das menschliche Problemlösen von AnalystInnen (acht Nicht-ExpertInnen; ein HRE-

Experte) systematisch zu untersuchen. Alle StudienteilnehmerInnen werden gebeten, eine

realistische Netzliste eines unbekannten ICs zu analysieren. Um die angewandten

Problemlösestrategien und deren Effizienz basierend auf 2.445 einzelne HRE-Aktionen der

neun TeilnehmerInnen zu untersuchen, wenden wir ein iteratives offenes Kodierungsschema

an. Unsere Ergebnisse zeigen beispielsweise, dass zwei Nicht-ExpertInnen mit einem

überdurchschnittlich hohe Testergebnis im Intelligenz-Subfaktor Arbeitsgedächtnis die HRE-

Aufgabe in einer Lösungszeit erledigen, die mit der Lösungszeit des HRE-Experten

vergleichbar ist.

Im letzten Teil dieser Arbeit diskutiere ich unsere Ergebnisse zu HRE-

Problemlöseprozessen im Licht etablierter psychologischer Theorien und Taxonomien des

menschlichen Problemlösens. Aus unseren Ergebnissen schließe ich beispielsweise, dass die

HRE-Problemlöseleistung eine Funktion sowohl der Expertise als auch der kognitiven

Fähigkeiten sein kann, was wiederrum auch im Kontext der kognitiven Obfuskation relevant

ist. Im Zusammenhang mit unseren Ergebnissen entwickle ich erste Ideen für kognitiv

herausfordernde Aufgaben, die die Kosten von HRE auf ein unattraktives Maß erhöhen und

somit als Impuls für die Entwicklung von kognitiver Obfuskation dienen können.

V

Acknowledgements

I would like to express my deepest appreciation to my both advisors, Nikol Rummel and

Christof Paar, who have extraordinarily supported me throughout all these years of my PhD.

My PhD was one of the most exciting journeys of my life and provided me with so many new

impressions and experiences. I would like to thank Nikol Rummel very much for being such a

great PhD advisor over all these years and always supporting me – whether it was writing

papers, this thesis, or preparing for presentations at conferences and workshops. Furthermore,

I would like to thank Christof Paar very much for his academic support, and for always

encouraging and believing in me. Thank you for letting me become part of the Emsec family.

I would particularly like to thank my Tandempartner Steffen Becker. Without you, working on

this topic would not have been possible – thank you for enabling this great and exciting

interdisciplinary collaboration! I also look back with pleasure on our joint work trips - even if

things didn't always go smoothly due to the weather and we ended up exploring the Boston

airport, these were still great trips.

In this context, I am also extremely grateful for the interdisciplinary work environment provided

by the graduate school SecHuman! I would like thank Susanne Kerstens, Anne Thiele, and

Astrid Wichmann very much for their support in SecHuman.

I would like to take this opportunity to thank Sebastian Strauß for the great academic

discussions and enriching exchanges about music during our shared office time. Thanks also

for your great support in writing this thesis. It’s closing time! Furthermore, I would like to thank

Leonie Schaewitz for being such a great office mate and for her support in writing my papers.

I am very thankful to Marc Fyrbiak and Nils Albartus for being so patient in explaining

hardware reverse engineering to me. Nils, I will always remember our trips to Amherst and our

Chaos-WG – Bacon everywhere! Furthermore, I would like to thank Max Hoffmann very much

for his enormous support in programming the HRE game. I would like to thank Philipp Koppe

for forcing me to climb a wall and thereby giving me my new favorite hobby, bouldering. I also

hope that with you and Maik Ender many more bouldering and hiking adventures will follow.

I am also grateful for Anna Keune and Charleen Brand for their time correcting my "Denglish"

– I really appreciate it! I am also thankful for the support of my PP-colleagues Julia Eberle,

Julia Erdmann, Christian Hartmann, Valentina Nachtigall, Meike Osinski, and Selina Yek.

Furthermore, I am thankful for the support of my colleagues from the Emsec-squad Susanne

VI

Engels, Carl-Daniel Hailfinger, Endres Puschner, Falk Schellenberg, Julian Speith, Paul Staat,

Johannes Tobisch, Sebastian Wallat, and Pascal Zimmer.

Many studies would not have been possible without the great support of the student assistants

Isabell Bohm, Luisa Jansen, Zehra Karadag and René Walendy. Many thanks for everything!

I would also like to thank Nesrin Denizer, Adnan El Arja, and Irmgard Kühn very much for

their support in organizing everything around my PhD.

Finally, but by no means least, I would like to thank my wonderful family Bernd Wiesen, Uta

Wiesen, Vanessa Wiesen, and Marcus Haffmanns for their fantastic love and unbelievable

support. Thank you so much for always believing in me and standing by my side!

VII

Table of Contents

Abstract I

Kurzfassung (German Summary) III

Acknowledgements V

1 Introduction 9

2 Theoretical Background and Research Structure 15

2.1 A Definition of Hardware Reverse Engineering 15

2.2 Problem Solving in Hardware Reverse Engineering 17

2.3 Expertise and Problem Solving 21

2.4 Intelligence and Problem Solving 23

2.5 Methodological Challenge – Unavailable HRE Experts 25

2.6 Research Goals 26

2.7 Thesis Overview 28

3 Promoting Skill Acquisition in Hardware Reverse Engineering: Educational

Guidelines and Practical Insights 34

3.1 Introduction and Contributions 35

3.2 Background and Guidelines 36

3.2.1 Background on Learning with Multiple Netlist Representations 36

3.2.2 Guidelines for Learning HRE with Multiple Netlist Representations 39

3.2.3 Background on Skill Acquisition 41

3.2.4 Guidelines for the Acquisition of HRE skills 42

3.2.5 Background on Supporting Students’ Motivation 43

3.2.6 Guideline for Enhancing Students’ Motivation in Learning HRE 43

3.3 Summary of Guidelines and Description of HRE course design 44

3.4 Methods 48

3.5 Results 53

3.6 Discussion 56

3.7 Limitations and Future Work 58

3.8 Conclusion 59

4 Problem Solving in Hardware Reverse Engineering 60

4.1 Introduction and Contributions 61

4.2 Methods 63

4.3 Results 72

4.3.1 Results RQ1a 72

4.3.2 Discussion RQ1a 77

VIII

4.3.3 Results RQ1b 78

4.3.4 Discussion RQ1b 79

4.3.5 Results RQ2 80

4.3.6 Discussion RQ2 87

4.3.7 Results RQ3 88

4.3.8 Discussion RQ3 90

5 General Discussion 93

6 Initial Ideas for Cognitive Obfuscation 100

6.1 Overloading the Capacity of the Working Memory 100

6.2 Developing Misleading HRE Challenges 103

7 Limitations and Future Studies 106

8 Conclusion 108

9 Appendix 111

9.1 References 111

9.2 Example Script 126

9.3 Detailed Code Book 126

9.4 Full HRE Taxonomy 134

9.5 List of Abbreviations 139

9.6 List of Figures 140

9.7 List of Tables 141

9.8 About the Author 143

9.9 Eidesstattliche Erklärung 146

9

1 Introduction

The digitalization of our society is advancing at an ever-faster pace, making computing systems

and communication technologies an integral part of our everyday lives. For example, the market

for Internet of Things devices (IoT-devices) is constantly rising and is forecasted to reach $1.4

trillion by 2027 (Crane, 2021), connecting billions of users worldwide in the business, private,

or automotive sectors. The digital hardware devices, usually given as integrated circuits (ICs)

or microchips, are considered trusted in virtually any computing system. Although a variety of

software components implement security mechanisms, they all depend on the underlying

hardware devices for actually executing the security functions. Thus, the correct function of

microchips is crucial for the security (and often also safety) of many if not most digital devices

on which the digital society relies.

A commonly applied method to understand an IC’s structure and functionalities is called

Hardware Reverse Engineering (HRE). HRE is used to achieve legitimate goals (e. g., hardware

Trojan detection, identification of counterfeit products, analysis of a competitor’s product), but

also to achieve illegitimate goals (e.g., malicious manipulations, overproduction and

counterfeiting; intellectual property (IP) piracy) (Quadir et al., 2016). In terms of illegitimate

goals, HRE can be applied during the global fabrication process of hardware chips, during

which several (untrusted) stakeholders have access to valuable hardware designs and may be

able to commit IP piracy or insert manipulations (Rostami, Koushanfar, & Karri, 2014). Those

malicious manipulations in hardware chips are major concerns for many stakeholders, because

the deployment of manipulated hardware chips in critical infrastructure (e.g., cellular networks;

power grids; sensitive applications in aerospace or military) may have serious consequences

and can compromise the security of an entire system (Guin et al., 2014; Guin, DiMase, &

Tehranipoor, 2014; Becker, Regazzoni, Paar, & Burleson, 2013).

A gate-level netlist is defined as a logical circuit that is composed of gates and their

interconnections (Becker et al., 2020). During HRE, high-level information is extracted from a

low-level circuit during two major stages (Azriel, Ginosar, & Mendelson, 2019). First, the

reverse engineer retrieves a gate-level netlist from the IC through several sub-steps including,

for example, delayering and imaging of the single IC layers or post-processing of all images to

assemble the gate-level netlist (overviews by Torrance & James, 2009 or Quadir et al., 2016).

Besides this, it is also possible to obtain a gate-level netlist through online interception of design

information. In a second step, a hardware reverse engineer aims to obtain a better understanding

10

(i.e., sense-making) of the recovered netlist, the chip structure, or specific functionalities, for

example, the identification of IP blocks (Becker et al., 2020). These processes of understanding

the netlist are included in the second step of HRE (Azriel, Ginosar, & Mendelson, 2019) that

have been so far only rudimentarily addressed in prior research.

In order to understand the netlist, hardware reverse engineers apply a set of semi-

automated and customized tools, as fully automated HRE tools do not exist so far (Becker et

al., 2020). Analysts typically apply HRE tools that enable the analysis of the present netlist, for

example, by developing specific algorithms on the netlist (Chisholm, Eckmann, Lain, & Veroff,

1999), or by conducting manual and visual analysis of specific netlist components (Wallat et

al., 2019). Due to the lack of tools that allow for fully-automated netlist analysis, HRE always

involves the analysts’ cognitive processes such as problem solving that is governed by their

cognitive capabilities. Surprisingly, these cognitive processes, which determine the success of

HRE, have been little explored in prior research and remain poorly understood.

Although there has been prior works that explored sense-making processes of software

reverse engineers (Votipka, Rabin, Micinski, Foster, & Marzurek, 2020), or the effectiveness

of software obfuscation methods (e.g., Ceccato et al., 2009; Ceccato et al., 2014), only little

prior research has already dealt with the exploration of human factors in HRE. In terms of HRE,

there is one relevant prior work by Lee and Johnson-Laird (2013) who explored problem-

solving processes during reverse engineering of Boolean systems. The participants were asked

to draw electrical circuits that controlled electrical lights or a water flow system. The authors

conducted five laboratory experiments with students who had no prior domain-specific

knowledge and showed that the difficulty of reverse engineering of Boolean systems is

influenced by the number of components of the system and the dependencies of the components

(Lee & Johnson-Laird, 2013). Furthermore, they found that students applied one of the two

problem-solving strategies of either focusing on the output or single components. Based on

their results, Lee and Johnson-Laird (2013) defined reverse engineering of Boolean systems as

a specific type of human problem solving that has not been investigated by psychologists

before. Since Lee and Johnson-Laird’s (2013) study task lack in comparability to a realistic

HRE tasks, it is questionable to what extent Lee and Johnson-Laird’s (2013) results are

applicable to problem-solving processes in HRE. Previously, we (Becker et al., 2020)

conducted an exploratory investigation into the technical processes of HRE. We proposed a

three-phased model of HRE consisting of i) candidate identification; ii) candidate verification;

and iii) realization. We suggested that hardware reverse engineers have to pass through these

11

three phases to successfully analyze a gate-level netlist. Furthermore, an initial comparison

between the HRE processes of two reverse engineers showed that the faster participant chose a

strategy comparable to divide-and-conquer, whereas the slower participant solved the HRE task

through trial-and-error.

Within this doctoral thesis, I aim to achieve an overarching research goal: understanding

human factors that play a role in HRE. The understanding of human factors in HRE is essential

in order to estimate the effort of hardware reverse engineers or to support the development of

sound countermeasures impeding HRE – suggested as cognitive obfuscation (Wiesen et al.,

2019a; Becker et al., 2020). Although prior research has advanced the understanding of

cognitive processes in reverse engineering (Lee & Johnson-Laird, 2013; Becker et al., 2020), it

is necessary to conduct further explorations for the following reasons. Since Lee and Johnson-

Laird (2013) conducted their studies under artificial laboratory conditions and included tasks

that were limited in their comparability to realistic HRE settings, it is unclear if their results of

cognitive processes in reverse engineering of Boolean systems are applicable to HRE problem

solving. If we aim to achieve a comprehensive understanding of HRE problem solving and to

derive ideas for future developments of cognitive obfuscation, it is necessary to conduct a study

with realistic HRE task under realistic HRE conditions (e.g., including HRE tools).

However, researchers who aim to explore human factors in HRE face the methodological

challenge that HRE experts often work for highly-specialized companies or government

agencies which have intrinsic motivations not to reveal information about their HRE working

processes. Furthermore, the worldwide population of HRE experts is also very small. Both

aspects make the efforts to locate and recruit those experts not only very time-consuming, but

also often unsuccessful.

Because human factors are strongly involved in HRE, researchers who aim to receive a

better understanding of HRE need to apply an interdisciplinary approach. By combining

hardware security and cognitive psychology, we tried to address this research problem. The

realization of the interdisciplinary approach and research project was enabled by the

interdisciplinary environment of the SecHuman graduate school. In the SecHuman graduate

school, interdisciplinary tandem teams consisting of two doctoral students from different

disciplines conduct research on an overarching security-related research question.

Accordingly, most of the results and work steps originate from the interdisciplinary

collaboration with my tandem partner Steffen Becker. My role in this tandem constellation was

to explore human factors in HRE (i.e., problem-solving processes; the role of cognitive abilities

12

and expertise in HRE) from a cognitive psychological perspective, whereas Steffen Becker’s

research focus was on the technical aspects of HRE.

Main Contributions of Doctoral Thesis

Cybersecurity topics in human-computer interaction (HCI) research have gained importance

over the last decade. According to (Stephanidis et al., 2019), research on security has become

one of the seven grand challenges for the HCI community. In this dissertation, methods and

theoretical concepts of cognitive psychology and HCI research are adapted to explore the

behavior of hardware reverse engineers who were asked to solve a realistic HRE task. Prior

research has long considered the human factor in designing secure and usable systems with the

goal to improve the interaction between security aspects and specific user groups, such as end

users (e.g., Sasse, Brostoff, & Weirich, 2001) or software developers (e.g., Acar, Stransky,

Wermke, Mazurek, & Fahl, 2017). However, the long-term goal of this doctoral thesis is not to

improve the interaction between users (in our case hardware reverse engineers) and the system

(a gate-level netlist as the HRE target), but rather to make HRE more difficult by deriving

suggestions for sound countermeasures impeding HRE. This twist on the typical HCI

framework (i.e., improving the interaction between user and system) may be a novel direction

for the HCI community.

The development of initial ideas for cognitive obfuscation in the end of this dissertation

is based on a multi-step research approach to receive a better understanding of human factors

in HRE. The following list summarizes the main contributions of this dissertation:

1. Embedding of technical HRE problems in psychological theory

Following the theoretical considerations by Lee and Johnson-Laird (2013), I defined

underlying cognitive processes in HRE as problem-solving processes. The theoretical

embedding in existing psychological theories of human problem solving builds the

foundation to investigate cognitive processes and potentially influencing factors such as

prior knowledge or intelligence in HRE in a theory-based and structured way.

2. Development and evaluation of a methodological approach to explore human

factors in HRE

As mentioned above, the recruitment of HRE experts is very costly and often unsuccessful.

Since there is hardly any research on the cognitive processes in HRE, there are also no

methodological recommendations on how to circumvent the problem that HRE experts are

13

unavailable for research. Together with the interdisciplinary research team, I developed and

evaluated a methodology that enabled students to acquire a sufficient amount of HRE skills

and prepared those students to participate in the main study on exploring human factors in

HRE.

3. Conducting of an empirical study to explore human factors in HRE

In collaboration with my co-authors, I designed and conducted a main study in order to

explore underlying human factors in HRE. In this study, participants with different levels

of HRE expertise were asked to solve a realistic HRE task. The participants’ problem

solving was explored by an iterative open coding procedure of 2445 single log entries.

Besides behavioral log files, cognitive abilities and the level of prior domain-specific

knowledge was measured in the main study.

4. Exploration of human factors in HRE

o Exploration of problem-solving processes in HRE: The overarching goal of

this dissertation is to obtain a meaningful and comprehensive understanding of

human factors in HRE, defined as problem-solving processes – processes that

have been poorly investigated by prior research so far. Within the doctoral

thesis, we explored the problem-solving performance of hardware reverse

engineers who were asked to solve a realistic HRE task. Therefore, we

conducted a main study on HRE problem solving and analyzed the problem-

solving processes by applying an iterative open coding scheme based on the

well-established Grounded Theory (Strauss & Corbin, 1998). Our results

showed, for example, that it seemed as if a single best HRE strategy did not exist

for the problem at hand and different problem-solving processes may lead to

efficient solutions. In addition, we identified several difficulties that hardware

reverse engineers faced during the HRE problem solving. The findings are also

discussed in a broader context of established psychological literature on problem

solving.

o Exploration of cognitive factors in HRE problem solving: Besides the

exploration of problem-solving processes in HRE, we investigated whether the

level of expertise or of cognitive abilities play a role in HRE problem solving.

Our exploration showed that two intermediates solved the HRE task with an

efficiency comparable to the HRE expert. Furthermore, our data showed that

participants with above-average scores in the intelligence sub-factor working

14

memory tended to solve the HRE task faster than participants with lower

working memory scores. Based on our results, I concluded that HRE problem

solving may be a function of both expertise and cognitive abilities, and discuss

this point in the light of psychological literature.

5. Deriving initial ideas for cognitive obfuscation

Beyond the contribution to the main goal (i.e., understanding human factors in HRE), I

developed initial ideas for sound countermeasures impeding HRE – so called cognitive

obfuscation (Becker et al., 2020; Wiesen et al. 2019) (see Chapter 6). I suggested that

countermeasures impeding the cognitive processes of HRE should consider both expertise

and cognitive abilities of analysts, as both factors may support efficient HRE problem

solving. For example, prior psychological research suggested potential characteristics of

tasks that have posed huge challenges for experts (e.g., Chi 2006). Against this background,

I suggested to develop obfuscation tasks in which experts could not rely on their prior

domain-specific knowledge and cannot apply standard-strategies through which these

experts may lose efficiency in their HRE problem solving. As the cognitive factor working

memory may also contribute to efficiently solving HRE tasks, I derived initial ideas for

obfuscation tasks that aim to overload the capacity of hardware reverse engineers’ working

memory.

15

2 Theoretical Background and Research Structure

In Sections 2.1-2.5, I present relevant technical and psychological background in the context of

HRE, and describe the methodological problem that HRE experts are unavailable for research.

In Section 2.6, I build upon the presented background to present my research goals to analyze

the so far poorly understood problem-solving processes in HRE. Finally, I provide an overview

of the structure of the dissertation and a brief summary of included studies and publications

(Section 2.7).

2.1 A Definition of Hardware Reverse Engineering

Rekoff (1985) defined reverse engineering as a process through that a reverse engineer retrieves

underlying structures, components, and functionalities of an existing system without access to

its high-level description. The process of reverse engineering is commonly employed in various

domains such as software, electronics (e.g., microchips), mechanical engineering, or in the

context of cybersecurity as the two principle types: Hardware and Software Reverse

Engineering. HRE is a tool to retrieve information about the inner structure and functionality

of microchips and is applied for both legitimate (e.g., detection of hardware Trojans) or

illegitimate (e.g., IP infringement) purposes (Fyrbiak et al., 2018b; Quadir et al., 2016) (see

Introduction).

In order to analyze an unknown chip design, HRE is typically conducted through the

following two stages. First, the analyst performs several steps to retrieve a model of the chip (a

so called “gate-level netlist”) that consists of gates and their interconnections (Torrance &

James, 2009). In a real-world context, those gate-level netlists consist of thousands or millions

of logic components, and can be retrieved from an IC or a Field Programmable Gate Array

(FPGA) or from an interception of design information (Becker et al., 2020). Although the

retrieval of a gate-level netlist is very effortful and requires a highly specified set of methods,

tools and materials, prior research has shown that trained specialists are able to reliably extract

a netlist from both ICs and FPGAs (Ding et al., 2013; Moradi, Baranghi, Kasper, & Paar, 2011;

Torrance & James, 2009; Ender, Moradi, & Paar, 2020).

Second, after extracting the netlist, the analyst actively combines several different

techniques to achieve a given goal, for instance, to find or understand IP blocks, to extract

16

cryptographic keys (Wallat, Fyrbiak, Schlögel, & Paar, 2017) or to detect malicious

manipulations. In order to achieve the specific reversing goal, the second HRE phase typically

involves human cognitive abilities to recognize specific modules, to identify blocks of interest,

to retrieve a detailed understanding of Boolean sub-circuits, or to recover high level register

(Azriel et al., 2019; Fyrbiak et al., 2018b; Subramanyan et al., 2014; Albartus, Hoffmann,

Temme, Azriel, & Paar, 2020; Becker et al., 2020). Due to the complex design of commercial

hardware, analysts usually have to create custom solutions or need to perform detailed manual

analysis of single netlist components (Becker et al., 2020; Fyrbiak et al., 2017).

Nevertheless, the tool support in the domain of HRE is not as mature as, for example, in

the domain of Software Reverse Engineering (SRE). SRE is regularly applied to use cases such

as malware detection, security analysis, obsolescence management, or the realization of

interoperability (Eilam, 2011). Therefore, SRE is commonly applied to analyze highly

optimized bytecode (i.e., strings consisting of zeroes and ones) that is received from machine

code or binary files that run on specific devices (Gomulkiewicz & Williamson, 1996). Software

reverse engineers commonly use specific tools to conduct SRE, such as decompilers,

disassemblers, low-level debuggers and packet sniffers. In the past decades, several advanced

SRE tool suites (e.g., IDA Pro; Ghidra) have been developed and provide software reverse

engineers a variety of (semi-) automated functionalities that suite to the analysts’ individual

reversing goals. The SRE community benefits from long-standing tool development, an active

research community, and well-established business cases that have led to the advancement from

mostly manual SRE analysis to predominately automated process (Gandotra, Bansal, & Sofat,

2014). In terms of HRE, some developments of specific tool suites have been advanced in the

past, such as the HRE tool HAL by Fyrbiak et al. (2018a). HAL, as a uniform platform, offers

several functionalities that are essential for conducting HRE (e.g., graph-based visualization of

gate-level netlists or an interactive netlist exploration via a Python console).

Although HRE tools like HAL exists, they do not support a fully automated analysis of

the gate-level netlist, and hardware reverse engineers are usually forced to make sense out of

previously described semi-automated steps. Thus, cognitive processes and abilities of the

analysts critically influence and determine the success of HRE. Surprisingly, those underlying

cognitive processes that have a huge impact on HRE, have barely been considered by prior

research and remain poorly understood. So far, only little research has been investigated to

explore and define those underlying cognitive processes in HRE. Within this thesis, I contribute

to this research gap by systematically analyzing cognitive processes of hardware reverse

17

engineers. In order to impede HRE, we argue that it may be a valuable approach to develop

obfuscation schemes that consider both, the technical and the cognitive processes of HRE –

suggested as cognitive obfuscation (Becker et al., 2020; Wiesen et al., 2019a). Based on our

findings on HRE problem solving, I develop initial ideas for cognitively challenging

obfuscation tasks in the final part of my dissertation.

2.2 Problem Solving in Hardware Reverse Engineering

As shown above, prior research has already investigated general technical analysis methods of

HRE. However, HRE also requires custom solutions as well as analysts’ skill, knowledge, and

cognitive processes. Surprisingly, so far little is known about these cognitive processes that

influence HRE performance of human reverse engineers. In the following, I present relevant

prior findings on problem solving in reverse engineering of Boolean systems. As more research

on cognitive processes in HRE is lacking thus far, I refer to more general psychological research

findings on the definition of problem solving and influencing factors such as the level of

expertise or the level of cognitive abilities of a problem solver.

Lee and Johnson-Laird (2013) define reverse engineering of Boolean systems, i.e., binary

logic expressions, as a specific and strongly understudied type of human problem solving. In

their theoretical model, reverse engineering of Boolean systems is specified as:

„ [...] the process of working out how to assemble components with known properties into

a system that has the input-output relations of a target system” Lee and Johnson-Laird

(2013, p. 20).

In other words, during reverse engineering of Boolean systems, problem solvers infer the

underlying mechanisms of a given system, and investigate how single components of the system

influence specific outputs, and if these components also depend on each other. In their work,

Lee and Johnson-Laird (2013) conducted five laboratory studies with students who had no

domain-specific knowledge. During these five experiments, the participating students were

asked to draw Boolean circuits that would control electric lights or a water flow system. The

authors concluded that reverse engineering of Boolean systems was influenced by three factors:

(1.) The number of variable components (i.e., the switches), (2.) their number of settings that

yielded the positive outputs (i.e., light comes on), (3.) the interdependence of components that

influenced the outputs. Additionally, Lee and Johnson-Laird (2013) collected interview data

18

during their experiments that enabled them to draw conclusions about applied problem-solving

strategies of the participating students. The results revealed that the participants chose one of

two main initial strategies: They focused either on a single output at a time or on a single

component at a time. Moreover, the qualitative data showed that participants extended the

solutions they gained from previous sub-problems to the next sub-problem.

It nevertheless remains an open research question whether Lee and Johnson-Laird’s

(2013) results are applicable to describe problem-solving processes in HRE for two main

reasons. First, Lee and Johnson-Laird (2013) included task materials of simple Boolean systems

in their experiments that are strongly limited in their comparability to complex real-world HRE

tasks. During realistic HRE challenges, hardware reverse engineers have to make sense of

hundreds of thousands or millions of logic components included in a gate-level netlist. Second,

they recruited students who lacked relevant background knowledge for example in digital

circuits, Boolean algebra, or electrical engineering. However, it can be assumed that hardware

reverse engineers possess and apply domain-specific knowledge and skills to analyze a real-

world gate-level netlist that in turn strongly questions the generalizability of the results of Lee

and Johnson-Laird (2013) to the HRE domain. Thus, it is necessary to conduct studies with

realistic HRE settings (e.g., realistic task materials; realistic tool support; participants with

domain-specific expertise) that closely approximates real-world conditions to systematically

explore problem-solving processes in HRE and influencing factors of the human analysts.

In 2020, we (Becker et al., 2020) exploratorily investigated the technical processes of

HRE and proposed an HRE model consisting of the following three phases: (1.) Candidate

Identification, (2.) Candidate Verification, and (3.) Realization. We suggested that hardware

reverse engineers analyzed an unknown gate-level netlist by passing through these three phases.

We found that analysts applied a set of both manual analyses (e.g., visual identification of

important netlist components) and semi-automated steps (e.g., verification of components based

on developed programs or algorithms). Within an exploratory analysis we compared a fast and

a slow hardware reverse engineer. Our results showed that the faster participant applied a

strategy that could be described as divide-and-conquer, and that the slower participant chose

the HRE task through a trial-and-error strategy. Furthermore, we found that the cognitive factor

working memory played a role in solving the HRE task time-efficient. I will refer to that result

in greater detail in my general discussion (see Chapter 5). In our paper (Becker et al., 2020),

we contributed to the understanding of technical processes underlying HRE, but also derived

the need for further research. Hence, it is essential to systematically analyze problem-solving

19

processes in greater detail and compare applied strategies of more than two hardware reverse

engineers.

As only little prior research on problem solving in HRE exists, I will refer to more general

findings of problem-solving research in other domains. Prior psychological research defines

problem solving as an essential cognitive ability and a key competence that enables people to

solve complex situations in their daily lives (Funke, Fischer, & Holt, 2018). In the beginning

of a problem-solving situation, the problem solvers are in the initial state in that they lack the

knowledge for producing an immediate and routine solution. In order to bridge the gap between

the initial state and the desired goal state, i.e., the problem solution, the problem solvers can

apply a set of cognitive operators (e.g., problem-solving strategies) (e.g., Fischer, Greiff, &

Funke, 2011; Dörner & Funke, 2017). As suggested by Newell and Simon (1972) it is

assumable that problem solving in many domains (and thus also in HRE), may pass through

seven stages: Problem categorization; Construction of a mental problem representation; Search

for suitable operators (e.g., strategies or procedures); Application of selected operators;

Evaluation of solution; Iterative refinement of strategies if solution is not satisfactory; Storage

of solution.

In order to describe and define types of problem solving, prior psychological research has

established a broad range of taxonomies. The taxonomy of Reitman (1965) that distinguishes

between well-defined and ill-defined problems, is widely accepted and applied is. Well-defined

problems are characterized by a representation in a problem space, a clearly defined goal state,

and a clear set of means enabling the problem solver to reach the goal state (Dörner & Funke,

2017). The Tower-of-Hanoi problem is an example for a well-defined in that the problem solver

receives three rods and several different-sized discs. The clearly defined goal is to move the

discs from the left to the right rod in ascending order of disc diameter. In order to solve the

problem, the problem solver has a clearly defined set of means (e.g., only one disc can be moved

at a time; no larger discs can be put on smaller ones).

In contrast to well-defined problems, ill-defined or complex problems cannot be

represented in a problem space, and have neither a clear problem definition, nor a clearly

defined goal state, nor precisely defined means for solving the problem (Dörner & Funke,

2017). Funke (2012) defines five characteristics of complex problems: 1) complexity, 2)

connectivity, 3) dynamics, 4) intransparency, and 5) polytely. More precisely, complex

problems consist of multiple and interacting variables (complexity) that are interconnected

(connectivity). Moreover, these multiple and interacting variables of the complex problem

20

system change due to the influence of the problem solver or independently (dynamics).

Furthermore, the structure of the complex problem (e.g., information about variables, or

problem states) is partially or completely intransparent to the problem solver (intransparency)

and whereby the problem solver must try to actively gain knowledge about the problem. In

order to solve the complex problem, the problem solver has to handle many, and sometime even

mutually exclusive goals (polytely). Dörner and Funke (2017) continue in defining complex

problems by outlining that complex systems include at least the following three characteristics:

1) there are different levels of abstraction through which a complex system can be described;

2) a complex system includes dynamics that lead to the system’s development over time, the

system’s history and current state, as well as the system’s (unpredictable) future; 3) a complex

system is knowledge-rich, and the problem solver activates large semantic networks and a

wealth of potential problem-solving strategies (domain-specific and domain-general).

The so-called Lohhausen problem is a classic problem system for assessing complex

problem-solving performance. In the Lohhausen problem, the problem solver takes over the

role of a mayor of a small town and has to manage more than 2000 variables of a dynamically

changing system (Dörner, 1980). Prior research defines that barriers between the initial state

and the goal state of complex problems state can only be overcome by problem solver who

apply non-routine solution methods (Funke, 2012; Mayer, 1992; Mayer & Wittrock, 2006).

Furthermore, the problem solver needs to acquire knowledge about the system’s variables and

structure (i.e., knowledge-acquisition phase; Novick & Bassok, 2005). To transfer the initial

state into the goal state, the problem solver applies the previously acquired knowledge

(knowledge-application phase, Novick & Bassok, 2005). Based on knowledge-acquisition and

application, the problem solver builds a problem representation that leads to the selection of

cognitive operators (e.g., problem-solving strategies) (e.g., Mayer & Wittrock, 2006; Novick

& Bassok, 2005).

Lee and Johnson-Laird (2013) presented in their theoretical model on reverse engineering

of Boolean systems that reverse engineering may be a specific and so far poorly understood

type of human problem solving. Unfortunately, the authors did not conduct a typological

embedding of reverse engineering in existing research on human problem solving. Thus, it is

an open question to which problem-solving taxonomy HRE can be assigned or to what extent

HRE problem solving combines aspects of well-defined or ill-defined problems. In order to

understand HRE problem solving and also to explore correlations with prior domain-specific

knowledge or intelligence, it would be valuable if researchers would derive a theoretical

21

analysis and definition of HRE as a specific type of human problem solving. This embedment

would support the psychological community to discuss and explore this specific type of

problem solving in greater detail.

2.3 Expertise and Problem Solving

An individual’s level of domain-specific expertise has been shown to mainly influence the

problem-solving performance in many domains such as chess (Chase & Simon, 1973a, 1973b)

or medicine (Lesgold et al., 1988). Unfortunately, practically no research has been conducted

on how HRE experts analyze an unknown netlist to retrieve components or if HRE experts and

non-experts differ in their problem-solving performance. Although, there are some best practice

examples by HRE experts who analyzed unknown netlists (Tarnovsky, 2019; Thomas, 2015),

controlled and systematic psychological studies on how HRE experts analyze an unknown chip

design are missing thus far. Against this background, I refer to general findings in expertise

research to define my research goal on analyzing potential expertise-related differences in HRE.

A wealth of prior research has shown that expertise develops due to years of daily

deliberate practice (Ericsson, Krampe, & Tesch-Römer, 1993), and that superior performance

by experts is based on domain-specific knowledge (Nokes, Schunn, & Chi, 2010). Other

researchers postulate that expertise is related to talent (Galton, 1870), and can be described as

a combination of genetic dispositions and experience (e.g., Simonton, 1999). Furthermore,

research has shown that differences in superior performance by experts may be influenced by

general cognitive ability factors (e.g., intelligence score; working memory capacity), without

denying the major influence of domain-specific knowledge and skills (e.g., Hambrick,

Burgoyne, & Oswald, 2019; Grabner, Neubauer, & Stern., 2006).

Differences between experts and non-experts in problem solving are based on the experts’

domain-specific knowledge that supports experts in solving domain-specific problems faster

and more accurately than non-experts (Nokes at al., 2010). Prior research suggests that experts

activate domain-specific knowledge and strategies to solve the current problem with low

cognitive effort (Alexander, 2003; Chi, 2006) and apply their skills with greater automaticity

(Schneider, 1985; Chi, 2006). Ericsson and Kintsch (1995) suggest that experts have developed

effective long-term working memories that support experts in retrieval of prior knowledge to

solve problems, and also enables experts to circumvent the common limits of the memory. Due

22

to their rich, and well-organized knowledge structures, experts acquire new knowledge from

problem solving more easily than novices, and are more efficient in merging novel domain-

specific knowledge into already stored knowledge structures (Nokes et al., 2010).

Prior research has revealed several results when experts achieve the best solution in

solving domain-specific problems. In the following, I present some examples that outline

differences between experts and novices in solving problems. For example, experts percieve

and categorize a problem in a way that is different from non-experts. Lesgold and colleagues

(1988) showed that medical experts were able to figure out the correct shape and size of

abnormalities in medical picture. Compared to those experts, medical novices only identified

fractions of the presented abnormalities (Lesgold et al., 1988). Furthermore, a study in the

domain of physics revealed that physic experts and novices categorized the same problems on

a different level of abstraction, whereas experts categorized the problems on deeper levels of

abstraction (Chi, Feltovich, and Glaser, 1981). Similar results on differences in problem

perception and categorizations of experts were shown in various other domains such as

mathematics (Silver, 1979), computer programming (Adelson, 1981), and engineering design

(Moss, Kotovsky, & Cagan, 2006). Nokes and colleagues (2010) summarize that these

differences in problem perception and categorization are based on experts’ domain-specific

well-structured knowledge.

Prior research showed that experts and non-experts also differ in the final stages of

problem solving (i.e., solution evaluation and storage). Experts seemed to evaluate longer than

novices, whether the solution met the problem requirements (Groen & Patel, 1988; Voss &

Post, 1988). Furthermore, during the evaluation phase, experts identified and corrected more

errors than novices, and were also more willing to modify their strategies, than novices (Nokes

et al., 2010). In contrast, novices proceed with incorrect assumptions and errors, as shown in

the context of a historical task (Wineburg, 1998; Nokes et al., 2010).

In summary, a wealth of prior research has shown how expertise influences single stages

of a problem-solving process, suggesting that experts solve problems more efficiently than non-

experts. It is an open question as to whether problem solving of HRE experts is more efficient

than problem solving employed by HRE non-experts. It is assumable, based on prior findings

in expertise research, that HRE experts may solve HRE problems more efficient due to their

profound level of domain-specific knowledge. Against the background of this chapter, it is

highly likely that expert hardware reverse engineers have developed an extensive base of

knowledge and set of skills through years of deliberate practice (Ericsson et al., 1993). These

23

profound knowledge structures may enable HRE experts to perceive, categorize, and select

suitable strategies more efficiently than HRE non-experts. Such HRE experts may have gone

through years of deliberate practice that enabled them to develop rich and well-organized

knowledge structures. Consequently, those HRE experts may have been able to produce and

store efficient solutions by leveraging their fast problem-solving and procedural work flows

(e.g., schemas and chunks stored in long term working memory (Ericsson and Kintsch, 1995)).

To frame the point in more everyday terms, an expert reverse engineer may know at once how

to overcome an HRE task similar to a situation in which a chess master immediately recognizes

which moves are feasible (e.g., Chase & Simon, 1973a) or in which a skilled physician is able

to immediately render a diagnosis based on observable symptoms (Lesgold et al., 1988).

2.4 Intelligence and Problem Solving

Besides expertise and prior domain-specific knowledge, prior research has also analyzed the

influence of general intelligence or sub-factors of intelligence on problem-solving performance.

As I am not aware of any prior research that has investigated the impact of general intelligence

or sub-factors of intelligence on the problem-solving performance in HRE, I refer to more

general findings on the relation between intelligence and problem solving in the following

chapter. As it is also unclear, which aspects of simple and / or complex problems are included

in HRE (see Background), I present the relation between intelligence and both types of problem

solving.

Prior researchers have established various definitions of intelligence. I quote the working

definition by Gottfredson (1997, p. 13) who defined intelligence as followed:

„Intelligence is a very general mental capability that, among other things, involves the

ability to reason, plan, solve problems, think abstractly, comprehend complex ideas, learn

quickly, and learn from experience. It is not merely book-learning, a narrow academic

skill, or test-taking smarts. Rather, it reflects a broader and deeper capability for

comprehending our surroundings, ‚catching on‘, ‚making sense‘ of things, or ‚figuring

out‘ what to do.“ Gottfredson (1997, p. 13).

24

Besides several definitions, prior research has also presented a wealth of theories of

intelligence. Spearman (1927) defined intelligence as a single trait and proposed the concept of

general intelligence (g). Other representatives are for example Cattell (1987) with the

distinction between fluid and crystallized intelligence, or Thurstone (1938) who proposed a

division of intelligence into seven primary factors.

As outlined by Wenke, Frensch and Funke (2005), a wealth of prior research has

investigated the relation between simple problem solving and individual intelligence,

postulating that if a relation exists it might be on modest size (i.e., r = .30) (e.g., Sternberg,

1982). Subsequently, analyzing problem-solving processes in simple problems was

hypothesized as a means of specifying cognitive processes that form intelligence (Resnick and

Glaser, 1975).

In terms of complex problem solving (CPS), the relation to individual intelligence is not

that clear as it is to simple problem solving, what is also discussed in a meta-review by Stadler

et al. (2015). Theoretically, CPS includes several aspects (e.g., the integration of information)

that are also part of intelligence definitions (Sternberg & Berg, 1986). But other CPS

characteristics such as dynamics or intransparency are not included in definitions of

intelligence. This theoretical ambiguity is also reflected in contradictory study results on the

relation between CPS performance and intelligence, ranging from non-significant (e.g., Joslyn

& Hunt, 1998; Putz-Osterloh, 1985) to strong correlations (e.g., Funke & Frensch, 2007;

Wüstenberg, Greiff, & Funke, 2012). For example, the significant differences of participants’

CPS performance could not be explained by general intelligence (Brehmer, 1992; Rigas &

Brehmer, 1999). Furthermore, Kluwe, Misiak and Haider (1991) summarized in a meta-review

that 11 studies failed in showing a close relation between intelligence scores and the

performance in CPS tasks. Subsequently, Wenke and colleagues (2005) postulated that

convincing empirical data on the relation between global intelligence and CPS performance

does not exist (without denying a hypothetical relation between the both constructs). In

contrast, other studies found correlations between CPS performance and general intelligence.

For example, prior research showed correlations between various measures of CPS and general

intelligence between r = .33 and r = .63 (Gonzalez, Thomas and Vanyukow, 2005), or

correlations of r = .40 between CPS performance in Tailershop tasks and general intelligence

(Süß, Kersting, & Oberauer, 1991; see also Stadler et al., 2005).

25

In terms of problem solving in HRE, the influence of individual intelligence or sub-factors of

intelligence has not been investigated by prior research. Hence, it is unclear if intelligence plays

a role in solving HRE tasks, and should be investigated in research.

2.5 Methodological Challenge – Unavailable HRE Experts

Researchers who plan to conduct experimental studies in HRE face the methodological problem

that HRE experts are unavailable for research. The very small worldwide population of HRE

experts makes the efforts to locate them not only very time-consuming, but also often

unsuccessful. The availability of those HRE experts for studies is even more aggravated when

one considers that HRE experts often work for highly-specialized companies or government

agencies. Those companies and agencies often impose contractual restrictions that forbid HRE

experts from revealing details of their working processes. Such otherwise potentially willing

and available HRE experts are consequently unable to participate in research that explores HRE

processes and underlying cognitive factors.

Prior research in other cybersecurity domains (e.g., developer studies in the context of

security software engineering) also faced the methodological problem of recruiting large

samples of expert developers that is why usable security researchers often choose to recruit

students with relevant backgrounds (besides professionals) (e.g., Acar et al., 2017; Naiakshina,

Damilova, Tiefenau, & Smith, 2018). Prior research presents contrary results on the

comparability of developer experts and computer science students. Naiakshina et al. (2019)

showed that computer science students and freelancers behaved similarly with regard to secure

password storage. Acar and colleagues (2017) found that self-reported status as student or

professional did not significantly influence the functionality, security, or security perception of

written Python code. In contrast, Naiakshina and colleagues (2020) conducted a password-

storage study with computer science students, freelancers, and company developers. Their

results revealed that company developers performed better with regard to security measures

than students and freelancers (Naiakshina et al., 2020). However, Naiakshina and colleagues

(2020) do not deny the fact, that including students in cybersecurity studies will reveal valuable

insights, but also outline that the effects of different treatments for different participant groups

(e.g., prompting for secure password storage) are needed to achieve valuable results with a

student sample.

26

The methodological problem in HRE research raises the question how studies on problem

solving in HRE can be conducted when experts are unavailable for research and global

populations of analysts are very small. Although the recruitment of students to study HRE

problem solving may be a valuable starting point, it nevertheless remains unclear, how to train

students in HRE in order to enable them to solve realistic HRE tasks during the study. HRE

tasks are highly specific and are commonly not part of any computer science nor cybersecurity

study program at universities. There is an almost complete lack of educational courses in the

HRE field and HRE training happens almost entirely on the job, which even makes it more

difficult to recruit students for our studies. It remains unclear, how a course on teaching HRE

has to be designed in order to promote HRE skill acquisition in students that prepares them to

solve a realistic HRE task.

2.6 Research Goals

In my dissertation, I aim to accomplish one overarching research goal, namely the analysis of

underlying human factors in HRE with a specific view on problem-solving processes and the

role of cognitive abilities and expertise. In addition to my main research goal, I establish two

sub-goals that emerged from the reviewed literature on human problem solving. Beyond the

contributions to the main research goal and the sub-goals, I aim to develop initial ideas for

cognitive obfuscation based on the main results. In the following, I will describe the goals of

my dissertation in more detail.

Overarching Research Goal: Analyzing Problem-Solving Processes in HRE

It is unclear how hardware reverse engineers proceed in analyzing an unknown netlist and what

kind of problem-solving processes and strategies are involved in HRE. Furthermore, it remains

unanswered by prior research how efficient the applied problem-solving strategies are and

which problems and difficulties hardware reverse engineers face during HRE. In order to

accomplish the overarching research goal, we conducted an empirical study with hardware

reverse engineers who were asked to solve a realistic HRE task. We analyzed the problem-

solving processes in HRE and furthermore, systematically explored applied problem-solving

strategies. I discuss the findings from our empirical study on HRE problem solving in the light

of established psychological theories on human problem solving and in the light of Lee and

Johnson-Laird’s (2013) theory of reverse engineering of Boolean systems.

27

As shown in the background of the dissertation (see Background), different variables (e.g.,

expertise) influence problem-solving performance. However, in the area of HRE problem

solving, it is unexplored whether cognitive factors of hardware reverse engineers play a role in

analyzing an unknown netlist. To address this question, I derive two sub-goals, which are

briefly presented below.

Sub-Goal 1: Investigating the Role of Expertise in HRE Problem Solving

Previous research has shown (see Background) that expertise and domain-specific knowledge

play a role in several problem-solving domains and often resulted in experts solving a problem

more accurately and efficiently than novices or intermediates (e.g., Nokes et al., 2010).

Nevertheless, it remains an open question whether this is also true for the HRE domain and if

HRE experts are better at analyzing an unknown netlist than non-experts. In order to shed light

on this question, the present work recruited hardware reverse engineers on different levels of

expertise (i.e., intermediates and expert) to investigate expertise-related differences in HRE

problem solving.

Sub-Goal 2: Investigating the Role of Cognitive Abilities in HRE Problem Solving

As shown in the background (see Background), the level of cognitive abilities can influence

problem-solving performance (e.g., Gonzalez et al., 2005). However, it is unclear whether

cognitive factors such as intelligence or sub-factors of intelligence play a role in HRE problem

solving. In order to address this question, we examined whether the level of cognitive abilities

was correlated with time-efficient problem-solving performance in HRE.

Development of Initial Ideas for Cognitive Obfuscation

Beyond the contributions to the main goal and the two sub-goals of my doctoral thesis, I aim to

develop initial ideas for cognitive obfuscation. As outlined above (see Background), we

suggested that sound countermeasures impeding HRE should also consider cognitive processes

and cognitive factors of hardware reverse engineers (e.g., Wiesen et al., 2019a). Based on our

findings from our study on HRE problem solving, I develop initial ideas for future research in

this novel field of cognitive obfuscation methods, which could impede both expertise-related

and cognitive abilities-related processes, as both seemed to play a role in HRE problem solving.

28

2.7 Thesis Overview

The thesis consists of three parts that address the previously established research goals of the

dissertation (see Research Goals), with i) preparation part (see Chapter 3), ii) main part (see

Chapter 4), and iii) conclusion part (see Chapter 5) including initial ideas for cognitive

obfuscation impeding HRE (Figure 1 illustrates the structure of the dissertation.). The thesis

combines parts of four papers that comprise our scientific work on problem-solving processes

in HRE.

As outlined above (see Background), researchers who plan to conduct studies on

cognitive processes in HRE, face the problem that HRE experts are unavailable for research

and that global populations of hardware reverse engineers are very small. In order to circumvent

this problem and to enable our main study, we suggested, developed and evaluated a

methodological approach (preparation part). In order to explore underlying cognitive processes

and factors in HRE, we conducted an empirical study and analyzed applied problem-solving

strategies, their time-efficiency, and influencing cognitive factors such as the working memory

of the participants (main part). Finally, I addressed our main results of the empirical study on

human factors in HRE by discussing them in terms of previous findings on human problem

solving (conclusion part).

29

Preparation Part (Chapter 3) HRE Course Development &

Evaluation

Analysis of Human Problem-

Solving Processes in HRE

HRE Problem-Solving Strategies and

Time-Efficiency

Role of Cognitive Abilities in HRE

Problem Solving

Role of Expertise in HRE Problem

Solving

General

Discussion

Initial Ideas for

Cognitive

Obfuscation

Main Part (Chapter 4)

Conclusion Part

(Chapters 5 and 6)

Figure 1. Overview and structure of this doctoral thesis.

30

Preparation Part – Circumventing the Methodological Challenge

Sections of the following papers are incorporated into the preparation part of the dissertation

(see Chapter 3) that suggests an approach to circumvent the challenge that HRE experts are

unavailable for research.

Wiesen, C., Becker, S., Fyrbiak, M., Albartus, N., Elson, M., Rummel, N., & Paar, C. (2018,

December). Teaching Hardware Reverse Engineering: Educational Guidelines and

Practical Insights. In 2018 IEEE International Conference on Teaching, Assessment,

and Learning for Engineering (TALE) (pp. 438-445). IEEE.

Wiesen, C.; Becker, S., Paar, C., & Rummel, N. (2019). Promoting Skill Acquisition in

Hardware Reverse Engineering. In Proceedings of the 2019 IEEE Frontiers in Education

Conference (FIE), Cincinnati, OH, USA, 2019.

The preparation part comprises our prior work on circumventing the methodological challenge

that HRE experts are unavailable for research. In order to solve this challenge, we developed

an educational HRE course that enabled students with relevant backgrounds to participate in

our main study on HRE problem solving. As HRE was not part of university programs, it was

unclear how to develop an HRE course that taught students a sufficient amount of HRE skills,

domain-specific knowledge, and specific competencies. As realistic HRE processes commonly

involve the analysis of textual or graphical representations of the netlist, we argued that students

needed to acquire conceptual and perceptual competencies to work with and learn from these

multiple netlist representations. Against a wealth of prior educational and psychological

research, we derived specific guidelines for an HRE course design that aimed to promote the

acquisition of HRE skills and specific competencies.

Finally, the preparation part of the dissertation presents an evaluation if the course

promoted HRE skill acquisition in students with relevant backgrounds. Therefore, two studies

at a German and a North American university were conducted that included undergraduate and

graduate students enrolled in cyber security and electrical engineering programs. Our results

showed that the students were able to achieve high solution probabilities in the first three

practical HRE tasks. Nevertheless, the solution probability in the most complex and realistic

task 4 decreased significantly (but was still on a satisfactory level). Furthermore, our results

showed that students were motivated by the realistic HRE task and the realistic working

scenario (e.g., solving the HRE tasks with the tool HAL). We presented our findings in the light

31

of course improvements and suggested that the course would be a sufficient tool to prepare

students in participating in our main study.

In summary, the preparation part of the doctoral thesis includes a necessary working step

that enabled us to conduct our main study on HRE problem solving by including trained

students on intermediate levels of HRE expertise.

Main Part – Analyzing HRE Problem Solving

The main part (see Chapter 4) forms the core of my dissertation as it aims to accomplish the

overarching research goal of analyzing the underlying problem-solving processes in HRE. In

addition to a detailed and in-depth analysis of HRE problem-solving processes and applied

problem-solving strategies, the main part also presents results on the role of relevant cognitive

factors such as intelligence and expertise in HRE problem solving.

Becker, S., Wiesen, C., Albartus, N., Rummel, N., & Paar, C. (2020). An Exploratory Study of

Hardware Reverse Engineering – Technical and Cognitive Processes. Sixteenth

Symposium on Usable Privacy and Security (SOUPS 2020), Conference Paper.

Wiesen, C., Becker, S., Walendy, R.; Paar, C., & Rummel, N. (submitted for review; Nov.

2020). The Anatomy of a Hardware Reverse Engineering Attack: Insights into Cognitive

Processes during Problem Solving. ACM TOCHI

Within the main part of the dissertation, we conducted an experimental study at a German

university to analyze problem-solving processes in HRE. As prior research on systematically

analyzing applied problem-solving strategies in HRE is limited thus far, we collected behavioral

data in form of automatically recorded log files of each participant while they solved a realistic

HRE task. In general, prior research suggested that expertise played a role in solving problems

(e.g., Simon & Simon, 1978). In order to analyze if expertise and prior domain-specific

knowledge were relevant in solving the HRE task, we included participants on different levels

of HRE expertise in our study (eight intermediates; one HRE expert). All intermediates acquired

necessary domain-specific knowledge and skills through the HRE course evaluated in the

preparation part of the dissertation. Following the successful completion of the HRE course,

the intermediates were asked to solve the HRE task within 2 weeks using the HRE tool HAL.

Additionally, we were able to recruit one HRE expert out of the professional network of one of

the co-authors.

32

Furthermore, prior research postulated that intelligence and specific sub-factors of intelligence

influence problem-solving performance (e.g., Stadler et al., 2015). Thus, in order to accomplish

second research sub-goal of the dissertation we included a state-of-the art intelligence test

(Wechsler Adult Intelligence Scale, Wechsler, 2008) in our study to compare participants with

lower and higher intelligence scores in their HRE problem-solving performance.

Using an iterative open coding scheme based on the well-established Grounded Theory method

(Strauss & Corbin, 1998), we conducted an in-depth analysis and derived a detailed mapping

of the HRE problem-solving process. The results provided a hierarchical taxonomy of HRE

problem-solving steps as well as an analysis of applied problem-solving strategies and their

time-efficiency. The results showed that all hardware reverse engineers used unique problem-

solving strategies and that there seemed to be no single best strategy. The results also revealed

that the HRE expert was able to achieve the fastest solution time. However, two intermediates

solved the HRE task with solution times that were comparable to the expert’s solution time.

Furthermore, the intelligence sub-factor working memory seemed to play a role in achieving

time-efficient solutions in HRE, as participants with higher levels of working memory tended

to solve the HRE task faster than participants with lower scores of working memory.

In summary, the main part of my doctoral thesis accomplishes the overarching research

goal by presenting an in-depth-analysis of applied problem-solving strategies and their time-

efficiency in HRE. Furthermore, the main part of the thesis demonstrates findings in the light

of both research sub-goals 2 and 3 concerning the role of expertise and the role of cognitive

abilities (e.g., working memory) in HRE problem solving.

Conclusion Part – General Discussion

Within the conclusion part (see Chapter 5), I discuss our findings on problem solving in HRE

and influencing cognitive factors of hardware reverse engineers from two perspectives. First, I

discuss our findings in the light of the ongoing debate in psychology questioning the influence

of expertise and cognitive abilities on problem-solving performance. Our results revealed that

two intermediates with above-average scores in the intelligence sub-factor working memory

solved the HRE task with an efficiency that was comparable to the HRE expert. Against this

background, I hypothesize that besides expertise, also cognitive abilities may play a role in

efficiently solving the HRE task.

33

Furthermore, the discussion led to several new hypotheses. For instance, I use commonly

applied problem-solving taxonomies of simple and complex problems as a theoretical

instrument to embed HRE problem solving in established theories and models of human

problem solving. I suggest that HRE problems may include aspects of both simple and complex

problems, and thus, may be a specific type of human problem solving as previously suggested

by Lee and Johnson-Laird (2013).

Beyond the discussion of our findings in the light of my main research goals, I develop

initial ideas for cognitive obfuscation that aim to impede the cognitive processes that are

involved in HRE (see Chapter 6). Our results suggested, that HRE problem solving may be

based on both expertise (i.e., high levels of domain-specific knowledge and profound

experience in HRE problem solving), and intelligence (i.e., especially the sub-factor working

memory). Consequently, I suggest that during the development of cognitive obfuscation

schemes both factors should be considered. For instance, Ericsson and Kintsch (1995)

hypothesized that experts were able to circumvent the limited capacity of their working memory

by their well-structures long-term working memory. Thus, countermeasures that solely aim to

overload the capacity of the working memory may be not sufficient enough for hardware

reverse engineers who also possess well-structured knowledge. Against this background, I

suggest that cognitive obfuscation should also include obfuscation tasks that aim to create a

challenge for analysts with higher levels of HRE expertise and prior experience.

34

3 Promoting Skill Acquisition in Hardware Reverse Engineering:

Educational Guidelines and Practical Insights

Disclaimer: The content of this chapter concerning educational and psychological guidelines

(Introduction, Educational Research as the Foundation for an HRE Lab Course, Guidelines for

a course design) was previously published as parts of the paper “Teaching Hardware Reverse

Engineering: Educational Guidelines and Practical Insights” that was submitted in the

Proceedings of 2018 IEEE International Conference on Teaching, Assessment, and Learning

for Engineering. This paper was written together with my co-authors Steffen Becker, Marc

Fyrbiak, Nils Albartus, Malte Elson, Nikol Rummel, and Christof Paar. I have reformulated the

respective parts and partly also rearranged them.

Furthermore, the content of this chapter concerning the course structure and the course

evaluation (methods, results, discussion and implications for future HRE course designs) was

previously published as parts of the paper “Promoting Skill Acquisition in Hardware Reverse

Engineering” that was submitted in the Proceedings of 2019 IEEE FIE Frontiers of Education

Conference. This paper was written together with my co-authors Steffen Becker, Nils Albartus,

Christof Paar, and Nikol Rummel. I have reformulated the respective parts and partly also

rearranged them. Please note, that some sub-parts of the papers were not relevant for the

overall argumentation of the dissertation, and were not included. Furthermore, I included an

additional background section within this chapter. The additional educational and

psychological background is essential to derive guidelines for the development of an HRE

course that aims to promote HRE skill acquisition in students.

As all parts of the paper were conducted with my co-authors, I will use the academic “we” to

highlight this fact.

35

3.1 Introduction and Contributions

As outlined in the background of this thesis (see Background), researchers who aim to conduct

studies with hardware reverse engineers, face the problem that HRE experts are unavailable for

research. One approach to extend the number of reverse engineers, who may be potentially

willing to participate in our study on HRE problem solving, is to promote HRE skill acquisition

in students with relevant backgrounds. The inclusion of students in security studies when

professionals are unavailable was considered as a valuable approach in related security domains

(e.g., Naiakshina et al., 2018). As our studies on HRE problem solving included a realistic HRE

task, it was essential to support students in acquiring skills and knowledge in HRE, which

prepared them to solve realistic HRE tasks. Therefore, we suggested to develop an HRE course

that was influenced by realistic conditions of HRE practice (e.g., reversing tasks; tool support).

As there existed an almost complete lack of educational courses in HRE and structural

guidance on how to teach HRE skills, we reviewed findings from educational research (e.g.,

learning with multiple graphical representations) and cognitive psychology (e.g., skill

acquisition based on declarative and procedural knowledge). Based on this foundation, we

proposed structural guidelines for an HRE course design that would effectively support students

with relevant backgrounds in acquiring HRE skills. Finally, we conducted an evaluation of the

effectiveness of the course in teaching HRE skills.

In summary the contributions of this chapter are:

• Educational Guidelines: To the best of our knowledge, we were one of the first who

established structured guidelines derived from prior psychological and educational

research on skill acquisition and learning with graphical and textual representations to

develop an HRE course. These guidelines formed the basis for our educational course

that aimed to promote HRE skill and knowledge acquisition with a particular focus on

gate-level netlist reverse engineering. As the analysis of both graphical and textual

representations of a netlist was essential in HRE, our guidelines incorporated structures

to support learning from and working with both types of netlist representations.

• HRE Course Structure: Based on the proposed guidelines, we developed an HRE

course. This HRE course consisted of two phases focusing the acquisition of declarative

knowledge (lecture phase) and of procedural knowledge (practical phase with four

different HRE tasks). Specific instructional and learning principles were included to

promote students’ acquisition of specific competencies (e.g., perceptual competencies)

36

that would support them in learning from and working with multiple netlist

representations. Furthermore, students were asked to solve the HRE tasks of the course

by using the HRE tool HAL (Fyrbiak et al., 2018a).

• Evaluation of HRE course. We systematically evaluated if our HRE course enabled

students to acquire HRE skills within two exploratory studies at a German and a North

American university in winter term 2018/2019. Finally, we presented our research

questions, methods, and findings of our evaluation study.

3.2 Background and Guidelines

First, we will present relevant background from educational and cognitive psychology that may

be relevant for teaching students to work with graphical and textual netlist representations

during an HRE course. This includes prior research findings in i) learning from and working

with multiple representations; ii) promoting skill acquisition; iii) enhancing students’

motivation. Besides these theoretical constructs, we will outline specific instructional principles

that are hypothesized by prior researchers to promote specific competencies that enable students

to learn from specific representations. Based on this theoretical background, we will derive

specific guidelines for an HRE course design.

3.2.1 Background on Learning with Multiple Netlist Representations

Under realistic conditions, hardware reverse engineers have to make sense of various

representational forms of a gate-level netlist. Figure 2 (from Wiesen et al., 2018) provides

textual and graphical representations of a netlist. The human analyst is forced to obtain the

correct information from both sources in order to achieve their reversing goal. Hence, a course

that aims to promote skill acquisition in HRE has to consider the integration of both

representational forms of a gate-level netlist. From an educational point of view, the retrieval

of information from both representations, can pose certain challenges to reverse engineers, and

especially to novices who have to learn how to work with and learn from HRE-specific

representations (e.g., Rau, 2017). Within the following section, we present relevant background

in educational and psychological research that provides guidance on how these challenges can

be met.

37

Opportunities and Challenges – Learning with Graphical Representations

Graphical representations can support students’ learning success by making abstract concepts

more accessible (Schnotz, 2014; Rau, 2017), and by depicting supplementary information that

enables students to build a deeper understanding of novel content (Ainsworth, 2006, 2014; Rau,

2017). Despite their value in supporting students’ learning processes, graphical representations

can also be challenging for students. Prior research showed that especially the so-called

representation dilemma posed such a challenge (Ainsworth, 2006; McElhaney, Chang, Chui, &

Linn, 2015; Rau, 2017). According to Rau (2017), students face a representation dilemma when

they are asked to learn new content knowledge that they do not yet understand from graphical

representations that they also do not yet understand. In order to overcome representation

dilemma and to benefit from the inclusion of graphical representations as parts of the

educational program, it is essential that students develop specific competencies (e.g., Rau,

2017).

In the following section, we present an overview of these competencies. We describe in

which ways they may support students in recognizing how graphical representations depict

relevant information to solve a task or to acquire new skills and knowledge. Furthermore, we

present prior research findings the development of these specific competencies may be

supported.

Figure 2. Example Moore Finite State Machine (FSM) circuit as a state transition graph (upper

left) with associated gate-level netlist in (1) visual graph-based representation (lower left), and

(2) textual representation with an exemplary gate library in Verilog.

38

Competencies for Learning from and Working with Graphical Representations

In order to overcome the representation dilemma, prior research has suggested that students

need to acquire representational competencies that are defined as skills and knowledge that

support students to use and learn from graphical representations to solve the task (Gilbert, 2005;

2008; Rau, 2017). In this context, prior research distinguishes between two types of

representational competencies: (1) conceptual competencies, and (2) perceptual competencies

(Rau, 2017). It is suggested that these two types of representational competencies are acquired

through different types of learning processes and thus, through different types of instructional

support (Goldstone, 1997; Kellman & Massey, 2013; Koedinger, Corbett, & Perfetti, 2012; Rau

2017).

Conceptual Competencies. Conceptual competencies are defined as knowledge and skills

that enable students to relate graphical representations to prior knowledge or to identify and

choose the most suitable parts of a graphical representation with the riches amount if relevant

information that supports them in solving the present task (Rau, 2017). Koedinger and

colleagues (2012) have suggested that students develop conceptual competencies through

sense-making processes. In general, sense-making is defined as a process in which an individual

combines various information and ideas in a meaningful way to solve a present task (Dougherty

and Drumheller, 2006). Prior research suggests that sense-making processes are verbally

mediated as students are asked to verbally explain how a graphical representation includes

information (Rau, 2017; Koedinger et al., 2012; Chi, Bassok, Lewis, Reimann, & Glaser, 1989;

Gentner, 1983).

Perceptual Competencies. Besides conceptual competencies, perceptual competencies

are also suggested to be relevant to overcome the representation dilemma (Rau, 2017).

Perceptual competencies are defined as the ability that enables a student to immediately and

effortless detect the meaning of a graphical representation and to identify visual patterns

(Gibson, 1969; Rau, 2017). Perceptual competencies include the concept of fluency in

recognizing and processing visual information from and about the graphical representation to

solve the task at hand (Airey & Linder, 2009; Kozma & Russell, 2005; Rocke, 2010; Wertsch

& Kazak, 2011; Rau, 2017). Koedinger and colleagues (2012) argue that perceptual

competencies are acquired through inductive learning processes that are defined as nonverbal

automatic processes and are relevant for visual pattern recognition (Rau, 2017). Furthermore,

Koedinger and colleagues (2012) suggest that students acquire perceptual competencies while

they learn to discriminate, classify, and categorize information (Rau, 2017). As perceptual

39

competencies are nonverbal processes, prior research argues that perceptual competencies may

be acquired by experienced-based learning with numerous examples, and not by direct

instructions (Gibson, 1969; 2000; Kellman & Massey, 2013; Richman, Gobet, Staszewski, &

Simon, 1996; Rau, 2017).

Competencies for Connection-Making Abilities

Besides representational competencies, students may also benefit from connection-making

abilities that enable them, for example, to connect multiple several visual representations, to

identify and explain similarities or differences between visual representations, or to connect

between textual and visual representations (Rau, 2017). As outlined above, both textual and

graphical representations are essential in gate-level netlist reverse engineering as both types of

representations depict relevant information (see Figure 2). The learning processes that support

the acquisition of connection-making abilities are described as verbally mediated sense-making

processes that use graphical representations in authentic tasks (Rau, 2017).

In summary, HRE processes are based on working with textual and graphical

representations of gate-level netlists. Consequently, a course promoting skill acquisition in this

field should integrate these two forms of representations. Prior research has shown that learning

with both representations can be beneficial and challenging at the same time, described as the

representation dilemma (e.g., Rau, 2017). In order to overcome the representation dilemma,

students need to acquire conceptual and perceptual competencies that can be acquired through

different learning processes and instructional support (e.g., Koedinger et al., 2012). Based on

this, we propose four guidelines for an educational course that teaches HRE.

3.2.2 Guidelines for Learning HRE with Multiple Netlist Representations

Guideline 1 – Integration of Graphical Representations

As outlined before, working with graphical representations of a gate-level netlist is a common

practice in HRE. Furthermore, prior research has shown that the integration of graphical

representations in an educational program can be beneficial for students – especially for those

students with lower levels of prior domain-specific knowledge (Kalyuga & Singh, 2015; Mayer

& Feldon, 2014; Rau, 2017), and if the graphical representation includes further relevant

information (Schnotz & Bannert, 2003; Rau, 2017). Thus, domain-specific graphical

representations of gate-level netlists as parts of tasks and exercises, should be an integral part

40

of a course that teaches HRE and prepares students in the best possible way to solve realistic

HRE tasks.

Guideline 2 – Support the Development of Conceptual Competencies

Beside the presented benefits, learning from and working with graphical representations can

pose a challenge for students, especially for those who are using representations for the first

time (Rau, 2017). In order to overcome the representation dilemma, prior research suggests

specific instructional support to promote the acquisition of conceptual competencies (Rau,

2017). According to Koedinger and colleagues (2012) the acquisition of conceptual

competencies is based on verbally-mediates sense-making processes. These sense-making

processes are hypothesized to be activated by instructional support that engages students in

active reasoning, for example by prompting students to self-explanations about how they

applied a specific graphical representation or by engaging them in discussion with other

students about how to solve the task at hand (Koedinger et al., 2012). Hence, a course on

teaching HRE should support students’ development of conceptual competencies by including

specific instructional principles such as self-explanations.

Guideline 3 – Support the Development of Perceptual Competencies

Besides conceptual competencies, perceptual competencies are suggested to support students

in overcoming the representation dilemma (Rau, 2017). In order to prepare students to

immediately recognize visual patterns and to effectively process information depicted from a

graphical representation, it is important to support the development of students’ visual fluency

(Airey & Linder, 2009; Kozma & Russell, 2005; Rocke, 2010; Wertsch & Kazak, 2011; Rau,

2017). As suggested by prior research, inductive learning processes may support the acquisition

of perceptual competencies (Koedinger et al., 2012). Exercises, such as experienced-based

learning with numerous examples is suggested to support the acquisition of visual fluency and

perceptual competencies (Gibson, 1969; Kellman & Massey, 2013; Richman, Gobet,

Staszewski, & Simon, 1996; Rau, 2017). Thus, an educational course on teaching HRE should

involve such repetitive exercises of working with graphical representations of gate-level netlists

to support students in developing visual fluency for detecting relevant patterns therein.

41

Guideline 4 – Support to Develop Connection-Making Abilities

As shown in Figure 2 above, gate-level netlists can be represented both graphically and

textually. Against this background, it is essential that an HRE course supports students in the

acquisition of connection-making abilities within different netlist representations and between

the textual and graphical representations of netlists (Rau, 2017). According to Rau (2017)

connection-making abilities are mediated by verbal sense-making processes. Thus, an HRE

course should prompt students by specific instructions to actively reflect and explain their

solutions verbally during lectures.

3.2.3 Background on Skill Acquisition

With the goal of designing the HRE course to enhance the acquisition of HRE skills, we

acknowledged the distinction between declarative and procedural knowledge acquisition by

assuming that knowledge is first acquired declaratively, and is then transformed into a

procedural form (Anderson, 1982).

Prior research has brought many findings to light how both knowledge types are acquired.

According to the Adaptive Control of Thought-Rational (ACT-R) (Anderson, 1982),

knowledge is represented in two ways (Tenison & Anderson, 2016): Declarative knowledge

that consists of facts or strategies (i.e., knowing that), and procedural knowledge that consists

of specific actions and procedures of how to achieve goals (i.e., knowing how) (e.g., Nokes et

al., 2010). The acquisition of declarative (verbal) and procedural (non-verbal) knowledge is

supported by various learning processes (Koedinger et al., 2012). Prior research suggests that

declarative knowledge is acquired through understanding and sense-making processes that

involve verbally-mediated (oral and written) and explicit processes in which students attempt

to understand and reason (Chi & Ohlsson, 2005; Nokes et al., 2010). Students need to be

actively engaged in understanding and reasoning (Koedinger et al., 2012). Specific processes

are hypothesized to support learning processes of declarative knowledge, for example,

comprehension, analogy building, or self-explanation (Chi & Ohlsson, 2005; Nokes et al.,

2010). Procedural knowledge (or skill) is suggested to be acquired through repeated practice of

a specific task (Anderson, 1982, 1987).

The learning mechanism behind procedural knowledge is knowledge compilation

(Anderson, 1987). According to Anderson (1987), declarative knowledge is compiled or

combined into a set of procedural rules to solve a specific problem. With practice (repetitions

in solving specific problems), these context-specific procedures are concentrated or chunked

42

together (Anderson, 1987). These sets of skills can be quickly and efficiently applied in order

to solve a problem (Anderson, 1987). A learning mechanism for knowledge compilation is

defined as memory and fluency-building processes (Koedinger et al., 2012). Memory and

fluency-building processes are characterized by nonverbal learning processes that involve

strengthening memory and compiling knowledge (Koedinger et al., 2012). Fluency is defined

as the ability to quickly and accurately solve a problem (Kilpatrick, Swafford, & Findell, 2001),

as knowledge is composed and automatically accessible (Singer-Dudek & Greer, 2005;

Skinner, Fletcher, & Henington, 1996). Prior findings showed that students with high scores in

fluency maintain their skills over time (Singer-Dudek & Greer, 2005) and perform better on

more complex tasks than students with lower fluency (Skinner et al., 1996). The learning

mechanism of spacing and testing (Pashler et al., 2007; Koedinger et al., 2012) is suggested to

support non-verbal memory and fluency-building processes, and thus, the acquisition of

procedural knowledge.

We suggest to design the HRE course based on general cognitive psychological research

on skill acquisition (Anderson, 1982) that is supported by certain types of instructions and

assignments as described. To achieve this goal, we derive two guidelines for designing the HRE

course.

3.2.4 Guidelines for the Acquisition of HRE skills

Guideline 5 – Support the Acquisition of Declarative Knowledge (Lecture Phase)

As suggested by prior research, various verbally-mediated (oral and written) and explicit

learning processes lead to the acquisition of declarative knowledge (Chi & Ohlsson, 2005;

Nokes et al., 2010). Thus, a course that aims to promote HRE skill acquisition should include

specific instructional principles that facilitate the learning of declarative HRE facts, theories,

and concepts. Therefore, we suggest to include prompted self-explanation (Koedinger et al.,

2012) and accountable talks (Michaels, O’Connor, & Resnick, 2008; Koedinger et al., 2012)

that are related the acquisition of domain-specific declarative knowledge.

Guideline 6 – Support to Transform Declarative Knowledge into Procedural Knowledge

(Practical Phase)

Prior research showed that procedural knowledge is acquired based on knowledge compilation

(Anderson, 1987). Knowledge compilation is related to specific learning mechanisms such as

non-verbal memory and fluency-building processes (Koedinger et al., 2012). In order to support

43

students in compiling their declarative HRE knowledge and to become more fluently in solving

HRE specific tasks, the HRE course should include the learning mechanism of spacing and

testing (Pashler et al., 2007; Koedinger et al., 2012). Additionally, non-verbal processes such

as induction and refinement processes (e.g. Worked Examples) may improve the accuracy of

knowledge through generalization, categorization, discrimination, or causal induction

(Koedinger et al., 2012).

3.2.5 Background on Supporting Students’ Motivation

Furthermore, motivation is often described as a central driver of devoting years to deliberate

practice and learning (Litzinger, Lattuca, Hadgraft, & Newstetter, 2011). A high level of

motivation leads to more cognitive engagement, more learning, and higher levels of

achievement (Pintrich, 2003), and is therefore relevant to the development of a course on HRE

that supports students’ learning processes. Since motivation is a key element in learning, we

suggest to employ the following design principles in our course to enhance students’ motivation

by the following guideline for the development of an HRE course.

3.2.6 Guideline for Enhancing Students’ Motivation in Learning HRE

Guideline 7 – Support Students’ Motivation over the HRE Course

Prior research suggested several mechanisms that may raise and promote students’ motivation.

As outlined by Litzinger and colleagues (2011) or Pintrich (2003), higher levels of motivation

may lead to greater cognitive engagement and learning, when tasks and materials cater both

personal and situational interest. Hence, exercises and task of the HRE course should be

stimulating and engaging (e.g., by including realistic HRE challenges such as finding control

logic in a gate-level netlist). Moreover, motivation may be promoted by the integration of

realistic materials and tasks (Ambrose, Bridges, DiPietro, Lovett, & Norman, 2010), such as

the HRE tool HAL that combines realistic graphical and textual representations of a netlist.

Both, the authentic HRE tasks and the application of a realistic HRE tool may build connections

to students’ intended profession, and thus, may increase the perceived value of the learning

experience, which again may lead to enhanced motivation (Ambrose et al., 2010). Pintrich

(2003) postulates that students who believe they are able to solve the present task are stronger

44

motivated in terms of effort and persistence. Thus, it is essential for the development of the

HRE course to consider tasks that are on an appropriate level of difficulty.

3.3 Summary of Guidelines and Description of HRE course design

In the following, we provide structural details of the HRE course and indicate how each aspect

of the HRE course complies with the previously established guidelines. Table 1 summarizes

derived guidelines for the HRE course and how these can be met by for example specific task

instructions.

HRE Course Structure and HRE Tasks

Our goal was to develop an HRE course that promotes HRE skill acquisition in students with

relevant background (e.g., cyber security; computer science; electrical engineering), and that

prepares them in participating in our HRE main study. We divided the HRE course in two

phases – a lecture phase and a practical phase. Thus, we followed the ACT-R-model (Anderson,

1982) that showed how skills were acquired. The lecture phase of the HRE course aimed at the

acquisition of declarative HRE knowledge; the practical phase at the transformation of

declarative into procedural HRE knowledge (skills). During the HRE course students acquired

declarative knowledge by verbally-mediated facts, theories, and concepts related to the relevant

fields of electrical engineering, Boolean algebra, and graph theory through two 90-minute

lectures and one homework assignment per week. We aimed to achieve the acquisition of

declarative knowledge through the integration of verbally-mediated exercises that encouraged

students to explain their solutions to other students in accountable discussions. Following the

lecture phase, students participated in the practical phase consisting of four HRE tasks (detailed

descriptions in methods). By including spacing and testing exercises (Pashler et al., 2007;

Koedinger et al., 2012), and worked examples (Sweller & Cooper, 1985), we aimed to enhance

their long-term retention and improve their fluency in solving HRE tasks. Moreover, through

the incorporation of worked examples (Sweller & Cooper, 1985) into the curriculum we aimed

to enable students to learn more robustly from tasks that are interleaved with problem solving

practice (Koedinger et al., 2012).

Furthermore, the course consisted of five HRE tasks with growing complexity that had to

be completed individually by each participant. Each task lasted 2-3 weeks and contained the

following subtasks: (1) reading of domain-specific scientific papers, (2) pen & paper exercises,

45

and (3) practical reverse engineering tasks. By reading and understanding of 1-2 scientific

papers students learned domain-specific content knowledge for subsequent tasks while the pen

& paper exercises supported them in reproducing and internalizing the content knowledge. The

acquired content knowledge was first applied to small-scale examples, and subsequently in

more complex contexts during the practical reverse engineering tasks (3). At the beginning of

each HRE task, theoretical and practical background was taught in one introductory session and

after the submission deadline, solutions were discussed and students were encouraged to present

their solutions to the class.

Relevance with Respect to Guidelines. The course design consisted of several exercises

and HRE tasks that aimed to support students in developing perceptual competencies as defined

in guideline 3 (e.g., through repeated tasks involving the use of graphical representations).

Furthermore, the course structure satisfied guideline 2 and the development of conceptual

competencies, by encouraging active discussions during the lab sessions or presentation by

students who explained their solutions. The lecture phase that may promote the acquisition of

declarative knowledge through specific learning mechanisms contributed to guideline 5. Both,

the integration of spacing and testing, as well as worked examples may also support students in

applying their declarative knowledge to solve the four practical HRE tasks, what may lead to

the transformation of declarative into procedural knowledge. The practical phase of the HRE

course therefore contributed to the fulfillment of guideline 6.

Learning and Working with realistic HRE tool HAL

In cases where higher levels of motivation are associated with greater cognitive engagement

and learning (Litzinger et al., 2011; Pintrich, 2003), tasks and materials must cater to both

personal and situational interest. The HRE tool HAL (Fyrbiak et al., 2018a) is commonly

applied in HRE practice and assists reverse engineers in analyzing complex gate-level netlists.

As suggested by prior research (Ambrose et al., 2010), realistic and authentic materials

and tasks could enhance students’ level of motivation. Thus, we included the realistic HRE

software HAL and realistic HRE tasks in our HRE course. In this context, we aimed to increase

the perceived value of the students’ learning experience, what again could lead to enhanced

motivation (Ambrose et al., 2010).

Relevance with Respect to Guidelines. The inclusion of HAL supported the demands

of guideline 1 as HAL provided a learning environment that integrated realistic graphical and

textual representations of gate-level netlists. Furthermore, the realistic HRE tool HAL and the

46

realistic HRE tasks contributed to guideline 7 in raising the students’ level of motivation that

may lead to greater cognitive engagement and learning.

Table 1. Overview about HRE course requirements and guidelines about how requirements can

be met.

HRE Course

Requirements

Guidelines for HRE course

Overcome

representation

dilemma

Promote working with

domain-specific

representations

Guideline 1: Include HRE-specific

graphical representations in HRE course

Conceptual competencies

(e.g., Rau, 2017)

Guideline 2: Promote acquisition of

conceptual competencies by promoting

students’ sense-making processes (e.g.,

inclusion of instructional principles such

as self-explanations in course) (Koedinger

et al., 2012)

Perceptual competencies

(e.g., Rau, 2017)

Guideline 3: Promote development of

students’ perceptual competencies with

focus on promoting students’ visual

fluency in recognizing relevant patterns in

HRE netlists by repetitions of numerous

HRE examples (e.g., Kellman & Massey,

2013)

Connection-making abilities

(e.g., Rau, 2017)

Guideline 4: Support students’

connection-making abilities in

recognizing how textual and graphical

representations complement each other in

HRE by activating sense-making

processes with instructions prompting

students to actively reflect about and

explain their solutions (Rau, 2017).

47

Promote HRE

skill acquisition

Acquisition of declarative

knowledge (ACT-R;

Anderson 1982)

Guideline 5: Promote the acquisition of

declarative knowledge by promoting

verbally-mediated (oral and written) and

explicit learning processes such as

prompted self-explanation and

accountable talks (e.g., Koedinger et al.,

2012)

Transformation of

declarative knowledge into

procedural knowledge

(ACT-R; Anderson 1982).

Guideline 6: Promote the acquisition of

HRE skills by focusing on students’ HRE

knowledge compilation (Anderson, 1987)

by promoting memory fluency-building

processes (e.g., spacing and testing)

(Pashler et al., 2007; Koedinger et al.,

2012) or by induction and refinement-

processes (e.g., worked examples)

(Sweller & Cooper, 1985)

Raise students’

motivation in

acquiring HRE

skills

Higher levels of motivation

may lead to greater

cognitive engagement and

learning (e.g., Litzinger et

al., 2011)

Guideline 7: Enhance students’

motivation by including authentic HRE

task and realistic HRE working scenarios

(e.g., HRE tool HAL) to raise the

perceived value of the learning experience

(Ambrose, et al., 2010).

48

3.4 Methods

In order to evaluate if our course enabled HRE skill acquisition, we conducted two studies with

students from one German and one North American university. We formulated the following

research questions (RQs).

1. Does students’ performance in solving HRE tasks improve with increasing experience

in HRE?

2. How does the HRE course affect the students’ levels of motivation over all HRE tasks?

3. Do the students perceive the growing complexity of the four HRE tasks?

Participants

One study was conducted with 18 participants (mean age M = 23.1, SD = 1.8; 9 undergraduates)

who studied cyber security or electrical engineering at a German university. Overall 20 students

(mean age M = 23.5, SD = 2.3; 9 undergraduates) who were enrolled in electrical engineering

or computer science programs participated in the second study that was conducted at a North

American university. Five participants had to be excluded because they did not complete all

tasks and the amount of data was not sufficient for analysis. Both studies were completed in the

winter term of 2018/19, and all participants provided written informed consent beforehand. All

participants were recruited from the HRE course in that the studies were embedded. Since, all

participants from both universities had a similar study procedure (i.e., similar tasks; similar

materials) we were able to merge the two samples in our analyses. The institutional review

board (IRB) of the North American university approved the study. Both universities were

selected due to their strong programs in cyber security, and computer engineering. In both

studies, the participating students received a monetary compensation for the invested time in

answering study related surveys and tests. The participants’ privacy was ensured by randomly

assigned pseudonyms in both studies. Participants consistently used these pseudonyms instead

of their clear names throughout all materials and procedures regarding the two studies.

49

Materials

HRE tool HAL

The HRE tool HAL (Fyrbiak et al., 2018a; Wallat et al., 2019) served as the underlying

educational environment for the HRE tasks of the practical phase of the HRE course.

Commonly, HAL assists hardware reverse engineers in analyzing complex gate-level netlists

and allows for the development of custom plugin by its extensibility (Fyrbiak et al., 2018a;

Wallat et al., 2019). In particular, HAL provides both textual and graphical representations of

the gate-level netlist under inspection that are depicted in an interactive Graphical User

Interface (GUI). The graphical representation of a netlist enables analysts to perform detailed

manual inspections and highlighting of crucial netlist components. Furthermore, HAL provides

an integrated Python shell to interact with and process the netlist via aforementioned plugins.

HRE Tasks

The practical phase of the course consisted of four HRE tasks, of which each contained the

following sub-tasks: (1) the reading of relevant scientific papers, (2) pen & paper exercises, and

(3) practical reverse engineering tasks. In order to create HRE tasks that included realistic

reversing goals and sub-tasks, the individual HRE tasks were discussed and optimized in

advance with representatives from industry.

In the following, we describe the single HRE tasks with special emphasis on the practical

tasks. All practical HRE tasks included flat FPGA netlists and had to be solved with HAL.

Those netlists did not have any high-level information such as variable and signal names,

comments, hierarchies, or module boundaries. Furthermore, the netlists consisted of global

input and output buffers, Look-Up Tables (LUTs) and Multiplexers for combinational logic,

Flip-Flops for sequential logic and their interconnections. Please note, that hereafter all of those

netlist components are simply referred to as gates.

The HRE tasks were characterized by an increasing difficulty due to an increasing

complexity of the tasks themselves (e.g., growing number of netlist components), and a

decreasing level of guidance by the lecturers and instructional support in the single task sheets

(see Table 2; adapted from Becker et al., 2020).

50

Table 2. Levels of difficulty, netlist complexity, number of netlist components and guidance

for each HRE task ranging from + (low) to +++ (high). (Adapted from Becker et al., 2020)

 Difficulty Level

of Tasks

Netlist

Complexity

Number of netlist

components

Level of

Guidance

HRE Task 1 + + 131 +++

HRE Task 2 ++ + 138 +++

HRE Task 3 ++ + 128 ++

HRE Task 4 +++ ++ 2176 ++

HRE Task 1 – Introduction to Gate-level Netlist Reverse Engineering: The goal of

this task was to introduce the HAL environment and its basic features to the students. In the

practical part of this task, students were asked to analyze the data path of an unknown

substitution-permutation-network called ToyCipher. Therefore, students identified the block

and key sized of the cipher that served as a basis to decide if the implementation was round-

based or unrolled. Furthermore, they had to identify S-Boxes. HRE task 1 was characterized by

a relatively low complexity with 131 netlist components and straightforwardness of the task

itself, and could be solved mostly by manual inspections of the graphical netlist representation

in HAL.

HRE Task 2 – Control Logic Reverse Engineering: The goal of this task was to teach

students the understanding and implementation of methods used for semi-automated extraction

of a control logic – Finite State Machine (FSM). This task included a slightly modified variant

of the ToyCipher from HRE task 1. Students were asked to reverse engineer the control logic

of the netlist by identifying the logic gates of an FSM. Therefore, students applied graph-based

analysis and manual inspection of relevant netlist components. The basic functionality as well

as the complexity with 138 netlist components was comparable to HRE task 1.

HRE Task 3 – Reverse Engineering of Obfuscated Control Logic: The goal of HRE

task 3 was to teach students how a netlist is protected (i.e. hardware obfuscation) and how to

break such a protection. The netlist in this task consisted of 128 gates and was a second variant

of the ToyCipher. Furthermore, the underlying netlist included the control flow obfuscation

method Harpoon (Chakraborty & Bhunia, 2009). In this context, obfuscation is defined as a

transformation that obstructs high-level information without changing functionality (Wiesen et

al., 2019a) with the goal of impeding HRE. The HRE task 3 asked students to extract the gates

that implemented the control logic and to analyze the obfuscation method. Therefore, students

51

had to differentiate which gates were part of the obfuscation and which gates belonged to the

original netlist. Finally, students disabled the obfuscation by patching the initial state and by

verifying their results through dynamic analysis of the netlist. The basic functionality and the

complexity of the underlying netlist were comparable to the previous tasks. Additionally, HRE

task 3 focused on the acquisition of an understanding of obfuscated control logic and on

conducting dynamic netlist analysis.

HRE Task 4 – Advanced Encryption Standard (AES) Key Extraction: The goal of

the final HRE task 4 was to extract a hardcoded key from a netlist implementing a real-world

AES design, whereas AES is a widely applied encryption algorithm. The first sub-task was to

retrieve high-level information (about e.g., functionality, the presence of the key schedule, the

key length, and the hardware architecture) from this substantially more complex netlist with

2176 gates. As S-Boxes serve as a potential anchor for attacks on hard-coded keys, the second

sub-task asked students to write a script to identify the S-Box logic. Based on this, students

extracted the hard-coded key through manipulation and dynamic analysis of the underlying

netlist. In order to solve the fourth HRE task, students had to apply HRE skills and knowledge

they had acquired from previous HRE tasks. Such knowledge and skills were for example, the

derivation of high-level information, identification of functional blocks, and dynamic netlist

analysis.

Measures & Instruments

Solution Probability

In the studies, we focused on observing changes to and influences on the dependent variable

solution probability accuracy in the task (solution probability). The calculation of the solution

probability was based on the participants’ grading they received for the four HRE tasks of the

HRE course. The per-task solution probabilities were standardized as percentage to enable

comparison. The resulting scores were the basis from that we calculated the per-task solution

probabilities. The scores from every task were standardized as percentage to enable comparison

on a scale of 0% to 100%. Three teaching assistants and the lecturer collaboratively graded the

participants’ solutions from both studies using a detailed gradebook with sample solutions.

52

Solution Time

The computation of the solution time was based on the log files, which were automatically

recorded by HAL. These log files included behavioral data of each student and a time stamp

for each activity in HAL. The students’ solution times were calculated per HRE task. In order

to calculate the time spent on task accurately, we defined an inactivity threshold of one hour

and subtracted time periods that lasted longer than one hour from the total solution time.

Further variables of interest

Control Variables

A self-developed questionnaire on socio-demographics asked participants to provide

information about their age, major, and target degree.

Questionnaire on Current Motivation (QCM)

In order to investigate the students’ level of motivation in solving the single HRE tasks, we

employed the Questionnaire on Current Motivation (QCM) (Rheinberg, Vollmeyer, & Burns,

2001). The 18 items of the QCM measured four motivational factors. On a five-point Likert

scale from 1 (strongly disagree) to 5 (strongly agree) participants were asked to rate their current

level of i) expected challenge of a task (“This task is a real challenge for me”); ii) probability

of success (“I think I am up to the difficulty of this task”); iii) participants’ interest (“I would

work on this task even in my free time”), iv) anxiety of failure (“I’m afraid I will make a fool

out of myself”). Our participants answered the QCM via the online survey provider Soscisurvey

for every single HRE task. For further analysis, we computed means of the four sub factors

after inverting items that were pooled differently.

Measures on Cognitive Load

As commonly applied in current research on Cognitive Load (Schmeck, Opfermann, Van Gog,

Paas, & Leutner, 2015), we integrated the Perceived Task Difficulty Scale (Bratfisch, Borg, &

Dornic, 1972), and the Mental Effort Scale (Paas, 1992) in both studies. The Cognitive Load

Scales were included to measure if the students recognized the increasing complexity of the

HRE tasks, and to rate how high or low their mental effort during the HRE tasks was.

Participants rated their Perceived Task Difficulty on a 7-point Likert Scale, ranging from 1

(very very easy) to 7 (very very difficult). Additionally, students were asked to rate their

invested amount of mental effort on a 7-point Likert Scale, ranging from 1 (very very low) to 7

53

(very very high) via the online survey provider Soscisurvey. We computed the means of each

scale for further analysis.

Study Procedure

We conducted both studies with a quasi-experimental setting and a within-subject design during

the winter term 2018/2019 at one German and one North American university. Both studies

were included in the practical phase of the HRE course. After providing written informed

consent, the participants received a randomly-assigned pseudonym. In the beginning of both

studies, participants were asked to answer an online questionnaire on socio-demographics. For

the four HRE tasks, we applied a similar procedure to collect data. After participants had read

the assignment of the current HRE task, they were asked to rate their current level of motivation

(QCM) regarding the HRE task at hand. After they had finished the current HRE task, they

answered the two Cognitive Load Scales on Mental Effort and Perceived Task Difficulty.

3.5 Results

Results for RQ 1: Does students’ performance in solving HRE tasks improve with increasing

experience in HRE?

In order to answer RQ 1, we conducted a repeated-measures ANOVA of solution probabilities

and solution times with the software IBM SPSS Statistics (please note that all following

calculations were performed with this software, which is not explicitly mentioned again). As

all participants had the same study procedure, we were able to merge the participants from both

samples in our analysis. The repeated-measures ANOVA for comparing the mean of solution

probabilities across the four HRE tasks revealed that students’ solution probability decreased

significantly in the most complex HRE task 4, F (3,35) =7.09, p =.00, η2 = .38. It should be

noted, however, that the mean solution probability (M = 77.2, SD = 31.4) was still at a

satisfactory level. The results of a repeated-measure ANOVA showed significant differences

between the means of solution time across the four HRE tasks, with F (3; 17) = 5:66, p = .03,

η2 = .50. The post-hoc analysis revealed that the solution time differed significantly between all

tasks, except for solution time between tasks 1 and 3, and tasks 2 and 4. Table 3 summarizes

descriptive data of solution probabilities and solution times.

54

Table 3. Means (M) and standard deviations (SD) of solution probabilities (in %; N = 38) and

of solution times (in hh:mm; N = 20).

 Solution Probability (%) Solution Time

 M SD M SD

HRE Task 1 97 5.9 03:19 02:39

HRE Task 2 95 16.5 06:31 04:45

HRE Task 3 93 14.8 03:03 02:34

HRE Task 4 77 31.4 05:07 04:05

Results for RQ 2: How does the HRE course affect the students’ levels of motivation over all

HRE tasks?

In order to analyze if the practical phase of our course design supported continuous motivation

(RQ 2), we computed the repeated-measure ANOVA of the QCM. The analysis revealed no

significant differences for the students’ levels of motivation across the four times of measures.

Within the dissertation, I added repeated-measure ANOVA’s to test for differences in the four

motivational factors Interest, Probability of Success, Anxiety, and Challenge over the four HRE

tasks. The results showed no significant differences between the participants’ levels of Interest,

with F (3, 35) = 2.09, p = .11, η² = .15; for Probability of success with F (3, 35) = .73, p = .53,

η² = .05; and Anxiety with F (3, 35) = .16, p = .92, η² = .14. We found a significant difference

in Challenge with F (3, 35) = 5.29, p = .00, η² = .31. Post-hoc analysis revealed significant

differences in individuals’ levels of Challenge between task 1 and 4 (p = .03); 2 and 4 (p = .04);

3 and 4 (p = .00)., showing that students perceived the challenge of task 4 as significantly higher

than the challenge of the other HRE tasks. The descriptive analyses showed medium to above-

average levels of motivation over all HRE tasks (Table 4).

55

Table 4. Descriptive data with means (M) and standard deviations (SD) of the four QCM-factors

(N = 38) with (1=strongly disagree; 5 = strongly agree).

 HRE Task

1 2 3 4

QCM Factor

M SD M SD M SD M SD

Interest

3.31 0.58 3.24 0.61 3.11 0.74 3.52 0.79

Challenge

3.27 0.78 3.25 0.89 3.00 0.91 3.66 0.74

Probability of

Success

2.64 0.47 2.58 0.40 2.63 2.51 2.73 0.45

Anxiety

2.55 0.73 2.60 0.80 2.52 0.69 2.65 0.90

Results for RQ3: Do students perceive the growing complexity of the four HRE tasks?

In order to analyze if students perceived the increasing complexity of the single tasks, we

conducted a repeated-measures ANOVA for the two Cognitive Load scales. The analysis

revealed that students reported a significant higher Mental Effort in HRE task 4 compared to

task 1 with, F (3, 35) = 3.56, p = .024, η2 = .23. The repeated measures ANOVA for the

Perceived Task Difficulty scale showed significant results between the means of task 2

compared to task 3, and compared to task 4, with F (3, 35) = 18.77, p = .000, η2 = .62. These

results showed that students perceived the growing complexity of the tasks. I added a summary

of the descriptive data of participants’ cognitive load in Table 5.

Table 5. Descriptive data with means (M) and standard deviations (SD) of mental effort and

perceived task difficulty in the four HRE tasks with N=38 (1= very very low / high; 7 =very

very easy / difficult).

 HRE Tasks

1 2 3 4

Variable

M SD M SD M SD M SD

Mental Effort 3.45 1.43 4.42 1.30 4.42 1.17 4.26 1.59

Task Difficulty 3.67 1.24 3.61 1.29 5.39 1.26 5.24 1.71

56

3.6 Discussion

The contribution of this chapter is twofold. First, we derived concrete guidelines for an HRE

course structure based on prior results from educational and psychological research. The goal

was to design the course to promote HRE skill acquisition in students with relevant

backgrounds, for example in cyber security or electrical engineering. Second, we evaluated in

two exploratory studies if the HRE course promoted HRE skill acquisition in students. Our

results suggested that our HRE course may be a suitable instrument to prepare students to

participating in our study on HRE problem solving.

During HRE, hardware reverse engineers analyze both graphical and textual

representations of a gate-level netlist. Consequently, a course that aims to prepare students in

solving realistic HRE tasks, should support students in working with and learning from those

multiple HRE representations. As there was a complete lack of educational HRE courses in

university programs, we developed the course based on prior findings from educational and

psychological research. Against the background of these prior research findings we derived

concrete guidelines for the HRE course. Those guidelines suggested to include specific

instructional principles that should support students in acquiring specific competencies (e.g.,

perceptual competencies) that in turn would prepare them in working with and learning from

multiple representations during HRE problem solving. Furthermore, following the theoretical

considerations of the ACT-R model (Anderson 1982), we divided the course into two phases.

The goal of the lecture phase (i.e., first phase of the course) was to teach students relevant

declarative HRE knowledge (e.g., Boolean algebra; microchip architectures). The second

phase, the practical phase, consisted of four practical exercises in which students were asked to

solve HRE tasks in a realistic setting (i.e., applying the HRE tool HAL; solving realistic HRE

sub-tasks). In order to solve those practical tasks, students needed to apply HRE knowledge,

they had previously acquired in the lecture phase. By actively applying the declarative

knowledge to solve the practical HRE tasks, the declarative knowledge should be gradually

transformed into skills (procedural knowledge).

In the second part of this chapter, we evaluated if our course promoted the acquisition of

HRE skills in students with relevant backgrounds, and analyzed their problem-solving

performance in the four HRE tasks of the practical phase. Our results showed that students

achieved high solution probabilities in HRE tasks 1, 2 and 3. Thus, we hypothesized that the

lecture phase of the HRE course enabled the acquisition of HRE skills that supported the

57

students to solve the HRE tasks. As the first three HRE tasks differed in their reversing goals

but were developed based on the same cipher, we hypothesized that students were able to apply

knowledge and skills they acquired in the analysis of HRE task 1 in order to solve HRE tasks 2

and 3 with high solution probabilities. Furthermore, our analysis revealed that students spent

more time for solving HRE task 2 than for solving task 1. As students were asked to implement

automated solutions in task 2 for the first time, the longer solution times in task 2 were not

surprising. In terms of solution times, we found that the students tended to complete task 3

faster than task 2 (although task 3 was more complex than task 2). We hypothesized that

memory and fluency-building processes were involved, and students developed their solution

based on declarative and procedural HRE knowledge (Koedinger et al., 2012). In other words,

students applied their knowledge gained in task 2, for solving task 3 faster, thus demonstrating

that they built a set of HRE knowledge and skills (including sets of problem-solving strategies)

that enabled them to become more fluent.

Furthermore, our results showed that the solution probability decreased in the most

complex HRE task 4. This result may be based on the fact that HRE task 4 significantly differed

from the previous HRE tasks in term of its complexity and requirements. However, we observed

that the standard deviation was relatively high and that some students were able to achieve a

very high solution quality in task 4 despite its complexity. This leads to two conclusions. On

the one hand, weaker students should be supported in solving the more complex tasks (e.g., by

offering support or by additional exercises that prepare them for the more complex HRE tasks).

Second, this result also has consequences for the main study on exploring HRE problem

solving. If the main study aims to investigate realistic problem-solving processes it might be a

valuable approach to include only those students with the best solution quality in the complex

HRE task. This would avoid that irrelevant influences (e.g. struggles with Python or HAL)

could impair the analysis of HRE problem-solving process and bias the results.

Furthermore, we argue that the HRE course enabled students to solve the representation

dilemma (Rau, 2017) as the participants achieved high solution probabilities in the HRE tasks.

As proposed by our established guidelines, we included specific instructional (e.g., self-

explanation; Koedinger et al.; 2012) and task principles to promote the acquisition of conceptual

and perceptional competencies as well as connection-making abilities (Rau, 2017). We

emphasize that future HRE courses should include those principles. Based on the established

guidelines, we included spacing and testing (Pashler et al., 2007) as well as worked examples

(Sweller & Cooper, 2005) to support students’ development of memory fluency-building

58

processes and induction and refinement-processes (Koedinger et al., 2012). We hypothesize

that these principles supported students HRE knowledge compilation (Anderson, 1987) and

thus, may have enabled them to acquire HRE skills. These two instructional principles should

be part of future HRE courses.

According to Litzinger and colleagues (2011) we aimed to achieve higher levels of

motivation that may lead to greater cognitive engagement and learning. Following our

established guidelines, we included realistic HRE tasks and the HRE tool HAL. Our analysis

revealed that students had above-average levels of motivation throughout the four HRE tasks.

We assume that the integration of stimulating and realistic HRE tasks on an appropriate

difficulty level (growing complexity) that had to be solved with the realistic HRE tool HAL led

to the students’ high levels of motivation. Therefore, those realistic aspects of the lecture phase

should still be included in future HRE courses.

3.7 Limitations and Future Work

This presented work has limitations that should be investigated. This work is limited by the

small sample sizes. Future studies on HRE skill acquisition should conduct analysis with larger

sample sizes. Furthermore, our study did not specifically evaluate if the included instructional

principles significantly influenced the acquisition of perceptual and conceptual competencies.

We can only hypothesize that the included principles (e.g., worked examples) are suitable for

acquiring HRE skills, but not if they are the optimum for supporting HRE skill acquisition. It

would be preferable in future studies to quantify the influence of specific instructional

principles and if they support the acquisition of competencies during HRE skill acquisition.

Furthermore, our data led us to assume that declarative knowledge had been transformed into

procedural knowledge (skills). A closer examination of these two knowledge types assigned to

the two phases of the HRE course might prove interesting. Moreover, this study is a first

investigation to fill the research gap of skill acquisition in HRE, leading to the fact that the

generalizability to other areas is limited. Our research prompted us to make several observations

about potential future research on HRE skill acquisition. In order to analyze problem-solving

processes in HRE, future studies should focus on occurred errors and difficulties during HRE.

Finally, the integration of a second complex task would help reveal more individual differences

between students.

59

3.8 Conclusion

Researchers who aim to explore cognitive processes in HRE face the methodological problem

that HRE experts are unavailable for research. One methodological approach that could enable

such studies is to involve trained students. So far, no university-level HRE course existed and

HRE training happened almost on the job. Furthermore, there was an almost complete lack of

research that has explored how HRE skills and knowledge could be acquired.

Against the background of prior psychological and educational research findings, we

derived specific guidelines for a course design aiming to promote HRE skill acquisition in

students with relevant backgrounds. Within the scope of two exploratory studies, we evaluated

the HRE course and its effectiveness in teaching HRE skills and knowledge. Our results showed

that students (enrolled in Bachelor’s and Master’s cyber security and electrical engineering

programs) were able to acquire HRE knowledge and skills. The students achieved very high to

high solution probabilities in specific HRE tasks. In terms of future runs of the HRE course,

educators need to consider that in the most complex task 4, some students (e.g., with lower

scores in processing speed) achieved lower solution probabilities. Thus, future HRE courses

should include specific exercises how to process and work with visual information received

from the graphical representation of a gate-level netlist to support weaker students.

In summary, we hypothesize that the developed HRE course may be a suitable instrument

to promote HRE skill acquisition in students with relevant backgrounds. Therefore, we suggest

to include this HRE course as an HRE training to prepare students to solve a realistic HRE task

of the main study.

60

4 Problem Solving in Hardware Reverse Engineering

Disclaimer: The content of this chapter was previously published and submitted as parts of two

papers. The introduction, methods, results, and general discussion concerning HRE problem-

solving processes and correlations with levels of expertise were taken from the paper “The

Anatomy of a Hardware Reverse Engineering Attack: Insights into Cognitive Processes during

Problem Solving” that is currently under review at the journal ACM TOCHI. This paper was

written together with my co-authors Steffen Becker, René Walendy, Christof Paar, and Nikol

Rummel.

Furthermore, parts of this chapter concerning the correlation of cognitive abilities with HRE

problem solving (methods, results, discussion) were taken from the published paper “An

Exploratory Study of Hardware Reverse Engineering – Technical and Cognitive Processes”

(Becker et al., 2020) that was presented at the 16th Symposium on Usable Privacy and Security

(SOUPS) in August 2020 together with my co-authors Steffen Becker, Nils Albartus, Nikol

Rummel, and Christof Paar. Please note, that some sub-parts of the papers were not relevant

for the overall argumentation of the dissertation, and were not included.

As both papers were conducted together with my co-authors, I will use the academic “we” to

highlight this fact.

61

4.1 Introduction and Contributions

As outlined in greater detail above (see Background), HRE is a common tool to retrieve crucial

information from an unknown chip design. As fully-automated HRE tools do not yet exist, the

analysts’ cognitive processes and cognitive abilities are hypothesized to mainly form the

primary determinants of success (e.g., Becker et al., 2020). Nevertheless, the analysis of those

underlying cognitive processes and factors in HRE has thus far been limited to a small amount

of prior research. Lee and Johnson-Laird (2013) were one of the first to define reverse

engineering of Boolean systems as a specific type of human problem solving. Besides these

first results, HRE problem-solving processes and especially their time-efficiency or the ways

in that they are impacted by levels of expertise or cognitive abilities, remain so far poorly

understood.

We pursue those research gaps by systematically analyzing the problem-solving

processes of hardware reverse engineers who solve a realistic HRE task. Thereby, we

contributed to the overarching research goal (see Research Goals) by analyzing underlying

problem-solving processes in HRE.

Furthermore, prior research on HRE problem solving is also lacking in analyzing the

influence of expertise or of cognitive abilities on the problem-solving performance. Therefore,

we included participants with different levels of HRE expertise and analyzed if their levels of

expertise may lead to differences in the problem-solving process. Thereby, we contributed the

sub-goals 1 and 2 of this thesis (see Research Goals). In the main study, we included

experienced students enrolled in cyber security and electrical engineering programs.

Beforehand, they acquired a sufficient amount of HRE knowledge and skills by successfully

passing the HRE training as it has been demonstrated to prepare students with relevant

backgrounds to solve realistic HRE tasks (see Chapter 3). Prior research on HRE problem

solving is also strongly limited in exploring the role of an individual’s level of intelligence on

the HRE problem-solving performance. Hence, we analyzed participants on different levels of

intelligence and sub-factors of intelligence to retrieve insights on the role of intelligence in HRE

problem solving.

62

Against this background, we formulated the following research questions (RQs):

I. RQ1a. Which problem-solving processes can be observed while hardware reverse

engineers are solving a realistic HRE task?

II. RQ1b. Are there differences in the HRE problem-solving process between analysts

with different levels of expertise?

III. RQ2. Can differences in the time-efficiency of applied problem-solving strategies be

identified?

IV. RQ3. Do cognitive abilities play a role in HRE problem solving?

We investigated these RQs by systematically analyzing the problem-solving processes of

hardware reverse engineers on different levels of expertise and cognitive abilities who were

asked to solve a realistic HRE task. To that end, we conducted an empirical study with nine

hardware reverse engineers (eight top-performing intermediates; one HRE expert). In order to

systematically explore applied problem-solving strategies and their time-efficiency, we

analyzed 2445 single log entries by applying an iterative open coding scheme. Furthermore, we

pursued how the level of expertise and cognitive abilities was correlated to the problem-solving

performance.

In summary the contributions of this chapter are:

1) Based on our qualitative log-file analysis by applying an iterative open coding based on

Grounded Theory (Strauss & Corbin, 1998), we developed a detailed hierarchical HRE

problem-solving model. This model consisted of and defined 103 discrete problem-

solving actions that hardware reverse engineers applied to solve the HRE task.

2) We provided unique and in-depth insights into applied problem-solving strategies and

their time-efficiency.

3) We presented differences between the study participants with varying levels of

expertise, as two intermediates were able to achieve time-efficient solutions that were

comparable to the HRE expert.

4) Our results suggested that besides expertise, the intelligence sub-factor working

memory may play a role in time-efficiently solving the realistic HRE task.

63

4.2 Methods

Study Overview

We conducted the empirical study with nine reverse engineers with intermediate and expert

levels of expertise during the summer term of 2019 at a German university. The participants on

intermediate levels acquired a sufficient amount of HRE skills and knowledge by successfully

completing the HRE training (see Chapter 3). We collected behavioral log file data that

consisted of 1141 executed scripts, 68 console inputs, and 1217 manual activities from nine

participants. The study participants successfully solved a realistic HRE task over the period of

two weeks with the HRE tool HAL. In addition, participants were asked to answer a series of

additional questionnaires (e.g., self-assessment of domain-specific expertise; intelligence test).

In order to systematically examine applied problem-solving strategies, we applied a well-

established iterative open coding methodology based on the Grounded Theory approach by

Strauss and Corbin (1998). Furthermore, we qualitatively related the identified problem-solving

strategies to time on task as well as to levels of expertise and cognitive abilities.

Participants

In summary, eight students on intermediate levels in HRE and one HRE expert voluntarily

participated in our study. A total of 22 students who were enrolled in either their last year of a

three-year Bachelor's cybersecurity program or in a Master's cybersecurity program composed

the population of the HRE intermediates. In order to achieve an intermediate level of HRE

expertise that enabled them to solve the realistic HRE task, all students had successfully

completed the HRE training (see Chapter 3). Of the original 22 students, eight withdrew their

participation in the study or could not be included in the analysis due to missing or incomplete

data.

Eight top-performing students (mean age M = 24 years; SD = 4 years) were selected from

the group of intermediates. This was motivated by the fact that we aimed to derive a

representative and generalizable HRE problem-solving model that would represent realistic

behaviors of hardware reverse engineers as closely as possible. Those eight top-performing

students seemed to be the most suitable proxy for realistically analyzing hardware reverse

engineers, besides the HRE expert. Furthermore, by selecting these top-performing students,

we aimed to avoid the inclusion of HRE-unrelated issues in our HRE problem-solving model,

such as insufficient programming skills or difficulties in the application of the HRE tool HAL

(see Description of HAL). This top-performing group of intermediates achieved a mean

64

solution percentage of 97.5% with 7.1% standard deviation over all four HRE training tasks.

The HRE task was solved by the top-performing intermediates with a mean solution percentage

of 98.5% with a standard deviation of 1.9%. The intermediates’ solutions were graded

collaboratively by three teaching assistants based on a detailed gradebook with sample

solutions. The teaching assistants assigned solution probabilities on a scale ranging from 0% to

100%. The solution probability of 100% was assigned to solutions in that participants

completely removed the implemented watermark from the netlist (see description of watermark

task).

As previously outlined (see Background), recruiting HRE experts can pose a

methodological challenge for researchers. We were able to recruit at least one HRE expert by

leveraging the professional network of one of the authors. This HRE expert was a researcher in

the field of hardware security and stated to have five years of experience in conducting HRE.

Furthermore, the expert claimed to typically spent between 20 and 30 hours per week on solving

HRE tasks. In addition, the expert invested between 20 to 30 hours per week in HRE-related

tasks such as software and hardware programming activities. Finally, the expert was

characterized by considerable amount of prior domain-specific experience in HRE-related

topics (e.g., high-level and low-level programming languages), and by a significant amount of

domain-specific knowledge in HRE-related topics such as chip architectures (e.g., FPGA) or

crucial netlist components (e.g., FSM).

Ethical Considerations

All participants (the 22 intermediates and the expert) provided written informed consent before

entering the study. We emphasized that the study participation was voluntary and outlined that

a withdrawal from the study was possible at any time and without stating reasons (including the

deletion of all study-related data). For the completion of study-related materials and tasks, the

22 students received a monetary compensation. In order to protect participants’ privacy, we

randomly assigned pseudonyms to the participants that were used instead of their clear names

on all study-related materials and during all study-related activities. The pseudonyms were

subsequently replaced with numbers as part of the data analysis. Since there was no ethics

committee at the institute at the time the study was conducted, the data protection officer of the

German university at which the study was conducted, reviewed and approved the privacy-

protection procedures of this study.

65

Materials

HRE Skill Training for Students

In order to support students in solving the realistic HRE task, it was essential that those students

acquired a suitable amount of HRE-specific knowledge and skills beforehand. Therefore, we

included the 14-week HRE training course that was proven efficient in transforming declarative

HRE knowledge into HRE skills (see Chapter 3). Even if not yet HRE experts, the high solution

percentages in the four HRE training tasks of the eight top-performing students proved that they

had acquired an intermediate level of expertise through the successful completion of the HRE

course. Despite the fact that the four HRE training tasks were built upon real-world HRE

scenarios (e.g., extraction of an AES; reversing an obfuscated circuit), the HRE training course

did not include any best practice or solution strategies specific to the realistic HRE task of the

study. This was an effort to avoid biasing or artificially enhancing the performance of the

participating students in the realistic HRE task. At the same time, we feel that the missing

preparation of the students on how to specifically solve the realistic HRE task during the HRE

training did not deprive them of essential prior experience. We would like to emphasize that

the HRE course was holistic and comprehensive, and that no training includes every possible

novel scenario that may have to be solved in the specific field. As the HRE expert already

possessed the required HRE knowledge and skills, and also collected prior experience in

working with the HRE tool HAL, the expert did not complete the HRE training.

HRE Task

In order to capture and observe realistic problem-solving processes, it is essential include a

representative task that is directly sampled from a real-world situation (Charness & Tuffiash,

2008). As a well-known and widely used method, so-called watermarks, are applied to detect

hardware counterfeits (Abdel-Hamid, Tahar, & Aboulhamid, 2003). Hardware manufacturers

mark their IP by embedding those watermarks in their microchips to impede theft of their

innovative developments. Accordingly, the detection of the watermark in an unauthorized clone

of the original netlist can prove that the netlist, and thus the IP, has been counterfeited (Becker

et al., 2020). Consequently, when an analyst plans to build an illegal clone of the original netlist,

the watermark has to be detected and removed from the netlist.

Against this background, the HRE task of the study directed the study participants to

identify and remove a watermark from the gate-level netlist – a challenge that can be found in

real-world scenarios as shown above. The gate-level netlist of the HRE task consisted of 4.653

Boolean gates, memory components, and their interconnections and contained a watermark

66

scheme as proposed by Schmid, Ziener and Teich (2008) implementing a copyright protection.

The goals of the HRE task were to remove the watermark and to clone the circuit without the

watermark whereby the infringement of the IP would be unable to be proven. In order to remove

the watermark, participants were asked to identify the specific netlist components that

implemented the watermark in a first step. In the second step, participants were asked to develop

a custom technique to extract and remove the watermark from all the identified components.

HRE Tool HAL

HAL was developed by Fyrbiak and colleagues (2018a) and was included in our study as a tool

that enabled participants to conduct HRE analysis in order to remove the watermark from the

given gate-level netlist. At the same time, HAL also assisted the researchers in the analysis of

problem-solving processes, as the tool enabled the automatic recordings of behavioral log files

of every single participant.

Researchers and experts in the HRE domain use HAL (available on GitHub, Chair for

Embedded Security, 2019; Wallat et al., 2019) as a state-of-the art HRE tool to analyze netlists

of unknown chip designs. HAL provides a rich GUI to the analysts (Figure 3), and allows

reverse engineers to focus on conducting HRE analysis with no need for further tool

development. Nevertheless, HAL does not provide any (semi-)automated netlist analysis

methods. Both, manual / visual and script-based analysis are possible due to HAL’s GUI.

Hardware reverse engineers are supported in their manual analysis of specific netlist

components such as gates and their interconnections by a textual and graphical representation

of the netlist, which is integrated in HAL’s GUI. Furthermore, as it is a common method in

HRE practice and also part of the complex HRE task, HAL allows analysts to interactively

script and test their reversing methods by in integrated Python shell. Therefore, HAL supports

the script-based analyses of and the interaction with the netlist by providing multiple reverse

engineering-specific Python commands.

Students who participated in our study, practiced how to use both manual and script-based

analysis with HAL during the four HRE training tasks of the HRE course. The HRE expert

gained prior experience in the expert’s daily work practice that included netlist analysis with

HAL. In order to simulate a realistic HRE scenario within our study that was comparable to

that in which HRE experts normally work, we included the following aspects: a manual for

HAL that contained i) specific operating instructions, ii) detailed information of HRE-specific

Python commands, iii) examples of code snippets demonstrating HAL’ capabilities.

67

Collected Data

Demographic Questions

All participants were asked to provide information about their sociodemographic backgrounds.

Therefore, we included two short questionnaires in the study. One of these questionnaires was

developed for the student participants, and asked them to answer questions about their age,

major, and target degree. The second questionnaire was designed for the HRE expert and asked

the expert to self-rate the level of HRE expertise including questions on age, highest level of

education, current job position, HRE expertise level, year of relevant experience in HRE, as

well as hours spent on performing HRE per week. In developing the expert questionnaire, we

were oriented to the measurement of the level expertise among software reverse engineering

experts according to Votipka and colleagues (2020).

Cognitive Abilities

We included the Wechsler Adult Intelligence Scale (WAIS-IV) to assess participants’ cognitive

abilities (Wechsler, 2008). The WAIS-IV included the measurement of three sub-factors of

intelligence. First, the ability to accurately interpret and work with visual information was

measured by the factor perceptual reasoning, that consisted of three tests: Block design

Figure 3. Screenshot of HAL’s GUI. Left: Text-based representation of netlist components.

Middle: Graphical representation of the unknown netlist. Right: Python editor for script-based

netlist interactions. Bottom left: Details widget providing additional information

68

(participants were asked to rearrange 3-dimensional blocks to match patterns), matrix reasoning

(participants completed 2-dimensional series of figures), and visual puzzles (participants chose

three figures out of six to build a 2-dimensional geometric shape). The second intelligence sub-

factor working memory reflected the ability to memorize information and to perform mental

operations by applying that information. It consisted of two tests: Digit span (participants

repeated a series of numbers spoken to them), and arithmetic (participants solved under time

pressure several arithmetical problems spoken to them). Processing speed measured the

participants’ ability to quickly and efficiently process visual information. It consisted of two

tests: Symbol search (participants were asked to search symbols accurately in a given time

limit), and coding (participants needed to transcribe a unique geometric symbol with its

corresponding Arabic number accurately under time pressure).

Behavioral Log Files

The HRE tool HAL automatically generated and saved log files from each of the nine

participant’s problem-solving steps during the netlist analysis. These nine log files consisted of

148 to 467 single log entries. Log entries included text files with time-stamps and one of the

following events:

i. A script-based analysis step with the executed Python script, information about the

syntactical correctness of the Python script, and the corresponding console output;

ii. A short Python console input with information about syntactical correctness of the

Python script, and the corresponding console output;

iii. A manual analysis step (e.g., selection of a netlist component such as a gate or a net)

and the unique identifier of the selected netlist component;

iv. Marker for (in)activity phases including information about the duration of these phases.

In summary, the nine log files of the hardware reverse engineers included 2445 single events

(of which 1141 executed Python scripts, 68 console inputs, 1217 manual netlist component

selections, and 19 idle events). In order to prepare for the subsequent open coding analysis, the

log files were pre-processed by displaying the events together with associated information in

tabular form. Figure 4 shows a section of such a pre-processed log file.

69

Timestamps Type Attribute Component ID or File Name

… … … …

3,822 s Script Working 003822_Participant8.py

3,856 s Manual Gate 514

4,240 s Script Erroneous 004240_Participant8.py

4,268 s Script Working 004268_Participant8.py

4,334 s Manual Gate 531

4,341 s Manual Net 2,437

… … … …

Figure 4. Example Section of Participant 8’s Pre-Processed Log File with 6 of 153 Total Events

(Extract of Script of Participant 8 is Attached in the appendix).

Data Analysis Method

Iterative Open Coding based upon Grounded Theory

Each event of the nine participants was qualitatively analyzed by applying an iterative open

coding approach that was based on the Grounded Theory methodology by Strauss and Corbin

(1998). Known as a well-established and standard research method from the social sciences,

the Grounded Theory methodology is often applied in research domains in which theories and

models are lacking thus far (Charmaz & Belgrave, 2007). Since this is also the case for theories

and models of cognitive processes in HRE and Grounded Theory provides explicit guidelines

that facilitate the analysis of HRE problem-solving processes, we decided to apply such an

iterative open coding.

The process of the iterative open coding was as follows. As some single consecutive

events overlapped strongly in terms of content, we decided to group them first. This combined

1232 consecutive events into segments that should facilitate the qualitative analysis. These

segments consisted mostly of manual netlist interactions and barely of consecutive console

inputs or executed Python scripts. Before we could assign open codes, each single event had to

be described in detail. This very detailed description formed the basis for developing an open

coding scheme that could then be iteratively refined. The annotation of each event and segment

consisted of the following aspects:

I. The recorded problem-solving step was described (e.g., “The executed script iterates

over all netlist components and checks if their name contains the string Look-up Table

(LUT).”, or “Manual selection of a netlist component implementing a watermark.”).

70

II. The duration (in seconds) of the problem-solving step was added.

III. Any changes compared to the previous step were described (e.g., “The participant added

three lines of code containing one print statement, one if-clause, and the reversing-

specific Python function get_data_by_key()”).

IV. The observed behavior was explained (e.g., “The watermarking is implemented by

LUTs”. Therefore, the participant filters the netlist components for LUTs.”).

We assigned one or more open codes that captured the most relevant annotations. These

open codes were assigned to the single segments in the evaluation table. Examples for assigned

open codes are “script-based inspection of watermark candidates” or “successful correction of

syntactical errors”. The iterative open coding procedure started with two researchers who

collaboratively annotated and encoded the log files of four participants with the goal to create

an initial code book. During this step, the initial open code book was continuously updated and

previous segments were re-coded as necessary. Based on the initial code book, a third researcher

annotated and encoded the log files of the five remaining participants. After all participants’

problem solving had been encoded, all three researchers reviewed and discussed the

annotations, include new codes in code book, and retroactively applied any such codes where

applicable.

In summary, the final code book includes 103 different unique open codes that represent

a compacted version of the single segment annotations and describe the observed HRE

problem-solving processes of our nine participants. An external researcher independently coded

71 randomly selected segments from three randomly chosen participants with the existing code

book and achieved an inter-coder reliability of 84.5%. Overall, we assigned the 103 unique

open codes 1887 times across the 1232 annotated segments.

Taxonomy of Open Codes

Based on the final code book, we developed an HRE problem-solving taxonomy during several

rounds of discussion. First, we grouped related open codes into problem-solving clusters. The

grouping was based on similarities between single open codes. These problem-solving clusters

were then subordinated into nine sub-categories. These sub-categories represented the

participants’ problem solving during the study (RQ1), and also build the foundation for the

analysis of problem-solving strategies and their efficiency (RQ2).

Eight of the nine sub-categories could be arranged into two main categories. The first main

category comprised all problem-solving processes that were related to Python programming

71

actions. The second main category included all reversing-specific actions. Based on the HRE

problem-solving taxonomy, we were able to develop a “language” to describe observed

problem-solving processes and to analyze differences between participants (RQ1b).

Total Solution Time

Based on the time stamps in the automatically generated log files we were able to compute the

total solution time per participant. During the log file analysis, we found idle events that were

unrelated to the HRE task and could be clearly identified as breaks based on their annotations

and wall-clock time (i.e., time of the day at which they occurred). Those idle times were

excluded from the total solution time. We included the total solution time to identify differences

in the time-efficiency of applied problem-solving strategies (RQ2).

Incorporating Open Code Duration

We noticed that the mere number of open codes did not provide a sufficient granular metric to

describe the problem-solving strategies of the hardware reverse engineers (RQ2). Thus, we

included the incorporation of participants’ solution time. Therefore, we first divided the total

solution time of the participants in 50 time windows of 2% each1.

We then analyzed which open code(s) were assigned in each of the 50 time windows.

This resulted in a fine-grained measure of the relative amount of time that a participant spent

on a single action (i.e., described by the annotated open code). Based on this metric, we were

able to analyze which open codes were assigned towards the beginning, middle, or end of the

participants’ time on task. In summary, the incorporation and detailed analysis of participants’

time spent on specific open codes, contributes to the analysis of applied problem-solving

strategies and their efficiency to answer RQ2.

Summary of Study Procedures

Before the 14-week HRE training and the study started, all participants signed the informed

consent document. Furthermore, all participants received a randomly assigned pseudonym they

were asked to use instead of their clear names during the study. All participants answered the

questionnaire on socio-demographics via an online survey provider. Attentionally, the

intelligence test (i.e., WAIS-IV) was conducted in a 60 to 90 minutes face-to-face session with

1 We also tested for smaller time windows, e.g., of 1%, but could not detect any gain in accuracy.

72

one of the researchers. After the successful completion of the HRE training, the HRE task

materials consisting of a short task description, the watermarked netlist, and a copy of the paper

in which the implemented watermark was introduced were distributed to the participants. The

participants had two weeks to complete the HRE task, without precise specifications as to what

time of day they wanted to work or whether they wanted to solve the task in one session or

spread over several days. After completing the tasks, participants uploaded their log files to a

server located at the university and received a monetary compensation for working on study-

related tasks.

4.3 Results

In the following, the results of our analysis to answer the three RQs introduced in the beginning

of this chapter (see Research Questionss) are presented. In order to answer RQ 1a, we developed

an HRE problem-solving model based on a taxonomy were derived from the detailed analysis

of the behavioral log files of the nine participants. In the context of RQ 1b, we build upon the

foundational HRE problem-solving model to explore differences between the HRE expert’s and

the eight intermediates’ problem-solving processes. Furthermore, we analyze time-efficiency

of the applied problem-solving strategies to answer RQ 2. Finally, we explore the role of

cognitive abilities in HRE problem solving (RQ3). We included a brief discussion after each of

these three main results. All analyses were performed with self-developed analysis programs,

as well as Microsoft Excel and MAXQDA.

4.3.1 Results RQ1a

RQ1a: Which problem-solving processes can be observed while participants are solving a

realistic HRE task?

As previously described in the section Data Analysis Method (see Methods), we systematically

analyzed and categorized the log files of the participants (eight intermediates, one HRE expert)

after the completed the realistic HRE task of the study.

The 103 unique open codes were grouped into nine sub-categories that enabled us to

describe the observed HRE problem-solving processes in detail and to develop an HRE

problem-solving model, which is presented in Figure 5 below. Within our analysis, we found

73

that eight of the nine sub-categories could be grouped into one of the two main HRE problem-

solving categories: Reversing Actions or Code Development. The main category Reversing

Actions combined all actions that directly related to the HRE problem-solving process. In

contrast, the main category Code Development included actions that focused on the

development of Python programming code. The ninth sub-category External Influences

combined all actions that were not related to reverse engineering or coding activities and

encompassed codes that included exogenous influences upon the HRE problem-solving process

such as external interruptions (i.e., short breaks during the reversing process).

We assigned the open codes sorted by sub-categories to the individual actions of the nine

participants. In the problem solving of P5 we did not identify any actions that could be assigned

to the sub-category of External Influences. Table 6 provides an overview about the total number

of assigned open codes per participant aggregated at the sub-category level.

Table 6. Code System with Numbers of Assigned Open Codes per Category, Sub-Category,

and Participant. (A detailed view of all open codes and the frequency with which they were

assigned to each participant is shown in the appendix.)

 P1 P2 P3 P4 P5 P6 P7 P8 Expert

 Reversing action

Inspection and

Information Gathering

10 17 15 11 23 17 25 19 23

Reversing Milestones

and Sub-Goals

13 12 13 16 19 19 15 10 11

Reversing Problems 6 2 10 9 5 8 8 1 1

Reversing Strategy

Decisions

11 17 21 24 31 17 41 9 37

Total 40 48 59 60 78 58 89 39 72

 Code Development

Code Adjustment 49 39 42 49 70 38 41 20 63

Error Introduction 24 14 27 46 26 22 25 7 31

Test and Validation 27 12 30 32 45 14 22 7 43

Troubleshooting 63 24 49 74 52 39 35 20 49

Total 163 89 148 201 193 113 123 54 186

External Influence 23 7 5 9 0 3 19 8 3

74

Our developed HRE problem-solving model had a hierarchical structure that included four

levels, progressing from general to specific: The highest level of the model included the main

categories, the sub-categories were included at the second level, which were followed by

clusters and finally by open codes at levels three and four. Figure 5 visualizes the HRE problem

solving model with the first two levels including main categories, and sub-categories. The

numbers of unique open codes specify how many different open codes were assigned to the

sub-category or the cluster. The number of assigned open codes indicated how often a unique

open code was assigned to a participant’s problem-solving actions.

Figure 5. HRE Problem-Solving Model with the two main categories Reversing Actions and

Code Development, and the nine sub-categories at level two. Numbers in brackets indicate the

number of unique codes per sub-category.

Main Category: Reversing Actions

The main category Reversing Actions included 63 unique open codes that were assigned 543

times to actions of the nine study participants. The next analysis step revealed that these open

codes belonged to one of the following four sub-categories: Inspection and Information

Gathering, Reversing Strategy Decisions, Reversing Milestones and Sub-Steps, and Reversing

Problems.

The first sub-category, Inspection and Information Gathering, included all actions that

participants performed to retrieve information about the netlist and its components (e.g.,

assigned clusters Exploration or Identification) or actions that aimed to retrieve detailed

information about (crucial) netlist components (e.g., assigned cluster Inspection). The number

75

of open codes that was assigned to the cluster Inspection was larger than the number of open

codes pertaining to the cluster Exploration or Identification. Within the sub-category Inspection

and Information Gathering, manual netlist analysis steps were predominant (15 unique open

codes; assigned 135 times), whereas the number of script-based netlist analysis actions was

smaller (15 unique codes, assigned 25 times). The following open codes were assigned most

frequently in this sub-category: in-depth manual inspection of watermark candidates (assigned

39 times), manual selection of irrelevant gates (assigned 14 times), and manual netlist

exploration (assigned 13 times).

The second sub-category, Reversing Strategy Decisions, included actions or decisions that the

participants performed to solve sub-problems of the HRE task. We organized the assigned open

codes in this sub-category into the following three clusters: Strategies and Approaches (14

unique open codes, assigned 135 times), Change of Strategy (3 unique open codes, assigned 14

times), and Sub-Step Preparation (2 unique open codes; assigned 59 times). The most frequently

assigned open codes in the sub-category Reversing Strategy Decisions were both open codes

of the cluster Sub-Step Preparation and were assigned with equal frequency. The second most

commonly assigned open codes in this sub-category were Duplication of partial solutions for

watermark candidates (17 times) and Reversion to a proven approach (10 times).

The third sub-category, Reversing Milestones and Sub-Goals, contained open codes that

described actions through which progress in the HRE problem-solving process was achieved.

Examples for assigned open codes are Identification of watermark candidates or Removal of

the watermark. This sub-category included the following clusters in descending order of

significance: Achieving Milestones (4 unique codes, assigned 54 times), Achieving Sub-Goals

(3 unique codes, assigned 21 times), Systematic Approach to Considering Milestones (3 unique

codes, assigned 43 times).

The fourth sub-category, Reversing Problems, combined actions that indicated quite the

opposite of the previous sub-categories. The codes grouped in the sub-category, Reversing

Problems, contained problem-solving steps that were error-prone or that led to a dead end in

the problem-solving process. We subdivided the sub-category in the following clusters:

Confusion (3 unique codes, assigned 16 times), Failed Attempts (2 unique codes, assigned 12

times), and Lack of Understanding (3 unique codes, assigned 22 times). The most frequently

assigned open codes in this sub-category were Reversing-specific lack of understanding

(assigned 11 times), Lost track of the reversing approach (assigned 9 times), and Dead end

(assigned 8 times).

76

Main Category: Code Development

The second main category, Code Development, grouped programming-related actions and

included the following four sub-categories: Error Introduction, Troubleshooting, Test and

Validation, and Code Adjustments. Every HRE task, including the HRE task, involved

development of programming code or customized scripts as full automated HRE tool support

did not exist. Therefore, the sub-category, Code Development, was considered in the analysis

of HRE problem solving. Nevertheless, many open codes which were assigned to actions

occurred in the context of the present HRE task, may also occur in contexts other than HRE.

The first sub-category, Error Introduction, included the following two clusters: Semantic

Errors (2 unique open codes, assigned 98 times) and Syntactical Errors (2 unique open codes,

assigned 115 times) that were identified during the development of Python code to solve the

HRE task. For example, Introduction of semantic errors was an open code that was assigned

87 times in this sub-category.

The second sub-category, Troubleshooting, combined the actions grouped into two

clusters: Error Search and Correction Attempts (5 unique open codes, assigned 136 times), and

Error Correction (5 unique open codes, assigned 269 times). Examples for open codes of the

second sub-category were Successful correction of syntactical errors (assigned 160 times), and

General debugging (assigned 57 times).

The third sub-category, Test and Validation, combined two cluster: Focused program

code testing and validation methods (5 unique open codes, assigned 181 times), and General

program code testing and validation methods (2 unique codes, assigned 51 times). The sub-

category, Test and Validations, included open codes such as Targeted verification (assigned 58

times) or Manual netlist inspection for script validation (assigned 38 times).

The fourth and final sub-category, Code Adjustments, involved actions of restructuring

or simplifying programming scripts of document solutions. Allover, three clusters were

developed: Creating Clarity (6 unique open codes, assigned 268 times), Cut, Copy and Paste (5

unique open codes, assigned 67 times), and Documentation (3 unique open codes, assigned 76

times). Open codes of this sub-category were, for example, Improve clarity of console output

(assigned 109 times); Reversion to previous code components (assigned 38 times), or

Explanatory documentation (assigned 31 times).

77

Sub-Category: External Influences

In addition to the sub-categories of the two main categories Reversing Actions and Code

Development, our analysis revealed another sub-category, External Influences (4 unique open

codes, assigned 74 times) that could not be classified under the two main categories. Open

codes included in this sub-category were, for example, External interruption (assigned 35

times) or Unintentional manual selection (assigned 16 times). Although the behavioral

observations summarized in this sub-category were not exclusive to HRE and could also be

found in other programming-related tasks, it was very likely that they also occurred in real-

world HRE scenarios and thus reasonably completed our HRE problem-solving model.

4.3.2 Discussion RQ1a

In order to systematically gather and analyze the behavioral log files of the nine participants,

we applied an iterative open coding approach based upon the Grounded Theory method (Strauss

& Corbin, 1998). Based on this analysis, we were able to develop a detailed and hierarchical

model of HRE problem solving.

Our HRE problem-solving model included two main categories and nine sub-categories

that were developed based upon 103 assigned open codes. While we do not deny the possibility

that our model may be expanded by new codes that emerge through the analysis of a different

task, we believe that our model covers all of the essential actions related to an HRE task at

hand. Based on the resulting HRE model, we were able to conceptualize the observed HRE

processes. This conceptualization supported us in generating a language that we applied to

describe problem-solving strategies during HRE.

Summarized, we divided the above-presented model into four sub-categories that

included reversing-specific actions with additional granularity at the cluster-level. Based on

this, our model provided an in-depth perspective and enabled us to further explore fundamental

expertise-related differences in participants’ problem solving in our analysis of RQ1b and RQ2.

The sub-categories were central components of the model as they represented the variety of

approaches that the participants applied to solve the HRE task. Furthermore, the sub-categories

indicated obstacles encountered during the problem-solving process. In order to identify

expertise-related differences in the time-efficiency of participants’ problem solving, we

analyzed these sub-categories involving the time on task. Furthermore, we analyzed other

78

actions that caused specific Reversing Problems or Reversing strategy decisions. We delved

deeper into these sub-categories by answering RQ2.

4.3.3 Results RQ1b

RQ1b: Are there differences in the HRE problem-solving process between participants with

different levels of expertise?

In the context of this RQ, we investigated whether there were differences in the problem-solving

processes between the intermediates and the expert at the open-code level. Figure 6 shows the

visualization of this comparison. The left side of the visualization included open codes that

could only be observed in the expert's problem solving. All open codes of the expert came from

the main category Reversing Actions. The right side of the figure showed the five most frequent

open codes that could only be detected in the problem solving of the intermediates. Of these,

three open codes came from the main category Reversing Actions and two from the sub-

category External Influences. The middle part of the visualization showed the five most

common open codes observed in both the intermediates and the expert’s problem solving. All

five came from the main category Code Development. In summary, 52 unique open codes were

assigned to the problem solving of the intermediates. Of these 52 unique codes, only 10 open

codes fell into the main category of Code Development and 39 fell into the main category of

Reversing Actions.

Figure 6. Comparison between intermediates and expert. Left: Most frequently observed codes

of the expert. Middle: Most frequently observed codes shared by expert and intermediates.

Right: Most frequently observed codes of the intermediates.

79

We found differences in the problem solving between the expert and the intermediates in the

main category Code Development. Especially the distribution of the open codes Introduction

of repeated semantic errors (assigned 11 times) and Introduction of redundant code (assigned

6 times) indicated a lack of Python-programming experience of some intermediates. In this

context, we observed that the intermediates frequently used problem- solving actions associated

with the open code Anticipatory documentation (assigned 8 times), serving to help the

intermediates better plan and control their work steps. Otherwise, no differences were found

between the expert and the intermediates in the distribution of unique open codes in the main

category Code Development.

Differences in the main category Reversing Actions were mainly based on the open codes

assigned to the intermediates. Unique approaches to problem solving by the intermediates were

found in the Inspection and Information Gathering sub-category. These assigned open codes

were mainly from the area of manual information gathering. On the other hand, two of the three

open codes that could be assigned exclusively to the expert belonged to the area of script-based

information gathering.

In the sub-category Reversing Strategy Decisions, we found that intermediates applied

several diverse and unique processes as 13 open codes of this sub-category were exclusively

assigned to intermediates. Furthermore, in the sub-category Reversing problems, our findings

revealed that seven out of eight unique open codes were assigned only to intermediates. In terms

of processes in the sub-category Reversing Milestones and Sub-Goals, seven of the eleven open

codes were assigned to both the expert and the intermediates. Four codes in this sub-category

could only be found in the HRE processes of the intermediates.

4.3.4 Discussion RQ1b

In the previous section, we conducted a comparison of the observed HRE problem-solving

processes between the expert and eight intermediates at the open-code level. We found major

differences between both the expert and the intermediates within the main-category Reversing

Actions, mainly located in the sub-categories Inspection and Information Gathering, Reversing

Strategy Decisions, and Reversing Problems.

80

Based on our findings on expertise-related differences in HRE that seemed to be mainly

concentrated in the three previously mentioned sub-categories, we were able to draw a first

precise picture of the applied problem-solving strategies. Therefore, the following analysis on

time-based efficiency of applied problem-solving strategies (in the context of RQ2) focused on

these three sub-categories. In order to analyze efficiency, we expanded our analysis of the

number of assigned open codes by including a fine-grained metric based on the participants’

time on task (see Methods).

As shown by the analysis, we found that the number of External Interruptions was higher

for Intermediates than for the expert. We argue that intermediates may have tended to re-enter

and re-orient themselves after experiencing external interruptions more frequently. Thus, we

suggest that the HRE expert may have been more able to focus on the HRE task than were the

intermediates. Furthermore, our results showed that the problem-solving processes of the expert

and the intermediates differed slightly. We assume that the expert had a broader prior

knowledge of Python programming. However, the large number of assigned open codes to both

the intermediates and the expert in terms of Code Development indicated a general similarity

of process.

Following the initial analysis of differences between the two groups in HRE Problem

solving, two further questions derive, which are answered below: Was the expert able to solve

the HRE task faster and more time-efficiently than the intermediates? Did the expert use

different strategies than the intermediates?

4.3.5 Results RQ2

RQ2: Can differences in the time-efficiency of applied problem-solving strategies be identified?

In terms of HRE, efficiency is defined as a function of time as an analyst will eventually succeed

if enough resources (e.g., devices, money) are given. We could also see this in the results of our

study. All participants successfully solved the HRE task – but with solution times that ranged

between 163 and 528 minutes (see Figure 7).

As described in the previous section answering RQ 1b, we found differences between the

expert and intermediates mainly in the sub-categories, Inspection and Information Gathering,

Reversing Strategy Decisions, and Reversing Problems. In order to answer RQ 2, we therefore

81

focused on open codes that were assigned to these sub-categories. These open codes formed the

basis for evaluating the efficiency of the participants' problem-solving strategies.

Describing problem-solving strategies based solely on the absolute number of open codes

assigned was, in our view, not sufficient to derive conclusions about efficiency. Including the

relative time (see Methods) that participants took to solve the HRE task allowed us to analyze

participants' problem-solving processes in a fine-grained way.

Figure 7 presents the most dominant steps for each participant in the three above listed sub-

categories. In addition, Table 8 shows how time-consuming each step was and at what point in

each participant's timeline they were observed. Based on the tabulation of problem-solving

processes, a case-by-case description of each participant's problem-solving strategies will

follow in the next section. We structured the description based on the solution times and started

with the description of the fastest participant.

82

Figure 7. Strategy steps and solution times of the participants. Boxes on the bottom left: Darker

values represent stronger focus on the respective action. Boxes on the bottom right symbolize

whether the step occurred in the beginning, middle or end of the HRE problem-solving process.

83

Expert: Preparation of Reversing Sub-Steps, Development of Test Cases

The HRE expert solved the task in 163 minutes and was thus the fastest participant. In the sub-

category Reversing Strategy Decisions, the open code (Small-step) preparation of reversing

sub-steps emerged as the most dominant open code during the expert’s HRE problem solving.

We hypothesize that the expert divided the HRE task into smaller sub-tasks and prepared and

processed these individually. This is also supported by the continuous occurrence of the open

code Development of test cases that helped the HRE expert in continuously evaluating the

solutions of subtasks. Furthermore, we found that the HRE expert applied both manual and

script-based actions in the Inspection and Information Gathering sub-category. This showed

that the expert was able to quickly transform the manual netlist analysis into scripts and thus,

automated the information gathering process from the beginning. During the middle of the HRE

problem solving, the expert faced a reversing problem as the expert lost track of the reversing

approach that could be solved very quickly by manual analysis.

Participant 8: External Resources, Reversion to Proven Approach, Duplication of Partial

Solutions

Participant 8 (P8) solved the HRE task in 176 minutes, what was very close the expert's solution

time. Dominant in the approach of P8 were problem solving steps that could be described by

the following open codes: Using external resources, Reversion to a proven approach, and the

Duplication of partial solutions of the sub-category Reversing Strategy Decisions. Especially

at the beginning and in the middle, we observed that P8 applied knowledge and skills that P8

had acquired from the previous HRE training tasks of the HRE training (Reversion to proven

approaches: e.g., reversing methods to identify netlist components of interest). P8 continuously

used external resources, such as the provided coding guide, pen and paper analyses, or online

resources to solve the HRE task. Furthermore, we observed that P8 divided the HRE task into

several similar sub-tasks, and applied the solution of the sub-tasks to solve other open sub-tasks

(as reflected by the open code Duplication of partial solutions). In the context of problem-

solving steps within the sub-category Inspection and Information Gathering, we observed that

P8 performed only manual actions. While P8 conducted most of those manual information

gathering processes during the beginning of HRE, we identified that P8 conducted further in-

depth manual inspection of watermark candidates throughout the HRE task (reflected by the

occurrence of the open code In-depth manual inspection of watermark candidates). In terms of

84

problem-solving steps in the sub-category Reversing Problems, we found that P8 had to solve

a very short-lasting phase of confusion (represented by the occurred open code Lost track of the

reversing approach) that lasted 7 minutes, and was mainly caused by several simultaneous

actions of code development.

Participant 3: External Resources, Preparation of Reversing Sub-Steps

Participant 3 solved the HRE task in 187 minutes and was very close to the expert's solution

time. In terms of problem-solving steps in the sub-category Reversing Strategy Decisions, we

observed that P3 often engaged in the preparation of reversing sub-steps (reflected by the open

code (Small-step) preparation of reversing sub-steps). The preparation steps occurred during

the first half of the HRE problem-solving process, and indicated that P2 divided the HRE task

into smaller sub-tasks. In the beginning of P3’ HRE problem solving, P3 used external resources

(reflects by open code Using external resources), and script-based methods in terms of the sub-

category Inspection and Information Gathering. By analyzing the netlist at the beginning, P3

laid the foundation of their problem-solving process and was not forced to gather more

information as the process progressed. In addition to the stringent HRE problem-solving

performance, we also noticed longer phases in that P3 faced reversing-specific problems and

difficulties. The phase in that P3 was engaged in solving the reversing problem lasted 75

minutes, and included difficulties mainly from the cluster Lack of Understanding.

Participant 5: Development of Generic Approach, Development of Test Cases,

Preparation of Reversing Sub-Steps

Participant 5 (P5) solved the HRE task in 221 minutes - about an hour longer than the HRE

expert. In the beginning of the HRE problem solving, P5 used external resources (represented

by occurred open code External resources), and script-based netlist analysis method from the

sub-category Inspection and Information Gathering. Dominant in P5’s actions observed in the

sub-category Reversing Strategy Decisions was the development of a generic solution (reflected

by the open code Generic approach). In general, a generic approach is characterized by its

applicability to solve similar HRE tasks on other netlists. We detected the development of a

generic approach in this extent only in P5’ problem solving. Furthermore, we observed that P5

developed test cases (reflected by the open code Development of test cases) and selected test

candidates (reflected by the open code Selection of test candidates) to solve the HRE task.

85

Additionally, we observed that P5 also engaged in the preparation of reversing sub-steps

(reflected by the open code (Small-step) preparation of reversing sub-steps). In P5’s problem-

solving process, we also detected a relatively short time (12 minutes) when P5 faced two

reversing-specific problems (reflected by open code Dead end) and also changed their strategy

for script-based analyses (reflected by open code Strategy changes for script-based analyses).

Participant 2: Preparation of Reversing Sub-Steps, External Resources

Participant 2 (P2) needed 221 minutes to solve the HRE task. Dominant in P2’ problem-solving

process were the preparation of reversing sub-steps (reflected by the open code (Small-step)

preparation of reversing sub-steps), and the application of external resources (reflected by the

open code External resources). In the beginning of the HRE problem solving, we observed that

P2 conducted a series of manual and script-based to explore the netlist and were assigned to the

sub-category Inspection and Information Gathering. In the second half of P2’ problem solving,

we identified that P2 had to solve reversing-specific problems (reflected by the cluster Lack of

Understanding) that lasted for 35 minutes of the total solution time.

Participant 4: External Resources

Participant 4 (P4) was able to solve the HRE task in 233 minutes, and used external resources

(reflected by the open code External resources) most frequently during the HRE problem-

solving process. However, as the problem-solving process progressed, we identified that P4

also applied problem-solving steps such as the development of test cases (reflected by the open

code Development of test cases), the reversion to a proven approach (reflected by the open code

Reversion to a proven approach), or the preparation of sub-steps (reflected by the open code

(Small-step) preparation of reversing sub-steps). We observed that P4 solely used manual

netlist exploration and analysis steps (sub-category Inspection and Information Gathering).

Furthermore, P4 had to solve several reversing-specific problems that lasted a total of 65

minutes. Our analysis showed that these reversing-specific problems occurred mainly during

the beginning and the middle of the HRE problem-solving process and included actions from

the cluster Failed Attempts and assigned open codes such as Unsuccessful transfer of an already

known approach to a current problem or actions from the cluster Confusion with assigned open

codes such as Lost track of the reversing approach.

86

Participant 6: External Resources and Preparation of Reversing Sub-Steps

Participant 6 (P6) solved the HRE task in 261 minutes. Dominant in P6’ problem solving were

actions from the sub-category Reversing Strategy Decisions with the assigned open codes

Using external resources, and (Small-step) preparation of reversing sub-steps. In addition to

these strategies, we observed the open codes Reversion to a proven approach and the

development of a Generic approach towards the end of P6’ problem solving. In the context of

the sub-category Inspection and Information Gathering, our analysis showed that P6 applied

several manual and script-based techniques at the beginning and during the middle of HRE.

Furthermore, we observed that P6 faced and attempted to solve reversing-specific problems for

78 minutes. For example, P6 made several attempts to solve a Lack of Understanding.

Participant 7: External Resources, Fully Manual and Hardcoding Approach

Participant 7 (P7) was one of the slowest hardware reverse engineers and spent 351minutes to

solve the HRE task. We observed that P7 developed the problem-solving strategy with external

resources (reflected by open code Using external resources) in the beginning. As the problem

solving progressed, we observed some unique approaches that we could not find in this form in

any other analyst’s problem solving. P7 changed the problem-solving strategy from script-

based to manual (reflected by the open code Strategy change from script-based to manual

analysis). Furthermore, P7 decided to develop a fully manual solution (reflected by the open

codes Fully manual, and Hardcoding approach) in the middle of the HRE problem solving. We

assigned the open codes Fully manual and Hardcoding approach to problem-solving steps that

included the encoding of fixed values into the solution that had been read out through manual

netlist analysis. Additionally, in the context of Inspection and Information Gathering, we

observed that P7 conducted solely manual netlist analysis (reflected by the open code In-depth

manual inspection of watermark candidates). During the HRE problem solving, P7 encountered

a relatively small number of reversing-specific problems, such as a Lack of Understanding}

and Failed Attempts that could be solved by P7 in 35 minutes.

87

Participant 1: External Resources and Reversing Problem Shooting

Participant 1 (P1) was the slowest hardware reverse engineer and needed 528 minutes to solve

the HRE task. Dominant in P1’ problem solving was the inclusion of External resources and

Reversion to a proven approach. During the second half of P1’ problem solving, P1 failed to

recognize that a correct solution of a sub-problem had been already reached. Due to this error,

P1 inappropriately changed the reversing strategies. P1's approach in terms of Inspection and

Information Gathering was based on manual analysis steps. P1 spent the longest overall time

of all participants (167 minutes) to solve reversing-specific problems. These included assigned

open codes such as Correct solution is not recognized, Dead end, Introduction of a reversing-

specific misconception, and Inappropriate change of the reversing strategy.

4.3.6 Discussion RQ2

Our results did not indicate that a single optimal (“one and only” or “end all, be all”) problem-

solving strategy for most efficiently solving the HRE task existed. Rather, our analysis showed

that several participants achieved efficient solutions through the application of different and

individualized strategies. For example, we observed that the time-efficient problem-solving

strategy of the HRE expert was based on test cases and small-step approaches that could not be

observed to this extent in the problem solving of the intermediates. Furthermore, our results

showed that the use of external resources was dominant in several problem-solving strategies

of the intermediates. Using external resources, such as the provided coding guide, pen and paper

analyses, or online resources may have supported the intermediates compensate for a lack of

skills and knowledge in for example Python programming or reversing-specific concepts.

Drawing upon external resources to solve the HRE task and obtain reassurance seemed to be

an efficient approach for most intermediates.

In addition, we also found that the intermediates P5 and P7 applied unique HRE

approaches, the former leading to a more and the latter to a less efficient solution. P5’s problem

solving was mainly characterized by the development of a generic approach that would have

been useful to completing a similar reversing tasks on a different netlist. Nevertheless, it was

relatively inefficient to solve the HRE task at hand. In contrast, P7’s unique fully-manual

approach caused an inefficient long solution time, but also included a relatively small number

of reversing-specific problems. Based on this result, it is assumable that a step-by-step manual

88

analyses and subsequent encoding of manually-identified netlist components was accurate, but

also very time-consuming. In terms of Inspection and Information Gathering, we found that

approaches that included both script-based and manual analysis steps, appeared to be more

time-efficient than approaches that were solely based on manual analysis. Nevertheless, manual

analysis also supported the hardware reverse engineers to solve reversing-specific problems.

Furthermore, our results indicated that more reversing-specific problems led to longer

solution times. For instance, the two fastest participants (expert and P8) faced a single

reversing-specific problem and were able to solve it within seven minutes. In contrast, P1

experienced a larger number of reversing-specific problems resulting in a longer time spent on

task. However, our data revealed one exception: We observed a relatively large number of

reversing-specific problems in P3’ problem solving, who was one of the fastest participants.

Although P3 faced longer periods of difficulties related to the cluster of Lack of understanding,

P3 was able to achieve important reversing milestones and did not lose the golden threat.

Based on our previous assumptions and the results of RQ1, it would have been plausible

to assume that the HRE expert would have been the most efficient participant. In contrast to

these expectations, our in-depth analysis of applied problem-solving strategies and their time-

efficiency showed that beside the HRE expert, two intermediates also achieved very time-

efficient solutions. We discuss this finding in greater detail in the General Discussion (see

Chapter 5).

4.3.7 Results RQ3

RQ3: Do cognitive abilities play a role in HRE problem solving?

Due to the small size of our sample, statistical analysis of the influence of cognitive factors on

HRE performance was not feasible. However, we found one interesting descriptive result on

the role of working memory in the time-efficiency of HRE problem solving. The descriptive

data suggested a potential negative correlation between working-memory scores and the overall

time on task in the HRE task (see Figure 8). The result leaded to the assumption that participants

with higher working-memory scores tended to solve the HRE task quicker than participants

with lower working-memory scores. Participant 8 (P8) with a high score in working memory

(126) achieved a short solution time of 176 minutes. Contrary, P1 with a lower score in working

memory (108) had a longer solution time with 528 minutes. Please note, that in the paper

89

(Becker et al. 2020) the solution time of P1 was calculated with 398 minutes. Based on our

detailed analysis with the iterative open coding (Strauss & Corbin, 1998), we detected that P1

developed an algorithm during an idle-phase. This idle phase was not involved in the calculation

of P1’s solution time within our publication (Becker et al., 2020), since we assumed at this point

that no HRE-specific actions happened in the corresponding idle phase. P6 seemed to be an

outlier that is discussed in the following section. Table 7 summarizes the descriptive data of

cognitive factors and solution time in the HRE task.

Figure 8. Scatter plot of solution time (x-axis) and working-memory scores (y-axis). Note: P3

and expert did not participate in the cognitive tests.

P 1

P 2

P 4P 5

P 6

P 7

P 8

80

90

100

110

120

130

140

150 250 350 450 550

W
o

rk
in

g
-M

em
o

ry
 S

co
re

Total Solution Time in Minutes

Solution Time and Working-Memory Score

90

Table 7. Time spent on the HRE task (minutes) and scores of the cognitive factors working

memory (WM), processing speed (PS), and perceptual reasoning (PR).

Variable
 Participants

 P1 P2 P3 P4 P5 P6 P7 P8 Expert

Time
 528 221 187 233 221 261 351 176 163

WM
 108 126 - 115 118 92 112 126 -

PS
 106 146 - 146 119 109 119 117 -

PR
 104 129 - 100 115 100 104 106 -

Note. P3 and the HRE expert did not participate in the WAIS-IV

4.3.8 Discussion RQ3

The descriptive results of RQ3 suggested a potential negative correlation between working-

memory scores and solution time in solving the HRE task. Due to small sample sizes we

conducted a descriptive analysis and hypothesized that participants with higher working-

memory scores tended to solve the HRE task faster than participants with lower working-

memory scores. In the following, I describe our assumptions in more detail.

The term working memory is defined as a cognitive system that explains how information

are stored and processed simultaneously (Baddeley, 1992). In more detail, working memory is

responsible for the storage of sensory input (e.g., visual information) in immediate awareness

and the manipulation of that sensory input to solve complex task such as problem solving

(Baddeley, 1992). Baddeley and Hitch (1974) proposed the model of working memory that

originally consisted of three main parts: visuospatial sketchpad; phonological loop, and the

central executive (Baddeley, 2002). The visuospatial sketchpad is responsible to temporarily

store and process visuospatial information and is essential for solving visual problems (e.g.,

visual analysis of complex netlist during HRE) (e.g., Baddeley 2002). The phonological loop

is the counterpart to the visuospatial sketchpad and is important for the temporary storage and

processing of acoustic information (e.g., Baddeley 2002). An individual’s attention it directed

to relevant information and to coordinate cognitive processes due to the central executive of the

working memory (e.g., Baddeley 2002). Prior research showed that individual differences in

working-memory tests were commonly determined by the individuals’ executive processes

91

(Daneman & Carpenter, 1980; Baddeley, 2003). In 2000, a fourth component the episodic

buffer was added to the working memory model (Baddeley, 2000). The episodic buffer is

hypothesized to build an interface between the sub-systems (i.e., visual sketchpad) and the long-

term-memory (LTM) (Baddeley, 2000). According to Baddeley (2012), it can be described as

a buffer store through that working memory is connected to perception and LTM. It is assumed

to have limited capacity (Baddeley, 2012) with four chunks (Cowan, 2005).

According to Diamond (2013), working memory is central for sense-making processes

and to solve complex cognitive tasks. The functionalities of the working memory extend to for

example, i) inclusion of new information in currently existing thought and action processes; ii)

development of alternatives; iii) mental connection of information to establish general

principles or to identify connections between individual aspects (Diamond, 2013). Furthermore,

working memory is supposed to support inhibitory control in goal-directed actions (Diamond,

2013), and to cognitive abilities of inhibiting specific information (Hasher & Zacks, 1988;

Zacks & Hasher, 2006). By keeping the goal in mind and by inhibiting irrelevant information,

an individual increases the efficiency of their actions (Diamond, 2013).

We hypothesize that several functionalities of the working memory may have contributed

to achieve time-efficient solutions in HRE and describe our assumptions in the following. First,

the time-efficient solution of participants with higher scores in working memory may be based

on the inhibitory functionalities of the working memory (e.g., Diamond, 2013). Especially

during the visual netlist exploration and analysis phases, hardware reverse engineers had to

handle a wealth of visual information and have to distinguish between relevant and irrelevant

visual stimuli. We suggest that participants with stronger working memories were more able to

inhibit irrelevant stimuli (e.g., irrelevant netlist components) and in storing and manipulating

visual information within the visuospatial sketchpad than participants with lower working-

memory scores. The efficient cognitive inhibition of those participants with higher working-

memory scores enabled them to delete irrelevant information from the limited working

memory’s capacity, and to still focus on the reversing goal (Hasher & Zacks 1988, Zacks &

Hasher 2006; Diamond, 2013).

Second, we assume that the working memory functionality of efficiently holding and

manipulating information (e.g., Baddeley, 2002) may have played a role in solving the HRE

task efficiently. The analysis of specific netlist components and interconnections is very

complex due to a variety of different information. It is plausible to hypothesize that a stronger

working memory enabled participant to identify connections between single components and

92

to develop goal-directed action plans without losing the golden threat (i.e., the reversing goal

of identifying and extracting watermark candidates).

Third, we assume that the functionality of working memory of activating and retrieving

information from LTM (e.g., Baddeley, 2012) to solve the present task, may have been

supportive during HRE problem solving. Although both the fastest and the slowest participants

acquired the same amount of HRE knowledge and HRE skills (e.g., methods to read out data

from the identified candidates) during the training phase of the HRE course, P8 was quicker in

solving the HRE problem. As previously outlined, working memory activates and retrieves

already stored information from LTM (e.g., Baddeley, 2012). Thus, we assume that the stronger

working memory supported P8 to efficiently activate and retrieve stored information from the

LTM in order to analyze and work with inputs P8 stored in immediate awareness in the working

memory.

Finally, the results revealed an outlier (P6) with the lowest working-memory score. It

may be plausible to assume that measurements of working memory abilities of P6 could have

been influenced by uncontrolled variables. Prior research has revealed that several variables

can impar performance in working memory tasks, for example, chronic psychological stress,

chronic psychological stress (Mizoguchi et al., 2000), acute psychological stress (Qin,

Hermans, van Marle, Luo, & Fernández, 2009), negative emotions like anxiety (Moran, 2016),

or neural disorders (Willcutt, Doyle, Nigg, Faraone, & Pennington, 2005). This could mean that

the measurement of working memory of P6 may have been negatively influenced, resulting in

a worse value than actually exists.

93

5 General Discussion

Disclaimer: Parts of this chapter were adapted from the submitted paper “The Anatomy of a

Hardware Reverse Engineering Attack: Insights into Cognitive Processes during Problem

Solving” that is currently under review at the journal ACM TOCHI in 2020 (Wiesen, Becker,

Walendy, Paar, & Rummel, 2020). This paper was written together with my co-authors Steffen

Becker, René Walendy, Christof Paar, and Nikol Rummel.

94

General Discussion – HRE as a Function of both Expertise and Cognitive Abilities?

The results of my dissertation point to the role of expertise and cognitive abilities for time-

efficient problem solving during HRE. In this chapter, I discuss the two main contributions of

my thesis based on our results and the literature. First, findings of this doctoral thesis contribute

to the ongoing debate in psychology about the role of expertise and cognitive abilities in

problem-solving performance. In this context, I make a theoretical contribution by concluding

that HRE problems may involve aspects of both simple and complex problems. Second, my

discussion follows the considerations of Lee and Johnson-Laird (2013), who outlined that

reverse engineering of Boolean systems may be a specific type of human problem solving.

Our study showed that the HRE expert was able to achieve the quickest and most time-

efficient solution in the HRE task by applying a unique set of problem-solving strategies not

used in this form by any other analyst. This aligned with findings from the domains of solving

physics problems (Larkin, McDermott, Simon, & Simon, 1980) and medicine (Patel &

Kaufman, 1995), showing that experts were more successful in selecting and using an

appropriate strategy than non-experts (Chi, 2006). Lemaire and Siegler (1995) found that

experts often used strategies that have proven to be effective in previous problem-solving

situations. Ericsson and colleagues (1993) suggested that the superior performance of experts

was based on experts’ wealth of domain-specific knowledge and prior experience in solving

domain-specific problems that they had accumulated throughout several years of deliberate

practice. Additionally, experts’ well-structured and domain-specific knowledge significantly

influenced the perception and categorization of problems, which in turn, led to efficient

problem-solving performance (Nokes et al., 2010; Chi, Feltovich, & Glaser, 1981a). The

categorization and representation of problems supported experts in selecting the most suitable

problem-solving strategies and, thereby, they generated time-efficient solutions (Chi et al.,

1981; De Groot, 1978; Patel & Groen, 1986). Against this background, it is reasonable to

assume that the HRE expert in the present study selected problem-solving strategies based on

a wealth of HRE-specific knowledge. In turn, this domain-specific knowledge may have

supported the HRE expert in their highly efficient problem categorization and representation,

that enabled the expert to achieve a time-efficient solution. Ericsson and Kintsch (1995)

explained the efficient problem solving of experts by the hypothesis that experts developed an

effective long-term working memory that enabled experts to efficiently activate prior

knowledge (e.g., in form of stored procedures or chunks) from the LTM and thus, may

supported them in circumventing limited capacities of the working memory. Thus, the HRE

95

expert’s problem solving may have been based on an efficient activation and retrieval of prior

knowledge from the LTM.

In addition, our results indicated that besides the HRE expert, two intermediates (P8, P3)

achieved time-efficient solutions even though they had less domain-specific knowledge and

less problem-solving experience than the HRE expert. Furthermore, we found that both

intermediates (P8, P3) had above-average scores in the intelligence-subfactor working memory.

We assumed that the highly efficient solutions of these two intermediates were based on their

cognitive abilities (e.g., working memory) that supported them to compensate for gaps in

domain-specific knowledge. Our assumption aligned with the expert-performance framework

that explained how novices and intermediates cope with gaps in domain-specific prior

knowledge and problem-solving experience (Ericsson et al., 1993). Ericsson (2014)

hypothesized that a correlation between domain-specific performance and performance on tests

of general cognitive ability may exist for non-experts, as shown by prior research of Ackermann

(1987), or Schmidt and Hunter (2004). Consequently, HRE problem solving of novices and

intermediates may be correlated with general cognitive ability and may explain that

intermediates P8 and P3 achieved time-efficient solutions in HRE due to their above-average

levels of working memory. In contrast to both intermediates, the HRE expert may have acquired

specific knowledge structures throughout years of deliberate practice that may have mediated

their superior performance in the HRE task. As the expert did not participate in the intelligence

test WAIS-IV (Wechsler, 2008), we cannot draw any conclusion about the correlation between

the HRE expert’s level of cognitive ability and their problem-solving performance.

In this context, we assumed that both intermediates may have been supported by their

working memory in solving the HRE task. Our descriptive data showed that intermediates who

achieved higher working-memory scores tended to solve the HRE task faster than intermediates

with lower working-memory scores. Against this result, we suggested that specific sub-systems

(such as the working memory; e.g., Baddeley & Hitch, 1974) of the intermediates’ cognitive

information processing system supported the high-performing intermediates in the current

study to temporarily keep information in mind and to work on it. The inclusion of novel

information in currently existing thoughts or action processes to solve complex cognitive tasks,

is one of the central functionalities of the working memory (e.g., Diamond, 2013). Including

novel information in existing problem-solving plans, may have been supportive in the HRE

problem solving of both intermediates P3 and P8. We assumed that their above-average

working memory may have helped them to efficiently integrate novel information about

96

specific netlist components and their interconnections in their existing problem-solving plans.

Furthermore, our analysis of the fast intermediates’ strategies revealed that the intermediates

used procedures that they had acquired in previous HRE training tasks. As shown by prior

research working memory supported the activation and retrieval of stored information from

LTM to solve the task at hand (e.g., Baddeley, 2012). Thus, we assumed that the working

memory supported P8 and P3 to efficiently activate and retrieve stored information from the

LTM to analyze and work with inputs that the participants stored in immediate awareness in

the working memory (see detailed discussion in Section 4.3.8).

The influence of prior knowledge and cognitive abilities on problem-solving performance

lies also at the heart of taxonomies that define human problem solving. Prior psychological

research established a broad range of taxonomies to define problems, and typically

distinguished between simple and complex problems (e.g., Dörner & Funke, 2017). Solving

simple and solving complex problems relies on different cognitive processes (Schraw, Dunkle,

& Bendixen, 1995; Dörner & Funke, 2017). Complex problems are usually described as

knowledge-rich systems that activate large semantic networks of prior knowledge and

potentially successful problem-solving strategies (Dörner & Funke, 2017). Simple problems

are typically described as knowledge-free systems because solving simple problems, opposed

to solving complex problems, is less based on domain-specific knowledge (Chi, Glaser, & Rees,

1981b) and more on cognitive abilities (e.g., Sternberg, 1982). It remained an open question to

which problem type HRE belongs (see Background).

We hypothesize, that HRE tasks seem to involve aspects of both simple and complex

problems. In the beginning of an HRE problem-solving process, the reverse engineer obtains a

gate-level netlist that can be defined as the initial state of the HRE problem. By selecting

suitable operators (e.g., information gathering based on manual netlist analysis) the analyst tries

to achieve a desired goal state (e.g., removal of watermark from a protected circuit) or sub-

goals derived from the main goal. An unambiguous initial state and the goal state as well as a

clear set of operators that allow to move in the problem space are common characteristics of

simple problems (Dörner & Funke, 2017). Since HRE tasks neither change independently nor

because of inputs from the problem solver, they can be described as time stable, which is a

common characteristic of simple problems (Funke, 2003). In contrast to simple problems that

can be solved without domain-specific knowledge, a realistic HRE task may be impossible to

solve for a person with insufficient domain-specific knowledge and skills (e.g., on hardware

circuits, chip design, etc.). Another characteristic of HRE tasks is the amount of information in

97

the netlist that must be analyzed and processed. Within the scope of netlist analysis, a hardware

reverse engineer analyzes from thousands up to millions of components and their

interconnections. The complexity of such an HRE task increases with netlist size (i.e., the

number of components) that requires reduction and abstraction. Such characteristics of

complexity and connectivity found in HRE tasks are commonly assigned to complex problems

(e.g., Funke et al., 2018). Additionally, especially at the beginning of the HRE process, not all

the necessary information is apparent to the analyst from the start. Thus, an analyst needs to

perform a series of operations that lead to obtaining the needed information. Consequently, the

hardware reverse engineer tries to remove a lack of transparency at the beginning of HRE,

which is commonly considered as a characteristic of CPS (e.g., Funke, 2012). While these three

aspects (i.e., complexity, connectivity, and non-transparency) of complex problems can be

found in HRE problem solving, the additional two characteristics of complex problems –

dynamics and polytelic situations – are absent from HRE problems. In contrast to complex

problems that usually change dynamically, HRE problems are stable. Furthermore, a reverse

engineer analyzes the netlist components to achieve (sub-)goals and a goal state that are clearly

defined, non-competitive and not mutually exclusive. The embedding of HRE problem solving

in existing problem-solving taxonomies leads to assume that HRE tasks may combine aspects

of both simple and complex problems. Although HRE and simple problems have several core

aspects in common (e.g., unambiguous initial state; the goal state), the huge amount of

information pertaining to non-transparent, highly interconnected components that must be

processed and analyzed, creates a challenge that places HRE squarely outside of the realm of

simple problems as typically defined and constructed. These characteristics add another layer

to HRE problems and thus places them between simple problems and complex problems.

Our results relate also to the findings on problem solving in reverse engineering of

Boolean systems by Lee and Johnson-Laird (2013), who suggested that reverse engineering of

Boolean systems may be a specific type of human problem solving. As previously outlined (see

Background), it was unclear to what extent the results of Lee and Johnson-Laird (2013)

concerning applied problem-solving strategies and difficulties in reverse engineering of

Boolean systems were applicable to the domain of HRE problem solving. Lee and Johnson-

Laird (2013) showed that participants applied one of two main problem-solving strategies in

drawing circuits that would control an electrical light or a water flow system: Either the

participants focused on single outputs at a time, or on a single component at a time. In contrast

to Lee and Johnson-Laird (2013) we did not identify those two main categories during HRE

problem solving, and found that none of the applied problem-solving strategies could be

98

described as the single “best” or as the main strategy for solving the realistic HRE task. While

there was some overlap in applied sub-strategies (e.g., using external resources), it is important

to note that most participants used a unique strategy. Furthermore, our results showed that some

participants (e.g., generic approach of P5; manual approach P7) developed problem-solving

strategies that were almost incomparable to other approaches. Accordingly, it is unclear whether

we could and should divide HRE strategies into strategy categories. It might be the case that

hardware reverse engineers solve HRE tasks in their own way or set different emphases that

lead to only a few overlapping strategy characteristics.

Furthermore, Lee and Johnson-Laird (2013) suggested that difficulties in reverse

engineering of Boolean systems depended on three factors: a) number of components, b)

number of components influencing an output, and c) dependencies of components that influence

an output. It is plausible to assume that those three factors may have also influenced the level

of difficulty of solving the HRE task. Especially the dependence of single netlist components

to other netlist components may have influenced the perceived difficulty of the HRE task.

Accordingly, the more components there are and the more they are interconnected, the more

difficult and non-transparent it could be for a hardware reverse engineer to analyze a netlist.

Based on our in-depth analysis of realistic HRE problem solving, we extended the

understanding of reversing-specific difficulties that occurred during HRE problem solving. For

example, we found difficulties, such as dead-ends that were caused by misleading strategies

that may have led to longer solution times in some cases (e.g., P1; P6).

Taken together, our results suggested that both the HRE expert and two intermediates

with above-average scores in working memory achieved superior performance. This result let

me assume that HRE problem solving may be a function of both cognitive abilities and

expertise. This was in line with the assumptions of the expert-performance approach (Ericsson

et al., 1993), proposing that domain-specific problem solving was correlated with cognitive

abilities in non-experts and with prior domain-specific knowledge in experts. In this context, I

discussed that the fast and efficient solution of the HRE expert was based on well-structured

domain-specific knowledge. Furthermore, we proposed that the superior HRE performance of

both intermediates was based on their above-average working memory that may have supported

them in solving the cognitively complex HRE task at hand. In this context, I made a theoretical

contribution by concluding that HRE problems may involve aspects of both simple and complex

problems. Furthermore, our results were also aligned with a debate initiated by Lee and

Johnson-Laird (2013) who suggested that reverse engineering of simplified Boolean systems

99

may be a specific type of human problem solving, which remained so far poorly understood. I

discussed to what extent the results by Lee and Johnson-Laird (2013) were applicable to the

domain of HRE problem solving. My main contributions provide stimuli for future research

(see Section 7) and for further considerations for cognitive obfuscation impeding HRE (see

Chapter 6).

100

6 Initial Ideas for Cognitive Obfuscation

In general, countermeasures such as obfuscation techniques never completely protect against

HRE (Barak et al., 2001). The underlying principle of obfuscation is to transform the ICs of a

microchip so that high-level information is obstructed and functionalities of the ICs do not

change (Wiesen et al., 2019a). As HRE includes both technical and cognitive processes, we

suggested that countermeasures that aim to impede HRE should also focus to impede the

cognitive processes in HRE – suggested by us as cognitive obfuscation (Wiesen et al., 2019a;

Becker et al., 2020).

In this section, I develop initial ideas for future studies to pave the way for the

development of cognitive obfuscation techniques. Based on our results, I will focus on the

cognitive aspects of HRE and hope to provide impulses for future studies on the development

of cognitive obfuscation prototypes. In particular, based on one of my main contributions (i.e.,

HRE may be a function of both cognitive abilities and expertise), I develop initial ideas for

cognitive obfuscation that may impede HRE problem-solving processes that are based on

cognitive abilities and on expertise.

6.1 Overloading the Capacity of the Working Memory

The results of this doctoral thesis suggested that the working memory of hardware reverse

engineers may play an important role in efficiently solving HRE tasks. Descriptive data

suggested that participants with higher working-memory scores solved the HRE task with

shorter solution times than participants with lower working-memory scores. In general, working

memory is responsible for storing, retrieving and processing information to enable goal-

directed behavior, for example, in cognitively challenging tasks, such as problem solving (e.g.,

Baddeley, 2012). Thus, it is plausible to assume that working memory supported hardware

reverse engineers in processing the wealth of information about netlist components and their

interconnections during HRE. This leads to ask, whether cognitive obfuscation may be able to

overload the capacity of analysts’ working memories.

Prior research has shown, that the support of working memory in solving cognitively

demanding tasks is restricted by the generally limited capacity of the working memory. As the

number of information determines how many chunks (i.e., group of meaningful information

cues) can be stored and processed in the episodic buffer of the working memory, it is difficult

101

to define the capacity of working memory by a concrete number of chunks. Nevertheless, prior

research suggested that the capacity of the episodic buffer of the working memory may be

limited to four chunks (Cowan, 2005; Baddeley, 2012). In addition, Miller (1956) suggested

that the capacity of individuals to process information is limited to seven (plus or minus two)

objects. Against this background, the limited capacity of working memory may be a first

starting point for cognitive obfuscation. Specifically, if cognitive obfuscation can achieve that

the working memory of hardware reverse engineers is overloaded, it may be possible that HRE

performance degrades.

In this context, prior research showed that participants’ performance in a visuospatial task

was impeded by a concurrent visuospatial task or by a task that asked to generate random digits

(Baddeley, Emslie, Kolodny, & Duncan, 1998; Baddeley, 2002). Those concurrent tasks

heavily overloaded the capacity of the central executive of the working memory (Baddeley et

al., 1998; Baddeley, 2002). In terms of HRE, I suggest that cognitive obfuscation may act as a

concurrent task that may lead to interrupt the solving of the main HRE task. Thus, the analysts

may be forced to divide their attention to solve the main and the concurrent tasks that may lead

to an overload of the working memory capacity. I will present my idea in the following.

An interruption is defined as a secondary activity or task that draws an individual’s

attention away from the primary task (Li, Magrabi, & Coiera, 2012). Concurrent interrupting

tasks are typically associated with costs in the form of additional time spent on task (e.g., time

to return to the main task after completing the secondary task; Trafton, Altmann, Brock, &

Mintz, 2003; Li et al., 2012) and reduced solution accuracy (e.g., probability of errors

increases). The memory of goals framework describes how interruptions influence task

performance and how performance is impeded by goal decay (Altmann & Trafton, 2002). More

precisely, the goals of the primary tasks immediately start to suffer from activation decay when

a concurrent interrupting task occurred (Monk, Trafton, & Boehm-Davis, 2008; Altmann &

Trafton, 2002). In addition, prior research suggests factors that may aggravate the disruptive

effects of interruptions (Monk et al., 2008): i) high similarity (e.g., Cellier & Eyrolle, 1992;

Edwards & Gronlund, 1998; Oulasvirta & Saariluoma, 2004) and relatedness (Cutrell,

Czerwinski, & Horvitz, 2001; Zijlstra, Roe, Leonora, & Krediet, 1999) of the main and the

interruption tasks; and ii) complexity (i.e., cognitive demand) of the interruption (e.g., Cades,

Boehm-Davis, Trafton, & Monk, 2007; Gillie & Broadbent, 1989).

102

In their meta-review, Li and colleagues (2012) summarized that an interruption with strong

similarities to the main task is more likely to interrupt the completion of the main task than an

interruption with lower similarity. For instance, Li and colleagues (2012) drew on an example

from everyday medical work. They suggested that if a nurse who is filling out a medical record

for patient A is interrupted to do the same documentation for patient B, it could be that patient

A's documentation suffers. In turn, they suggested that if the nurse is interrupted with a non-

similar task (e.g., inquiry about health insurance), this may have fewer negative effects on the

main task. Furthermore, interruptions with higher similarities to the main task may be more

likely to activate the same cognitive mechanism that are needed to solve the main task (Li et

al., 2012). Consequently, an interrupting task with strong similarities to the main task may

demand similar cognitive structures and may increase the goal decay and the time on task to

solve the primary task.

Initial idea for cognitive obfuscation. In summary, our results suggest that working

memory may play an important role in HRE problem solving. Thus, it may be a valuable

approach to develop cognitive obfuscation that overwhelms specific cognitive structures and

causes disruptive effects on HRE performance. Cognitive obfuscation that aims to overload the

capacity of the working memory could include concurrent tasks that are very complex and

characterized by a high similarity to the primary HRE task. Complexity and similarity have

been shown to disrupt the problem solver and lead to decay of primary goals (e.g., Monk et al.,

2008). I hypothesize that cognitive obfuscation tasks that include a high complexity and task

structures that place similar cognitive demands as the primary tasks may cause an overload of

the working memory. Ideally, obfuscation tasks cause long periods of time spent on the

obfuscation task before an analyst can return to the primary task, that is, reverse engineering

the chip. In turn, this may disrupt the problem-solving process for the primary HRE task, cause

additional time on task, and potentially increase the likelihood of errors in the primary HRE

task. Ideas for future research on this obfuscation task that aims to overload the capacity of the

working memory are presented in the following chapter 7.

Nevertheless, prior research has also investigated how individuals can mitigate the

disruptive effect of interrupting concurrent tasks. In this context, practice and prior experience

were shown to counter disruption by interruptions (Li et al., 2012). In the following, I explain

why it may not be sufficient to solely overwhelm the working memory and why it seems to be

necessary to include other aspects in the development of cognitive obfuscation methods.

Although, the capacity of the working memory may be not expandable by practice, memory

103

training and knowledge structures (e.g. chunks) may expand the capacity to transfer and retrieve

information from the long-term working memory (Ericsson & Kintsch, 1995). Especially

experts with well-structured knowledge and large chunks may circumvent the limited capacities

of working memory by retrieving and including relevant domain-specific knowledge and

procedures with minimal cognitive effort (Alexander, 2003; Chi, 2006). Furthermore, experts

also face lower cognitive effort due to automated problem-solving procedures (Schneider,

1985; Chi, 2006).

6.2 Developing Misleading HRE Challenges

As suggested by our results, cognitive abilities and expertise may support analysts in conducting

HRE. The central question is how to impede hardware reverse engineers (e.g., HRE experts or

more experienced analysts) who also rely on their well-structured prior knowledge. I suggest

that two approaches could be pursued in this context: experts’ mental fixations on applying

standard strategies and experts’ missing flexibility to develop non-routine solutions.

Besides several findings on how expertise supported problem solving (e.g., Larkin,

McDermott, Simon, & Simon, 1980; Patel & Kaufman, 1995), prior research on expertise has

also identified drawbacks that stem from increasing expertise (e.g., summary in Chi, 2006).

Especially i) mental fixations through domain-specific knowledge that impede the development

of creative and novel solutions and ii) experts’ inflexibility to changing problem-solving

routines and inability to adapt their strategies accordingly may be valuable to consider in terms

of cognitive obfuscation.

One challenge that can impede the performance of high-knowledge participants are

mental fixations on specific problem-solving procedures that do not necessarily provide the best

solution for the task at hand. For example, Wiley (1998) showed in three experiments that

individuals with higher levels of domain-specific knowledge were worse in solving a creative

task than individuals with lower levels of domain-specific knowledge. Those creative tasks

were characterized by misleading items in the domain of baseball. Therefore, Wiley (1998)

adapted the Remote Associates Test (RAT) (Mednick, 1962) and asked participants to logically

complete a series of three baseball words by a fourth. The adapted RAT-test included

misleading tasks, in which the solution was not a baseball-related word (Wiley, 1998). The

three experiments showed a clear effect that participants with higher levels in domain-specific

104

baseball knowledge were less successful in solving the problems correctly as their prior

knowledge caused a mental fixation on an inappropriate solution. Wiley (1998) argued that the

high-knowledge participants did not conduct a broad search in the search space of the problem

that may have influenced the fact that experts did not choose an appropriate solution. Since the

low-knowledge participants achieved better solutions, Wiley (1998) suggested that participants

with lower domain-specific knowledge were able to solve the misleading tasks more flexible

than the high-knowledge subjects.

Furthermore, experts are outperformed by non-experts when a task included new contexts

and demanded to develop and apply non-routine solutions. Prior research showed that experts

were less flexible than novices in solving a domain-specific task for that new information or

new contexts had to be considered (Chi, 2006). For example, Marchant, Robinson, Anderson

and Schadewald (1991) showed that accountants with higher levels of domain-specific

knowledge were less successful in applying new information (about a tax law) that impeded the

application of standard deductions. In addition, Frensch and Sternberg (1989) presented that

expert bridge players were less able to apply a new version of the game than novice players.

Wiley (1998) concluded that these studies showed that highly proceduralized domain-specific

knowledge may be responsible that experts were less flexible to new contexts and information.

Initial idea for cognitive obfuscation. Prior research has shown that domain-specific

knowledge can enhance problem-solving processes on the one hand (e.g., Patel & Kaufman,

1995), but can also inhibit effective of problem-solving processes on the other hand (e.g.,

Wiley, 1998). There is no doubt that domain-specific knowledge is essential to solving

problems. Nevertheless, there exists some empirical evidence that experts also tend to fail due

to i) domain-specific knowledge that acts as a mental fixation impeding creative and novel

solutions (Wiley, 1998) or ii) an inflexibility to adapt their strategies accordingly to new

information or contexts (e.g., Marchant et al., 1991). Against this background, I suggest that

cognitive obfuscation that aims at posing challenges for HRE experts should include tasks and

problem settings that are unusual for the HRE domain. These non-routine obfuscation tasks

may include misleading aspects that may force HRE experts to develop non-routine problem-

solving strategies. I hypothesize that HRE experts may be less flexible in adapting their HRE

problem-solving strategies in an appropriate way and may be more focused on applying their

standard strategies. This may cause less efficient HRE problem-solving performance of HRE

experts. Ideas for future research on this obfuscation task are briefly presented in the chapter 7.

105

In summary, I suggest that cognitive obfuscation tasks should include cognitively challenging

tasks that impede both problem-solving processes determined by expertise and cognitive

abilities. In particular, I suggest that analysts whose superior HRE performance is based on

their highly-efficient working memory, could be disturbed by complex interrupting tasks with

high similarities to the primary HRE task that may lead to inefficient problem solving. These

concurrent and interrupting obfuscation tasks could activate similar cognitive structures that

were already needed to solve the primary HRE task and could overload the capacity of the

analysts’ working memory. As shown by prior research with a visuospatial task (Baddeley et

al., 1998; Baddeley, 2002), those concurrent obfuscation tasks could heavily overload the

capacity of the central executive of the working that may lead to an inefficient HRE problem-

solving performance.

Nevertheless, prior research has shown that more experienced individuals may mitigate

the disruptive effects of concurrent interrupting tasks (e.g., Li et al., 2012) by training and

experience. Thus, overloading the capacity of working memory may not be enough to impede

HRE problem solving by analysts with a profound level of domain-specific knowledge and

prior problem-solving experience. In a second step, I developed an initial idea how high-

knowledge individual may fail in achieving an efficient HRE solution. Prior research has shown

that when a problem asked for non-standard solution paths that lay outside their standard

problem-solving procedures, experts were less efficient in adapting and changing their

problem-solving strategies (e.g., overview in Chi, 2006). Thus, it may be assumable, that

cognitive obfuscation tasks that include sub-tasks that are unusual or new to the HRE domain

and cannot be solved by standard strategies, might force analysts to develop new strategies that

may raise the time spent on task and lead to inefficient HRE problem solving.

106

7 Limitations and Future Studies

While this thesis provides valuable insights into HRE problem-solving processes and relevant

cognitive factors such as working memory or expertise, it is not without certain limitations.

Based on these limitations, I will derive ideas for future research below.

The main study was limited by a small sample size of eight intermediates and one HRE

expert. The qualitative nature of this work and the application of an iterative open coding

scheme based on Grounded Theory (Strauss & Corbin, 1998) enabled the analysis of problem-

solving processes and strategies exhibited by the participants in greater detail. Nevertheless,

HRE problem-solving processes and correlations with cognitive factors could only be described

in a qualitative manner, and we could not draw any conclusions about whether working memory

or level of expertise had a significant influence on problem-solving performance in HRE. Thus,

I propose that future studies should quantify HRE problem-solving processes and the influences

of cognitive factors with larger sample sizes. Furthermore, a promising future investigation

would be to analyze the frequencies of reversing-specific problems and difficulties during

several HRE tasks, and whether these could be avoided by hardware reverse engineers as their

experience grows.

Furthermore, we circumvented the methodological problem that HRE experts were

unavailable for research, by the development of an HRE course that promoted HRE skill

acquisition in students with relevant backgrounds. Although our methodological approach

enabled us to investigate HRE problem solving, it also comes with some limitations. Although,

we successfully conducted our main study, we were only able to recruit a small number of

participants. In addition, all students came from the same university and also completed the

same HRE training. Although we aimed to avoid biases as much as possible (e.g., by not making

concrete solution scenarios or solution strategies for the HRE task available to students), it is

important that future studies recruit a more heterogeneous sample for analyzing human problem

solving in HRE. One idea, we are currently pursuing, is the development of an HRE simulation.

This simulates realistic sub-processes of HRE in a knowledge-free environment and thus may

enable the recruitment of a broader and larger sample (i.e., different scientific backgrounds;

different levels of cognitive abilities; different levels of HRE expertise). Our HRE simulation

will also enable us to quantify influences of cognitive abilities and expertise on HRE problem-

solving performance.

107

Furthermore, the HRE problem-solving model and qualitative analysis were based on a single

realistic HRE task. While, we believe that our model captures the most significant HRE

processes, it is still necessary to further explore reverse engineers’ problem-solving processes

in further HRE tasks, and to examine whether our model is valid for other HRE tasks (e.g.,

identification of an FSM in a netlist).

In addition, I developed initial ideas for cognitive obfuscation, which in turn should be

understood more as a first impulse and less as concrete suggestions. One idea describes how it

would be theoretically possible to confuse experts or persons with a high level of domain-

specific prior knowledge and to negatively influence their HRE problem-solving performance.

In this context, it would be valuable if future studies could recruit more HRE experts in order

to analyze their problem-solving processes and to investigate, which problem-solving strategies

experts typically apply. Furthermore, it would be valuable to explore, if HRE experts would be

able to adjust their strategies to uncommon or changing obfuscation tasks. A second idea was

to develop obfuscation tasks that may overload the capacity of the working memory of analysts.

Prior research suggested that concurrent tasks with high similarity to the primary task, may

demand the same cognitive structures and, thus, raise the cognitive effort (e.g., Li et al., 2012;

Baddeley et al., 1998). Accordingly, it would be interesting to conduct future studies that

quantify such a disruptive effect of a concurrent task on the analysts’ working memory and to

compare the effectiveness of such interruptive obfuscation tasks. Furthermore, the development

of obfuscation tasks that could both overload working memory and confuse experts would be

an interesting task of future research.

108

8 Conclusion

Prior to our research, little prior work existed that investigated the underlying human factors in

HRE. To address this research gap and generate new insights in this field, I pursued an

overarching research goal in my dissertation: exploring problem-solving processes in HRE.

Two sub-goals for my dissertation were derived from existing psychological literature on

human problem solving. First, I aimed to investigate a potential correlation between HRE

problem solving and the level of expertise. Second, I also focused on whether there was a

correlation between cognitive abilities (e.g., intelligence or subfactors of intelligence) and HRE

problem solving. In conclusion, our research contributed to both the unexplored problem-

solving processes in HRE and the correlation of HRE problem solving to cognitive abilities and

expertise. In the following, I will summarize our main findings and outline my conclusions.

In order to conduct our main study on HRE problem solving, we first had to circumvent

a methodological problem. The methodological problem was that HRE experts were not

available for research. As a necessary step, we had to develop an HRE course that promoted

the acquisition of HRE skills in students with relevant backgrounds in cyber security. In order

to achieve this, we first derived guidelines from existing psychological literature that served as

the basis for course development. In an evaluation, we were able to show that the HRE course

appeared to promote the acquisition of HRE skills and, consequently, qualified students as

participants in our main study.

In order to accomplish the overarching research goal, we conducted an empirical study

with eight intermediates and one HRE expert who were asked to solve a realistic HRE task. In

order to analyze HRE problem-solving processes, we used an iterative open coding scheme

based on Grounded Theory (Strauss & Corbin, 1998) that is known as a well-established

methodological approach from the social sciences. Our analysis included 103 unique open

codes that were assigned to the problem solving of each participant. Based on the iterative open

coding procedure, we developed a detailed hierarchical HRE problem-solving model that

comprised the participants’ problem-solving processes during HRE. In order to generate in-

depth insights into applied problem-solving strategies and their efficiency, we included solution

times in our analysis. Our results suggested that two intermediates solved the HRE task by

applying different problem-solving strategies than the HRE expert (and each other), but with

comparable quickness. Furthermore, we found that some problem-solving strategies were more

efficient and others less, and that none of the observed strategies could be described as the

109

single best for the HRE task. Additionally, we found that participants with higher scores in the

intelligence sub-factor working memory tended to achieve faster solutions than participants

with lower working-memory scores.

Based on our findings, I drew two main conclusions. First, I assumed that HRE problem

solving may be a function of both expertise and cognitive abilities. Our findings were in line

with prior research on expertise and problem solving. The HRE expert’s superior performance

was based on efficient problem categorization and representation that influenced the selection

of suitable problem-solving strategies. Furthermore, our findings were in line with the expert-

performance approach (Ericsson & Kintsch, 1995), suggesting that non-experts can compensate

a lack of domain-specific knowledge and problem-solving experience with their cognitive

abilities. Against this background, I assumed that both high-performing HRE intermediates (P8,

P3) achieved time-efficient solutions due to efficient information processing systems and

working memory. I outlined explanations on how an efficient working memory may have

supported the analysts in achieving efficient solutions (e.g., simultaneously storing and

manipulating netlist information without losing the golden threat of HRE; inhibition of

irrelevant netlist components). In this context, I concluded that HRE problems may involve

aspects of both simple and complex problems. Although HRE and simple problems have several

core aspects in common (e.g., unambiguous initial state; the goal state; no dynamics), the huge

amount of information pertaining to non-transparent, highly interconnected components that

must be processed and analyzed, creates a challenge that places HRE squarely outside of the

realm of simple problems as typically defined and constructed. These characteristics add

another layer to HRE problems and thus places them between simple problems and complex

problems.

Second, our results were aligned with the considerations by Lee and Johnson-Laird

(2013) who suggested that reverse engineering of Boolean systems may be a specific but so far

poorly understood type of human problem solving. In this context, I discussed similarities and

differences between our findings on HRE problem solving and the results by Lee and Johnson-

Laird (2013) on strategies and difficulties during reverse engineering of Boolean systems. For

example, we did not find any main strategies in solving the HRE task, but rather individual

approaches. However, we agree with Lee's assumption that the difficulty in HRE, like the

difficulty in reverse engineering of Boolean systems, could be determined by the number of

netlist components and their dependencies.

110

As the focus of my dissertation lay on the negative and malicious consequences of HRE (i.e.,

IP theft), I developed initial ideas for cognitive obfuscation that were based on one of my main

conclusions that HRE may be a function of both cognitive abilities and expertise. Based on this

conclusion, I suggested that cognitive obfuscation tasks should combine cognitively

challenging tasks that impede problem-solving processes based on both the cognitive abilities

and on expertise. For example, I presented initial considerations on how to impede the support

by cognitive abilities, such as the working memory, during HRE. Therefore, I referred to

existing psychological and HCI literature on disruptive effects of similar tasks and interruptions

(e.g., Li et al., 2012) that could lead to an overload of hardware reverse engineers’ working

memory. Furthermore, I also developed ideas on how to impede analysts’ HRE problem solving

that was based on their well-structured domain-specific knowledge and thus, may enable them

to circumvent “normal” limits of the working memory (based on long-term working memory

as suggested by Ericsson and Kintsch, 1995). Therefore, I referred to prior findings that

suggested circumstances and task characteristics through which experts and high-knowledge

individuals may be negatively affected in solving the HRE problem efficiently (e.g., Chi, 2006).

My presented ideas on cognitive obfuscation should be understood as an impulse for further

research. First, it is essential to investigate whether cognitive abilities and expertise influence

problem-solving performance in HRE. If future research can successfully quantify this

influence, further consideration can be made on how obfuscation tasks might be designed in

order to impede problem-solving processes determined by both cognitive abilities and

expertise.

Overall, the presented research built a bridge between two disciplines – cognitive

psychology and hardware security. By merging both worlds and overcoming disciplinary

boundaries, it was possible to achieve the established research goals and generate a deeper

understanding of problem-solving processes in HRE. Besides this point, the research also

presented an interesting change of perspective in HCI research. In contrast to the common goal

of HCI research that is to improve the application and work with certain technologies for

specific user groups, we aim to apply our knowledge of problem-solving processes in HRE to

impede the analysis of a gate-level netlist.

111

9 Appendix

9.1 References

Abdel-Hamid, A. T., Tahar, S., & Aboulhamid, E. M. (2003). IP watermarking techniques:

Survey and comparison. The 3rd IEEE International Workshop on System-on-Chip for

Real-Time Applications, 2003. Proceedings. (pp. 60-65). IEEE.

Acar, Y., Stransky, C., Wermke, D., Mazurek, M. L., & Fahl, S. (2017). Security developer

studies with github users: Exploring a convenience sample. Thirteenth Symposium on

Usable Privacy and Security ({SOUPS} 2017), (pp. 81-95).

Ackerman, P. L. (1987). Individual differences in skill learning: An integration of psychometric

and information processing perspectives. Psychological bulletin, 102(1), 3-27.

Adelson, B. (1981). Problem solving and the development of abstract categories in

programming languages. Memory & cognition, 9(4), 422-433.

Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple

representations. Learning and instruction, 16(3), 183-198.

Ainsworth, S. (2014). 20—The Multiple Representation Principle in Multimedia Learning. The

Cambridge handbook of multimedia learning, 464.

Airey, J., & Linder, C. (2009). A disciplinary discourse perspective on university science

learning: achieving fluency in a critical constellation of modes. Journal of Research in

Science Teaching, 27-49.

Albartus, N., Hoffmann, M., Temme, S., Azriel, L., & Paar, C. (2020). DANA Universal

Dataflow Analysis for Gate-Level Netlist Reverse Engineering. IACR Transactions on

Cryptographic Hardware and Embedded Systems, (pp. 309-336).

Alexander, P. A. (2003). Can we get there from? Educational Researcher, 32(8), 3-4.

Altmann, E. M., & Trafton, J. G. (2002). Memory for goals: An activation‐based model.

Cognitive science, 26(1), 39-83.

Ambrose, S. A., Bridges, M. W., DiPietro, M., Lovett, M. C., & Norman, M. K. (2010). How

learning works: Seven research-based principles for smart teaching. John Wiley &

Sons.

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological review, 89(4), 369.

Anderson, J. R. (1987). Skill acquisition: Compilation of weak-method problem solutions. .

Psychological Review, 94, 192-210.

Anderson, J. R. (1993). Rules of mind. Hillsdale, NJ: Erlbaum.

Anderson, J. R., & Lebiere, C. (1998). Atomic components of thought. Mahwah, NJ: Erlbaum.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An

integrated theory of the mind. Psychological Review, 111, 1036-1060.

112

Azriel, L., Ginosar, R., & Mendelson, A. (2019). SoK: An Overview of Algorithmic Methods

in IC Reverse Engineering. Proceedings of the 3rd ACM Workshop on Attacks and

Solutions in Hardware Security Workshop, (pp. 65-74).

Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559.

Baddeley, A. (2012). Working memory: theories, models, and controversies. Annual review of

psychology, 63, 1-29.

Baddeley, A. D. (2000). The episodic buffer: a new component of working memory? Trends in

cognitive sciences, 4(11), 417-423.

Baddeley, A. D. (2002). Is working memory still working? European psychologist, 7(2), 85.

Baddeley, A. D. (2003). Working memory and language: An overview. Journal of

communication disorders, 36(3), 189-208.

Baddeley, A. D. (2012). Working memory: theories, models, and controversies. Annual review

of psychology, 63, 1-29.

Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of learning and motivation,

8, 47-89.

Baddeley, A. D., & Hitch, G. J. (1994). Developments in the concept of working memory.

Neuropsychology, 8(4), 485.

Baddeley, A., Emslie, H., Kolodny, J., & Duncan, J. (1998). Random generation and the

executive control of working memory. Quarterly Journal of Experimental Psychology,

51A, 819-852.

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., & Yang, K.

(2001). On the (Im)possibility of Obfuscating Programs. Annual International

Cryptology Conference (pp. 1-18). Springer.

Becker, G. T., Regazzoni, F., Paar, C., & Burleson, W. P. (2013). Stealthy dopant-level

hardware trojans. International Conference on Cryptographic Hardware and

Embedded Systems (pp. 197-214). Springer, Berlin, Heidelberg.

Becker, S., Wiesen, C., Albartus, N., Rummel, N., & Paar, C. (2020). An Exploratory Study of

Hardware Reverse Engineering - Technical and Cognitive Processes. Proceedings of

the Sixteenth Symposium on Usable Privacy and Security ({SOUPS} 2020) (pp. 285--

300). Virtual Conference: USENIX Association.

Bhunia, S., Hsiao, M. S., Banga, M., & Narasimhan, S. (2014). Hardware Trojan attacks: Threat

analysis and countermeasures. Proceedings of the IEEE, 102(8), 1229-1247.

Bilalić, M., McLeod, P., & Gobet, F. (2007). Does chess need intelligence?—A study with

young chess players. Intelligence, 35(5), 457-470.

Bratfisch, O., Borg, G., & Dornic, S. (1972). Perceived Item-difficulty in Three Tests of

Intellectual Performance Capacity. University of Stockholm, Reports from the Institute

of Applied Psychology. Eric.

Brehmer, B. (1992). Dynamic decision making: Human control of complex systems. Acta

Psychologica, 81, 211-241.

113

Cades, D. M., Boehm-Davis, D. A., Trafton, J. G., & Monk, C. A. (2007). Does the difficulty

of an interruption affect our ability to resume? Proceedings of the human factors and

ergonomics society annual meeting. 51, pp. 234-238. Sage CA: Los Angeles: CA:

SAGE Publications.

Cattell, R. B. (1987). Intelligence: Its structure, growth and action. Elsevier.

Ceccato, M., Di Penta, M., Falcarin, P., Ricca, F., Torchiano, M., & Tonella, P. (2014). A family

of experiments to assess the effectiveness and efficiency of source code obfuscation

techniques. Empirical Software Engineering, 1040-1074.

Ceccato, M., Di Penta, M., Nagra, J., Falcarin, P., Ricca, F., Torchiano, M., & Tonella, P.

(2009). The effectiveness of source code obfuscation: An experimental assessment.

2009 IEEE 17th International Conference on Program Comprehension (pp. 178-187).

IEEE.

Cellier, J., & Eyrolle, H. (1992). Interference between switched tasks. Ergonomics, 35, 25-36.

Chair for Embedded Security. (2019). Retrieved 03 23, 2021, from GitHub:

https://github.com/emsec/hal

Chakraborty, R. S., & Bhunia, S. (2009). HARPOON: an obfuscation-based SoC design

methodology for hardware protection. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 28(10), 1493-1502.

Charmaz, K., & Belgrave, L. L. (2007). Grounded theory. (W. O. Library, Ed.) The Blackwell

encyclopedia of sociology.

Charness, N., & Tuffiash, M. (2008). The role of expertise research and human factors in

capturing, explaining, and producing superior performance. Human factors, 50(3), 427-

432.

Chase, W. G., & Simon, H. A. (1973a). The mind's eye in chess. In W. G. Chass, Visual

Information Processing (pp. 215-281). New York: Academic Press.

Chase, W. G., & Simon, H. A. (1973b). Perception in Chess. Cognitive Psychology, 4(1), 55-

81.

Chen, S. (2019, Juli 11). Could Huawei be using Trojan circuits to help Beijing spy on the US?

Retrieved October 13, 2020, from South China Morning Post:

https://www.techinasia.com/huawei-trojan-circuits-beijing-spy

Chi, M. T. (2006). Two approaches to the study of experts’ characteristics. In K. A. Ericsson,

N. Charness, P. J. Feltovich, & R. R. Hoffman, The Cambridge Handbook of Expertise

and Expert Performance (pp. 21-30). New York: Cambridge University Press.

Chi, M. T., & Ohlsson, S. (2005). Complex declarative learning. In K. J. Holyoak, & R. G.

Morrison, The Cambridge Handbook (pp. 371-399). Cambridge: Cambridge.

Chi, M. T., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations:

How students study and use examples in learning to solve problems. Cognitive science,

13(2), 145-182.

114

Chi, M. T., Feltovich, P. J., & Glaser, R. (1981a). Categorization and representation of physics

problems by experts and novices. Cognitive science, 5(2), 121-152.

Chi, M. T., Glaser, R., & Rees, E. (1981b). Expertise in problem solving. Pittsburgh Univ PA

Learning Research and Development Center.

Chisholm, G. H., Eckmann, S. T., Lain, C. M., & Veroff, R. L. (1999). Understanding

Integrated Circuits. IEEE Design & Test of Computers, 16(2), 26-37.

Cowan, N. (2005). Working Memory Capacity (Vol. 1). New York: Psychology Press.

Crandall, B., & Calderwood, R. (1989). Clinical assessment skills of experienced neonatal

intensive care nurses. Final report, Klein Associates Inc., OH. Prepared under contract,

1, R43.

Crane, C. (2021, February 17). Re-Hashed: 27 Surprising IoT Statistics You Don’t Already

Know. Retrieved 03 01, 2021, from https://www.thesslstore.com/blog/20-surprising-

iot-statistics-you-dont-already-know/

Cutrell, E., Czerwinski, M., & Horvitz, E. (2001). Notification, disruption and memory: Effects

of messaging interruptions on memory and performance. Human-Computer

Interaction–Interact ’01, 263-269.

Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and

reading. Journal of Verbal Learning and Verbal Behavior, 19, 450-433.

De Groot, A. D. (1978). Thought and choice in chess (Vol. 4). Mouton De Gruyter.

De Jong, T., Ainsworth, S., Dobson, M., van der Hulst, A., Levonen, J., Reimann, P., . . . Swaak,

J. (1998). Acquiring knowledge in science and mathematics: the use of multiple

representations in technology based learning environments. Learning with multiple

representations, 9-40.

Deary, I. J. (2001). Human intelligence differences: Towards a combined experimental-

differential approach. Trends in cognitive sciences, 8(4), 164-170.

Delaney, P. F. (2018). The Role of Long-Term Working Memory and Template Theory in

Contemporary Expertise Research. Journal of Expertise, 1(3), 155-161.

Diamond, A. (2013). Executive functions. Annual review of psychology, 64, 135-168.

Ding, Z., Wu, Q., Zhang, Y., & Zhu, L. (2013). Deriving an NCD file from an FPGA bitstream:

Methodology, architecture and evaluation. Microprocessors and Microsystems, 37(3),

299-312.

Dörner, D. (1980). On the difficulties people have in dealing with complexity. Simulation &

Games, 11(1), 87-106.

Dörner, D., & Funke, J. (2017). Complex Problem Solving: What It Is and What It Is Not.

Frontiers in Psychology, 8, 1153.

Dougherty, D. S., & Drumheller, K. (2006). Sensemaking and emotions in organizations:

Accounting for emotions in a rational (ized) context. Communication Studies, 57(2),

215-238.

115

Edwards, B. M., & Gronlund, S. D. (1998). Task interruption and its effects on memory.

Memory, 6(6), 665-687.

Eilam, E. (2011). Reversing: secrets of reverse engineering. John Wiley & Sons.

Ender, M., Moradi, A., & Paar, C. (2020). The unpatchable silicon: A full break of the bitstream

encryption of xilinx 7-series fpgas. 29th {USENIX} Security Symposium ({USENIX}

Security 20), (pp. 1803-1819).

Ericsson, K. A. (2014). The road to excellence: The acquisition of expert performance in the

arts and sciences, sports, and games. Psychology Press.

Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological review,

102(2), 211.

Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in

the acquisition of expert performance. Psychological review, 100(3), 363.

Fischer, A., Greiff, S., & Funke, J. (2011). The Process of Solving Complex Problems. Journal

of Problem Solving, 4(1), 19--42.

Fitts, P. M., & Posner, M. I. (1967). Human performance.

Frensch, P. A., & Sternberg, R. J. (1989). Expertise and intelligent thinking: When is it worse

to know better? In R. J. Sternberg, Advances in the psychology of human intelligence

(pp. 157-188). Hillsdale, NJ: Erlbaum.

Frydman, M., & Lynn, R. (1992). The general intelligence and spatial abilities of gifted young

Belgian chess players. British journal of Psychology, 83(2), 233-235.

Funke, J. (2003). Problemlösendes Denken. Kohlhammer Verlag.

Funke, J. (2012). Complex problem solving. Encyclopedia of the Sciences of Learning (682-

685). Heidelberg: Springer.

Funke, J., & Frensch, P. A. (2007). Complex problem solving: The European perspective — 10

years after. In D. H. Jonassen, Learning to solve complex scientific problems. Lawrence

Erlbaum Associates.

Funke, J., Fischer, A., & Holt, D. V. (2018). Competencies for complexity: problem solving in

the twenty-first century. In E. Care, P. Griffin, & M. Wilson, Assessment and teaching

of 21st century skills (1st ed. 2018 Edition ed., pp. 41-53). Springer.

Fyrbiak, M., Strauss, S., Kison, C., Wallat, S., Elson, M., Rummel, N., & Paar, C. (2017).

Hardware Reverse Engineering: Overview and Open Challenges. 2017 IEEE 2nd

International Verification and Security Workshop (pp. 88--94). Thessaloniki: IEEE.

Fyrbiak, M., Wallat, S., Déchelotte, J., Albartus, N., Böcker, S., Tessier, R., & Paar, C. (2018b).

On the difficulty of fsm-based hardware obfuscation. IACR Transactions on

Cryptographic Hardware and Embedded Systems, (pp. 293-330).

Fyrbiak, M., Wallat, S., Swierczynski, P., Hoffmann, M., Hoppach, S., Wilhelm, M., & ... Paar,

C. (2018a). HAL—The missing piece of the puzzle for hardware reverse engineering,

Trojan detection and insertion. IEEE Transactions on Dependable and Secure

Computing, 16(3), 498-510.

116

Galton, F. (1870). Hereditary genius: An inquiry into its laws and consequences. D. Appleton.

Gandotra, E., Bansal, D., & Sofat, S. (2014). Malware analysis and classification: A survey. .

Journal of Information Security, 5, 56-64.

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive

science, 7(2), 155-170.

Gibson, E. J. (1969). Principles of perceptual learning and development.

Gibson, E. J. (2000). Perceptual learning in development: Some basic concepts. Ecological

Psychology, 12(4), 295-302.

Gilbert, J. K. (2005). Visualization: A metacognitive skill in science and science education.

Visualization in science education, 9-27.

Gilbert, J. K. (2008). Visualization: An emergent field of practice and enquiry in science

education. Visualization: Theory and practice in science education, 3-24.

Gillie, T., & Broadbent, D. E. (1989). What makes interruptions disruptive? A study of length,

similarity, and complexity. Psychological Research, 50, 243-250.

Gobet, F. (2005). Chunking models of expertise: Implications for education. Applied Cognitive

Psychology, 19(2), 183-204.

Gobet, F., & Simon, H. A. (1996). Templates in chess memory: A mechanism for recalling

several boards. Cognitive psychology, 31(1), 1-40.

Gobet, F., & Simon, H. A. (1996). Templates in chess memory: A mechanism for recalling

several boards. . Cognitive psychology, 31(1), 1-40.

Goldstone, R. (1997). Perceptual learning. San Diego, CA: Academic Press.

Gomulkiewicz, R. W., & Williamson, M. L. (1996). The Problem of Reverse Engineering.

Gonzalez, C., Thomas, R. P., & Vanyukov, P. (2005). The relationships between cognitive

ability and dynamic decision making. Intelligence, 33, 169-186.

Gordon, S. (2000). Virus writers: the end of the innocence? 10th Annual Virus Bulletin

Conference (VB2000). Orlando, FL.

Gottfredson, L. S. (1997). Mainstream Science on Intelligence: An Editorial With 52

Signatories, History, and Bibliography . Intelligence , 24(1), 13-23.

Grabner, R. H., Neubauer, A. C., & Stern, E. (2006). Superior performance and neural

efficiency: The impact of intelligence and expertise. Brain research bulletin, 422-439.

Groen, G. J., & Patel, V. L. (1988). The relationship between comprehension and reasoning in

medical expertise. In M. T. Chi, R. Glaser, & M. J. Farr, The nature of expertise (pp.

287–310). Lawrence Erlbaum Associates, Inc. .

Guin, U., DiMase, D., & Tehranipoor, M. (2014b). Counterfeit integrated circuits: Detection,

avoidance, and the challenges ahead. Journal of Electronic Testing, 30(1), 9-23.

117

Guin, U., Huang, K., DiMase, D., Carulli, J. M., Tehranipoor, M., & Makris, Y. (2014a).

Counterfeit integrated circuits: A rising threat in the global semiconductor supply chain.

102(8), 1207-1228.

Hambrick, D. Z., Burgoyne, A. P., & Oswald, F. L. (2019). Domain-general models of

expertise: The role of cognitive ability. In P. Ward, J. M. Schraagen, J. Gore, & E. Roth,

The Oxford Handbook of Expertise. Oxford University Press.

Hansen, M. C., Yalcin, H., & Hayes, J. P. (1999). Unveiling the ISCAS-85 benchmarks: A case

study in reverse engineering. IEEE Design & Test of Computers, 16(3), 72-80.

Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and

a new view. Psychology of learning and motivation, 22, 193-225.

Jang-Jaccard, J., & Nepal, S. (2014). A survey of emerging threats in cybersecurity. Journal of

Computer and System Sciences, 80(5), 973-993.

Jeffries, R., Turner, A. A., Polson, P. G., & Atwood, M. E. (1981). The processes involved in

designing software. Cognitive skills and their acquisition, 255, 283.

Joslyn, S., & Hunt, E. (1998). Evaluating individual differences in response to time-pressure.

Journal of Experimental Psychology: Applied, 16-43.

Kalyuga, S., & Singh, A. M. (2015). Rethinking the boundaries of cognitive load theory in

complex learning. Educational Psychology Review, 1-22.

Kellman, P. J., & Massey, C. M. (2013). Perceptual learning, cognition, and expertise.

Psychology of learning and motivation, 58, 117-165.

Kilpatrick, J., Swafford, J., & Findell, B. (2001). The Strands of Mathematical Proficiency.

National Research Council. In Adding It Up: Helping Children Learn Mathematics. (pp.

115-155). Washington, DC: The National Academies Press.

Kluwe, R. H., Misiak, C., & Haider, H. (1991). The control of complex systems and

performance in intelligence tests. In H. Rowe, Intelligence: reconceptualization and

measurement (pp. 227-244). Hillsdale: Lawrence Erlbaum.

Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., . . . al., e. (2019). Spectre

attacks: Exploiting speculative execution. 2019 IEEE Symposium on Security and

Privacy (SP) (pp. 1-19). IEEE.

Koedinger, K. R., Corbett, A. T., & Perfetti, C. (2012). The Knowledge‐Learning‐Instruction

framework: Bridging the science‐practice chasm to enhance robust student learning.

Cognitive science, 36(5), 757-798.

Kozma, R., & Russell, J. (2005). Students becoming chemists: developing representationl

competence. In J. Gilbert, Visualization in science education (pp. 121-145). Dordrecht,

Netherlands: Springer.

Kozma, R., Chin, E., Russell, J., & Marx, N. (2000). The roles of representations and tools in

the chemistry laboratory and their implications for chemistry learning. The Journal of

the Learning Sciences, 9(2), 105-143.

118

Kyllonen, P. C., & Woltz, D. J. (1989). Role of cognitive factors in the acquisition of cognitive

skill. Abilities, motivation, and methodology: The Minnesota symposium on learning

and individual differences (pp. 239-280). Hillsdale, NJ: Erlbaum.

Larkin, J. H., McDermott, J., Simon, D. P., & Simon, H. A. (1980a). Models of competence in

solving physics problems. Cognitive science, 4(4), 317-345.

Larkin, J., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice performance

in solving physics problems. Science, 208(4450), 1335-1342.

Lee, N. L., & Johnson-Laird, P. (2013). A theory of reverse engineering and its application to

Boolean systems. Journal of Cognitive Psychology, 25(4), 365-389.

Lemaire, P., & Siegler, R. S. (1995). Four aspects of strategic change: Contributions to

children’s learning of multiplication. Journal of Experimental Psychology: General,

124, 83-97.

Lesgold, A., Rubinson, H., Feltovich, P., Glaser, R., Klopfer, D., & Wang, Y. (1988). Expertise

in a complex skill: Diagnosing x-ray pictures. In M. T. Chi, R. Glaser, & M. J. Farr, The

nature of expertise (pp. 311–342). Lawrence Erlbaum Associates, Inc. .

Lexico. (2021). Lexico.com. Retrieved 02 04, 2021, from

https://www.lexico.com/definition/expert

Li, S. Y., Magrabi, F., & Coiera, E. (2012). A systematic review of the psychological literature

on interruption and its patient safety implications. Journal of the American Medical

Informatics Association, 19(1), 6-12.

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., . . . al., e. (2018). Meltdown:

Reading kernel memory from user space. 27th {USENIX} Security Symposium

({USENIX} Security (pp. 973-990). USENIX.

Litzinger, T., Lattuca, L. R., Hadgraft, R., & Newstetter, W. (2011). Engineering education and

the development of expertise. . Journal of Engineering Education, 100(1), 123-150.

Lombard, M., Snyder-Duch, J., & Bracken, C. C. (2002). Content analysis in mass

communication: Assessment and reporting of intercoder reliability. Human

communication research, 28(4), 587-604.

MacAskill, E., & Dance, G. (2013, November 1). NSA Files: Decoded. What the revelations

mean for you. Retrieved February 26, 2020, from The Guardian:

https://www.theguardian.com/world/interactive/2013/nov/01/snowden-nsa-files-

surveillance-revelations-decoded

Marchant, G., Robinson, J., Anderson, U., & Schadewald, M. (1991). Analogical transfer and

expertise in legal reasoning. Organizational Behavior and Human Decision Making, 48,

272-290.

Marshall, S. P. (1995). Schemas in problem solving. Cambridge University Press.

Mayer, H., Hazotte, C., Djaghloul, Y., Latour, T., Sonnleitner, P., Brunner, M., & Martin, R.

(2013). Using complex problem solving simulations for general cognitive ability

assessment: The Genetics Lab framework. International Journal of Information Science

and Intelligent System, 2(4), 71-88.

119

Mayer, R. E. (1992). Thinking, problem solving, cognition (Vol. 2nd ed.). WH Freeman/Times

Books/Henry Holt & Co.

Mayer, R. E., & Feldon, D. (2014). Five common but questionable principles of multimedia

learning. In R. E. Mayer, The Cambridge handbook of multimedia learning (pp. 97-

116). New York, NY: Cambridge University Press.

Mayer, R. E., & Wittrock, M. C. (2006). Problem Solving. In P. A. Alexander, & P. H. Winne,

Handbook of Educational Psychology (pp. 287-303). Mahwah: NJ: Lawrence Erlbaum.

McElhaney, K. W., Chang, H. Y., Chiu, J. L., & Linn, M. C. (2015). Evidence for effective

uses of dynamic visualisations in science curriculum materials. Studies in Science

Education, 51(1), 49-85.

McKeithen, K. B., Reitman, J. S., Reuter, H. H., & Hirtle, S. C. (1981). Knowledge organization

and skill differences in computer programmers. Cognitive Psychology, 13, 307-325.

Mednick, S. (1962). The associative basis of the creative process. Psychological Review, 69,

220-232.

Michaels, S., O’Connor, C., & Resnick, L. B. (2008). Deliberative discourse idealized and

realized: Accountable talk in the classroom and in civic life. Studies in philosophy and

education, 27(4), 283-297.

Michalchik, V., Rosenquist, A., Kozma, R., Kreikemeier, P., & Schank, P. (2008).

Representational resources for constructing shared understandings in the high school

chemistry classroom. Visualization: Theory and practice in science education, 233-282.

Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity

for processing information. Psychological Review, 63(2), 81-97.

Mizoguchi, K., Yuzurihara, M., Ishige, A., Sasaki, H., Chui, D. H., & Tabira, T. (2000). Chronic

stress induces impairment of spatial working memory because of prefrontal

dopaminergic dysfunction. Journal of Neuroscience, 20(4), 1568-1574.

Monk, C. A., Trafton, J. G., & Boehm-Davis, D. A. (2008). The effect of interruption duration

and demand on resuming suspended goals. Journal of experimental psychology:

Applied, 14(4), 299.

Moradi, A., Barenghi, A., Kasper, T., & Paar, C. (2011). On the vulnerability of FPGA

bitstream encryption against power analysis attacks: Extracting keys from Xilinx

Virtex-II FPGAs., (pp. 111-124). Proceedings of the 18th ACM conference on

Computer and communications security.

Moran, T. P. (2016). Anxiety and working memory capacity: A meta-analysis and narrative

review. Psychological Bulletin, 142(8), 831.

Moss, J., Kotovsky, K., & Cagan, J. (2006). The role of functionality in the mental

representations of engineering students: Some differences in the early stages of

expertise. Cognitive Science, 30(1), 65-93.

Naiakshina, A., Danilova, A., Gerlitz, E., & Smith, M. (2020). On conducting security

developer studies with cs students: Examining a password-storage study with cs

120

students, freelancers, and company developers. Proceedings of the 2020 CHI

Conference on Human Factors in Computing Systems , (pp. 1-13).

Naiakshina, A., Danilova, A., Gerlitz, E., von Zezschwitz, E., & Smith, M. (2019). " If you

want, I can store the encrypted password" A Password-Storage Field Study with

Freelance Developers. Proceedings of the 2019 CHI Conference on Human Factors in

Computing Systems, (pp. 1-12).

Naiakshina, A., Danilova, A., Tiefenau, C., & Smith, M. (2018). Deception task design in

developer password studies: Exploring a student sample. Fourteenth Symposium on

Usable Privacy and Security ({SOUPS} 2018), (pp. 297-313).

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.

Newell, A., & Simon, H. A. (1972). Human problem solving (Vol. 104, No. 9). Englewood

Cliffs: NJ: Prentice-Hall.

Nokes, T. J., Schunn, C. D., & Chi, M. (2010). Problem solving and human expertise. In

International encyclopedia of education (pp. 265-272). Elsevier Ltd.

Norman, G. R., Brooks, L. R., & Allen, S. W. (1989). Recall by expert medical practitioners

and novices as a record of processing attention. Journal of Experimental Psychology:

Learning, Memory, and Cognition, 15, 1166-1174.

Note, J. B., & Rannaud, É. (2008). From the bitstream to the netlist. FPGA, Vol. 8, 264-264.

Novick, L. R., & Bassok, M. (2005). Problem solving. In K. J. Holyoak, & R. G. Morrison, The

Cambridge handbook of thinking and reasoning (pp. 321-349). Cambridge: NY:

University Press.

Oulasvirta, A., & Saariluoma, P. (2004). Long-term working memory and interrupting

messages in human–computer interaction. Behaviour & Information Technology, 23(1),

53-64.

Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in

statistics: A cognitive-load approach. Journal of educational psychology, 84(4), 429.

Pashler, H., Bain, P. M., Bottge, B. A., Graesser, A., Koedinger, K., McDaniel, M., & Metcalfe,

J. (2007). Organizing Instruction and Study to Improve Student Learning. IES Practice

Guide. NCER 2007-2004. National Center for Education Research.

Patel, V. L., & Groen, G. J. (1986). Knowledge based solution strategies in medical reasoning.

Cognitive science, 10(1), 91-116.

Patel, V. L., & Kaufman, D. R. (1995). Clinical reasoning and biomedical knowledge:

implimplications for teaching. In J. Higgs, & M. Jones, Clinical reasoning in the health

professions (pp. 117-128). Oxford, UK: Butterworth-Heinemann Ltd.

Pecht, M., & Tiku, S. (2006). Bogus: electronic manufacturing and consumers confront a rising

tide of counterfeit electronics. IEEE spectrum, 43(5), 37-46.

Pintrich, P. R. (2003). A motivational science perspective on the role of student motivation in

learning and teaching contexts. . Journal of educational Psychology, 95(4), 667.

121

Putz-Osterloh, W. (1985). Selbstreflexionen, Testintelligenz und interindividuelle

Unterschiede bei der Bewältigung komplexer Probleme [Self-reflections, test

intelligence and interindividual differences in solving complex problems]. Sprache &

Kognition, 4, 203-216.

Qin, S., Hermans, E. J., van Marle, H. J., Luo, J., & Fernández, G. (2009). Acute psychological

stress reduces working memory-related activity in the dorsolateral prefrontal cortex. .

Biological psychiatry, 66(1), 25-32.

Quadir, S., Chen, J., Forte, D., Asadizanjani, N., Shahbazmohamadi, S., Wang, L., . . .

Tehranipoor, M. (2016). A Survey on Chip to System Reverse Engineering. ACM

Journal on Emerging Technologies in Computing Systems, 13(1), 6.

Rau, M. A. (2017). Conditions for the effectiveness of multiple visual representations in

enhancing STEM learning. Educational Psychology Review, 29(4), 717-761.

Raven, J. C., Raven, J. C., & De Lemos, M. (1958). Standard progressive matrices. London:

Lewis.

Reither, F. (1981). Thinking and acting in complex situations: A study of experts' behavior.

12(2), 125-140.

Reitman, W. R. (1965). Cognition and thought: an information processing approach.

Rekoff, M. G. (1985). On Reverse Engineering. IEEE Transactions on Systems, Man, and

Cybernetics, 244--252.

Resnick, L., & Glaser, R. (1975). Problem Solving and Intelligence. In L. Resnick, The nature

of intelligence. Hillsdale: Lawrence Erlbaum.

Rheinberg, F., Vollmeyer, R., & Burns, B. D. (2001). QCM: A questionnaire to assess current

motivation in learning situations. Diagnostica, 47(2), 57-66.

Richman, H. B., Gobet, F., Staszewski, J. J., & Simon, H. A. (1996). Perceptual and memory

processes in the acquisition of expert performance: The EPAM model. In K. A.

Ericsson, The road to excellence: The acquisition of expert performance in the arts and

sciences, sports, and games (pp. 167-187). Lawrence Erlbaum.

Rigas, G., & Brehmer, B. (1999). Mental processes in intelligence tests and dynamics decision

making tasks. In P. J. Juslin, & H. Montgomerry, Judgment and decision making: Neo-

Brunswikian and process-tracing approaches (pp. 45-65). Hillsdale: Lawrence

Erlbaum.

Rocke, A. J. (2010). Image and reality: Kekulé, Kopp, and the scientific imagination.

University of Chicago Press.

Rostami, M., Koushanfar, F., & Karri, R. (2014). A primer on hardware security: Models,

methods, and metrics. Proceedings of the IEEE, 102(8), 1283-1295.

Sasse, M. A., Brostoff, S., & Weirich, D. (2001). Transforming the ‘Weakest Link’—A Human-

Computer Interaction Approach for Usable and Effective Security. BT Technology

Journal, 13(3), 122-131.

122

Schmeck, A., Opfermann, M., Van Gog, T., Paas, F., & Leutner, D. (2015). Measuring

cognitive load with subjective rating scales during problem solving: differences

between immediate and delayed ratings. Instructional Science, 43(1), 93-114.

Schmid, M., Ziener, D., & Teich, J. (2008). Netlist-level IP protection by watermarking for

LUT-based FPGAs. 2008 International Conference on Field-Programmable

Technology (pp. 209-216). Taipei, Taiwan: IEEE.

Schmidt, F. L., & Hunter, J. (2004). General mental ability in the world of work: occupational

attainment and job performance. Journal of personality and social psychology, 86(1),

162-173.

Schneider, W. (1985). Training high-performance skills: Fallacies and guidelines. Human

factors, 27(3), 285-300.

Schnotz, W. (2014). Integrated Model of Text and Picture Comprehension. In R. E. Mayer, The

Cambridge handbook of multimedia learning (pp. 72-103). New York, NY: Cambridge

University Press.

Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple

representation. Learning and instruction, 13(2), 141-156.

Schraw, G., Dunkle, M. E., & Bendixen, L. D. (1995). Cognitive processes in well-defined and

ill-defined problem solving. Applied Cognitive Psychology, 9(6), 523-538.

Seufert, T. (2003). Supporting coherence formation in learning from multiple representations.

Learning and instruction, 13(2), 227-237.

Shakya, B., Tehranipoor, M. M., Bhunia, S., & Forte, D. (2017). Introduction to hardware

obfuscation: Motivation, methods and evaluation. Hardware Protection through

Obfuscation, 3-32.

Sherin, B. L. (2000). Meta-representation: An introduction. The Journal of Mathematical

Behavior, 19(4), 385-398.

Silver, E. A. (1979). Student perceptions of relatedness among verbal. Journal of Research in

Mathematics Education, 10, 195–210.

Sim, J. H., & Daniel, E. G. (2014). Sim, J. H., & Daniel, E. G. S. (2014). Representational

competence in chemistry: A comparison between students with different levels of

understanding of basic chemical concepts and chemical representations. Cogent

Education, 1(1).

Simon, D. P., & Simon, H. A. (1978). Individual differences in solving physics problems. In R.

S. Siegler, Children's thinking: What develops? (pp. 325–348). Lawrence Erlbaum

Associates, Inc. .

Simonton, D. K. (1999). Talent and its development: An emergenic and epigenetic model.

Psychological review, 106(3), 435.

Singer-Dudek, J., & Greer, R. D. (2005). A long-term analysis of the relationship between

fluency and the training and maintenance of complex math skills. The Psychological

Record, 55(3), 361-376.

123

Skinner, C. H., Fletcher, P. A., & Henington, C. (1996). Increasing learning rates by increasing

student response rates: A summary of research. School Psychology Quarterly, 11(4),

313.

Spearman, C. E. (1927). The abilities of man (Vol. 89). New York: Macmillan.

Stadler, M., Becker, N., Gödker, M., Leutner, D., & Greiff, S. (2015). Complex problem solving

and intelligence: A meta-analysis. Intelligence, 53, 92-101.

Stephanidis, C., Salvendy, G., Antona, M., Chen, J., Dong, J., Duffy, V., . . . Fu, L. (2019).

Seven HCI grand challenges. International Journal of Human--Computer Interaction,

35(14), 1229--1269.

Sternberg, R. J. (1982). Handbook of human intelligence. CUP Archive.

Sternberg, R. J., & Berg, C. A. (1986). Quantitative integration. Definition of intelligence: A

comparison of the 1921 and 1986 symposia. In R. J. Sternberg, & D. K. Detterman,

What is intelligence? (pp. 155-162). Norwood, NJ: Ablex.

Sternberg, R. J., & Frensch, P. A. (1992). On being an expert;Acost-benefit analysis. In R. R.

Hoffman, The psychology of expertise: Cognitive research and empirical AI (pp. 191-

203). New York: Springer Verlag.

Strauss, A. L., & Corbin, J. M. (1998). Basics of Qualitative Research : Techniques and

Procedures for Developing Grounded Theory. Sage Publications, Inc.

Subramanyan, P., Tsiskaridze, N., Li, W., Gascón, A., Tan, W. Y., Tiwari, A., & ... Malik, S.

(2014). Reverse engineering digital circuits using structural and functional analyses.

IEEE Transactions on Emerging Topics in Computing, 2(1), 63-80.

Süß, H. M., Kersting, M., & Oberauer, K. (1991). Intelligenz und Wissen als Prädiktoren für

Leistungen bei computersimulierten komplexen Problemen [Intelligence and

knowledge as predictors of success in computer simulated complex problems].

Diagnostica, 37, 334-352.

Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for problem

solving in learning algebra. Cognition and instruction, 2(1), 59-89.

Tarnovsky, C. (2019). Hack To Discover Weaknesses In A Series Of Smartcards. Retrieved 03

01, 2021, from https://www.youtube.com/watch?v=2td3-sWsiKg

Tenison, C., & Anderson, J. R. (2016). Modeling the distinct phases of skill acquisition. Journal

of Experimental Psychology: Learning, Memory, and Cognition, 42(5), 749.

Thomas, O. (2015). Advanced IC Reverse Engineering Techniques: In Depth Analysis Of A

Modern Smart Card. Retrieved 03 01, 2021, from

https://www.youtube.com/watch?v=YM5I8yR7yCw

Thurstone, L. L. (1938). Primary mental abilities (Vol. 119). Chicago: University of Chicago

Press.

Torrance, R., & James, D. (2009). The state-of-the-art in IC reverse engineering. International

Workshop on Cryptographic Hardware and Embedded Systems (pp. 363-381).

Springer, Berlin, Heidelberg.

124

Trafton, J. G., Altmann, E. M., Brock, D. P., & Mintz, F. E. (2003). Preparing to resume an

interrupted task: Effects of prospective goal encoding and retrospective rehearsal.

International Journal of Human-Computer Studies, 58(5), 583-603.

Voss, J. F., & Post, T. A. (1988). On the solving of ill-structured problems. In M. T. Chi, R.

Glaser, & M. J. Farr, The Nature of Expertise (pp. 261-285). NJ: Erlbaum.

Voss, J. F., Vesonder, G. T., & Spilich, G. J. (1980). Text generation and recall by high-

knowledge and low-knowledge individuals. Journal of verbal Learning and verbal

Behavior, 19(6), 651-667.

Votipka, D., Rabin, S., Micinski, K., Foster, J. S., & Mazurek, M. L. (2020). An Observational

Investigation of Reverse Engineers’ Processes. 29th {USENIX} Security Symposium

({USENIX} Security 20), (pp. 1875-1892).

Wallat, S., Albartus, N., Becker, S., Hoffmann, M., Ender, M., Fyrbiak, M., & ... Paar, C.

(2019). Highway to HAL: open-sourcing the first extendable gate-level netlist reverse

engineering framework. Proceedings of the 16th ACM International Conference on

Computing Frontiers, (pp. 392-397).

Wallat, S., Fyrbiak, M., Schlögel, M., & Paar, C. (2017). A look at the dark side of hardware

reverse engineering-a case study. 2017 IEEE 2nd International Verification and

Security Workshop (IVSW) (pp. 95-100). IEEE.

Wechsler, D. (2008). Wechsler adult intelligence scale–Fourth Edition (WAIS–IV). San

Antonio, TX: NCS Pearson, 22(498), 1.

Wenke, D., Frensch, P. A., & Funke, J. (2005). Complex problem solving and intelligence:

Empirical relation and causal direction. In R. J. Sternberg, & J. E. Pretz, Cognition and

intelligence: Identifying the mechanisms of the mind (pp. 160-187). Cambridge

University Press.

Wertsch, J. V., & Kazak, S. (2011). Saying more than you know in instructional settings.

Theories of learning and studies of instructional practice, 153-166.

Wertsch, J. V., & Kazak, S. (2011). Saying more than you know in instructional settings. In T.

Koschmann, Theories of learning and studies of instructional practice (pp. 153-166).

New York: Springer.

Weste, N. H., & Harris, D. (2015). CMOS VLSI design: a circuits and systems perspective. (P.

E. India., Ed.)

Wiesen, C., Albartus, N., Hoffmann, M., Becker, S., Wallat, S., Fyrbiak, M., Rummel, N., &

Paar, C. (2019a). Towards Cognitive Obfuscation: Impeding Hardware Reverse

Engineering Based on Psychological Insights. Proceedings of the 24th Asia and South

Pacific Design Automation Conference, 104-111.

Wiesen, C., Becker, S., Albartus, N., Paar, C., & Rummel, N. (2019b). Promoting the

Acquisition of Hardware Reverse Engineering Skills. 2019 IEEE Frontiers in Education

Conference (FIE) (pp. 1-9). Cincinnati (USA): IEEE.

Wiesen, C., Becker, S., Fyrbiak, M., Albartus, N., Elson, M., Rummel, N., & Paar, C. (2018).

Teaching Hardware Reverse Engineering: Educational Guidelines and Practical

125

Insights. 2018 IEEE International Conference on Teaching, Assessment, and Learning

for Engineering (pp. 438-445). Sydney, Australia: IEEE.

Wiley, J. (1998). Expertise as mental set: The effects of domain knowledge in creative problem

solving. Memory & cognition, 26(4), 716-730.

Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V., & Pennington, B. F. (2005). Validity

of the executive function theory of attention-deficit/hyperactivity disorder: a meta-

analytic review. Biological psychiatry, 57(11), 1336-1346.

Wineburg, S. (1998). Reading Abraham Lincoln: An expert/expert study in the interpretation

of historical texts. Cognitive science, 22(3), 319-346.

Wittmann, W. W., & Süß, H. M. (1999). Investigating the paths between working

memory,intelligence, knowledge, and complex problem-solving performances via

Brunswik symmetry. In R. D. Roberts, Learning and individual differences: Process,

trait, and content determinants (pp. 77-108). Washington, DC: American Psychological

Association.

Wüstenberg, S., Greiff, S., & Funke, J. (2012). Complex problem solving — More than

reasoning? Intelligence, 40, 1-14.

Xilinx, I. (2010, February). Spartan-6 FPGA Configurable Logic Block. Retrieved March 20,

2019, from https://www.xilinx.com/support/documentation/user_guides/ug384.pdf

Zacks, & Hasher. (2006). Aging and long-term memory: Deficits are not inevitable. In E.

Bialystock, & F. I. Craik, Lifespan Cognition: Mechanisms of Change (pp. 168-177).

New York: Oxford Univ. Press.

Zijlstra, F. R., Roe, R. A., Leonora, A. B., & Krediet, I. (1999). Temporal factors in mental

work: Effects of interrupted activities. Journal of Occupational and Organizational

Psychology, 72(2), 163-185.

126

9.2 Example Script

Appendix 1

Figure 9. Example script executed by Participant 8 while working on the HRE problem-solving

task.

9.3 Detailed Code Book

Appendix 2

Here, we list the final codebook used to annotate the content of each log file. The codebook is

divided into nine parts that reflect the nine sub-categories of our HRE problem-solving model

(see Figure 2). All 103 open codes are assigned to one corresponding sub-category. In the

following, we provide a short description for each open code.

127

Error Introduction.

• introduction of syntactical errors: Analyst introduced one or several syntactical errors

in the solution script (as indicated by a “SyntaxError” of the interpreter).

• introduction of repeated syntactical errors: Analyst repeatedly introduced the very

same syntactical error in the solution script.

• choice of inappropriate technical approaches: Analyst chose an inappropriate

programming approach to solve the problem at hand (e.g., wrong function).

• introduction of repeated semantic errors: Analyst repeatedly introduced the very same

semantic error in the solution script.

Troubleshooting.

• attempt to correct syntactical errors: Analyst unsuccessfully tried to correct one or

several existing syntactical errors in the solution script.

• successful correction of syntactical errors: Analyst successfully corrected one or

several existing syntactical errors in the solution script.

• attempt to correct semantic errors: Analyst unsuccessfully tried to correct one or several

existing semantic errors in the solution script.

• successful correction of semantic errors: Analyst successfully corrected one or several

existing semantic errors in the solution script.

• general debugging: Analyst attempted to locate a flaw in the solution script.

• attempt to fix persistent problems: Analyst located and attempted to correct parts of a

persistent error in the solution script.

• successful correction of persistent problems: Analyst understood and fully resolved a

persistent error in the solution script.

• workaround: Analyst located an issue and bypassed it to be able to continue working.

• attempt to correct a non-existent semantic error: Analyst assumed a semantic error and

attempted to correct it while no such error is in fact present in the solution script.

• hackfix: Analyst resolved a syntactical or semantic error by the use of an inefficient or

inappropriate but generally functional technique.

Test and Validation.

• targeted verification: Analyst checked a small, specific part of the algorithm for some

well-defined expected behavior or output.

128

• targeted evaluation: Analyst checked a small, specific part of the algorithm for basic

plausibility of its behavior or output.

• general evaluation: Analyst tested the behavior of a large section of the algorithm or of

the entire algorithm.

• manual netlist inspection for script validation: Analyst compared an insight gained from

the solution script against information obtained by inspecting parts of the netlist through

the graphical user interface.

• reliability test: Analyst verified that the algorithm repeatedly and consistently produces

the expected result (e. g., after restarting HAL and thus resetting any saved state).

• testing python constructs: Analyst tested functionality of the programming language.

• testing the hal api: Analyst tested functionality of the HAL scripting system (e. g.,

functions to access the netlist).

Code Adjustments.

• improve clarity of console output: Analyst made the console output more readable and

understandable (e. g., by using better formatting or removing unnecessary output).

• improve clarity of the code: Analyst made the solution script more readable (e. g., by

adding comments or including white spaces).

• cleaning up within the code: Analyst removed obsolete parts of the solution script (e.

g., temporary testing code).

• code simplification: Analyst removed not strictly needed parts from the solution script.

• code restructuring: Analyst reorganized or rewrote parts of the solution script to

improve its functional structure.

• code optimization for error avoidance: Analyst recognized and redesigned an error-

prone programming solution, or added error prevention or reporting mechanisms to the

solution script.

• restoration of a functional code state: Analyst rolled back one or several problematic

code changes to restore the last known-working version.

• reversion to previous code components: Analyst copied code from a previous version

of the solution script into the current version.

• introduction of redundant code: Analyst duplicated code with minimal changes,

unnecessarily enlarging the solution script.

• code artifact remains: Analyst left obsolete pieces of code in the solution script.

129

• deletion of actually needed code: Analyst removed code that other parts of the solution

script were dependent on.

• anticipatory documentation: Analyst added comments to the solution script as a means

of planning their next steps.

• explanatory documentation: Analyst added comments documenting the code.

• documentation of results: Analyst gathered information required to document their

findings (e. g., by printing specific results of the algorithm).

Inspection and Information Gathering.

• manual netlist exploration: Analyst navigated through parts of the netlist using the

graphical user interface of HAL.

• script-based netlist exploration: Analyst used the scripting functionality of HAL to

generate statistics or locate interesting parts of the netlist at hand.

• script-based search for gnd and vcc nets2: Analyst used the scripting functionality of

HAL to search for the Ground (gnd) and Voltage common collector (vcc) nets.

• script-based identification of the gnd gate: Analyst successfully located the GND gate

using the scripting functionality.

• script-based identification of the vcc gate: Analyst successfully located the VCC gate

using the scripting functionality.

• script-based inspection of the gnd and vcc gates: Analyst used the scripting

functionality to access information about the GND and VCC gates.

• script-based inspection of the input pin types: Analyst used the scripting functionality

to access information about the input pins of a gate.

• script-based inspection of input nets: Analyst used the scripting functionality to access

information about the nets feeding into the input pins of a gate.

• script-based inspection of global inout nets: Analyst used the scripting functionality to

access information about the global in-/output nets.

• script-based inspection of watermark candidates: Analyst used the scripting

functionality to access information about the watermark candidates identified by their

algorithm.

• general script-based netlist inspection: Analyst used the scripting functionality to

access information about interesting parts of the netlist at hand.

• first manual identification of the gnd net: Analyst successfully located the GND net by

browsing the netlist via the graphical user interface.

130

• first manual identification of the vcc net: Analyst successfully located the VCC net by

browsing the netlist via the graphical user interface.

• first manual identification of the gnd gate: Analyst successfully located the GND gate

by browsing the netlist via the graphical user interface.

• first manual identification of the vcc gate: Analyst successfully located the VCC gate

by browsing the netlist via the graphical user interface.

• manual selection of a subsequent gate from gnd or vcc: Analyst selected one or several

gates connected to VCC or GND (i. e., gates possibly relevant for the watermarking)

via the graphical user interface.

• manual selection of irrelevant gates: The analyst selected one or more gates that were

not helpful for watermark recognition via the graphical user interface.

• manual inspection of irrelevant gates: Analyst checked details of one or several gates

that were not helpful for watermark recognition via the graphical user interface.

• manual selection of irrelevant nets: Analyst selected one or several nets that were not

helpful for the detection of the watermarking via the graphical user interface.

• manual selection of watermark candidates: Analyst selected one or several gates that

may contain watermarking via the graphical user interface.

• manual inspection of the gnd net: Analyst checked details of the GND net via the

graphical user interface.

• manual inspection of the vcc net: Analyst checked details of the VCC net via the

graphical user interface.

• manual inspection of the gnd gate: Analyst checked details of the GND gate via the

graphical user interface.

• manual inspection of the vcc gate: Analyst checked details of the VCC gate via the

graphical user interface.

• in-depth manual inspection of watermark candidates: Analyst spent significant time

checking details of one or several gates that may contain watermarking via the graphical

user interface.

Reversing Strategy Decisions.

• small-step preparation of a reversing sub-step: Analyst introduced small local code

change or tested functionality to support the next step in the reversing process.

• preparation of a reversing sub-step: Analyst introduced significant code change or

design decision to support the next step in the reversing process.

131

• using external resources: Analyst used external (online) documentation or performed

manual analysis on paper or otherwise outside the HAL environment.

• generic approach: Analyst implemented (part of) an algorithm able to work on a

multitude of input conditions (i. e., in opposition to writing highly redundant code).

• recourse to proven approach: Analyst reused or adapted a known-working strategy.

• combining individual approaches: Analyst merges two separately developed parts of

the solution script into one algorithm.

• duplication of partial solutions from gnd to vcc (and vice versa): Analyst duplicated

parts of the algorithm targeted to GND respective VCC to solve the other case.

• duplication of partial solutions for watermarking candidates: Analyst duplicated parts

of the algorithm targeted specifically to a subset of candidate gates to solve another

subset.

• fully manual approach: Analyst refrains from using the scripting functionality to solve

the current problem and rather performs the analysis by hand.

• local approach without considering the overall problem: Analyst attempted to solve an

issue without aligning with the overall goal or checking for negative consequences of

their local fix.

• brute force approach: Analyst tried to solve a problem by enumerating and testing the

entire solution space, rather than using a more efficient approach.

• hardcoding approach: Analyst entered information about the netlist at hand (e. g.,

names of specific gates) manually into the code, restricting its applicability to the current

netlist.

• development of test cases: Analyst developed a piece of code specifically to test a

solution idea separated from the final solution script.

• selection of test candidates: Analyst hardcoded (new) candidate gate(s) to execute the

test code snippet on them.

• generalisation of a specific approach: Analyst modified parts of the algorithm

previously targeted to a specific input candidate or subset of candidates to work on a

broader input range.

• renewed solution attempt without change of strategy: Analyst re-attempted

implementation of some functionality that he or she had given up on before.

• strategy change for script-based analysis: Analyst chose a new, alternative approach to

solve the problem at hand while using the scripting functionality.

132

• strategy change from script-based to manual analysis: Analyst switched to solving the

problem at hand manually, rather than pursuing a working automated solution.

• strategy change for manual analysis: Analyst chose a new, alternative approach to solve

the problem at hand while solely using the graphical user interface.

Reversing Milestones and Sub-Goals.

• achieving a milestone: identification of watermarking candidates: Analyst successfully

identified the relevant gates for the subsequent watermarking extraction and removal.

• achieving a milestone: removal of the watermarking: Analyst successfully patched the

watermarking out of the identified candidate gates.

• achieving a milestone: extraction of the watermarking: Analyst successfully read out

the watermarking from the identified candidate gates.

• achieving a milestone: Analyst completed a key step of their personal solution strategy.

• successfully completed sub-step for the removal of the watermarking: Analyst solved a

key step in patching the watermarking.

• successfully completed sub-step for the extraction of the watermarking: Analyst solved

a key step in reading out the watermarking.

• successfully completed sub-step for the identification of watermarking candidates:

Analyst solved a key step in identifying the candidates relevant for the watermarking.

• systematic approach with regard to the removal of the watermarking: Analyst devised

a clear, suitable strategy to patch the watermarking and started working towards it.

• systematic approach with regard to extraction of the watermarking: Analyst devised a

clear, suitable strategy to read out the watermarking and started working towards it.

• systematic approach with regard to the identification of watermarking candidates:

Analyst devised a clear, suitable strategy to identify the watermarking candidates and

started working towards it.

• successful application of a reversing-specific concept: Analyst examined and

understood a reversing concept and began using it for their solution.

Reversing Problems.

• reversing-specific lack of understanding: Analyst misunderstood or missed a central

reversing concept and thus, implemented an unsuitable solution for the problem at hand.

• attempt to correct the reversing-specific misconception: Analyst located a

misconception in the solution script and unsuccessfully attempted to correct it.

133

• correction of the reversing-specific misconception: Analyst understood a reversing

concept and subsequently corrected a misconception in the solution script.

• unsuccessful transfer of an already known approach to a current problem: Analyst

made a mistake while attempting to apply a previously known solution to the current

problem.

• lost track of the reversing approach: Analyst had lost the overview of their solution

approach and was stuck on a local problem.

• inappropriate change of the reversing strategy: Analyst switched to another solution

strategy while their current approach was already well-suited.

• correct solution is not recognized: Analyst solved the problem at hand but did not realize

that they did so.

• dead end: Analyst gave up after applying a strategy that was inappropriate to the current

problem.

External Influences.

• software bug: Analyst‘s progress was hindered by a software error in the HAL

environment.

• unintentional manual selection: Analyst unintentionally selected an element in the

graphical user interface.

• external interruption: Analyst‘s work was interrupted by an external influence (e. g.,

breaks).

• reinsurance and re-entry after interruption: Analyst verified the current state of their

work after being interrupted by an external influence.

134

9.4 Full HRE Taxonomy

Appendix 3

Table 8. Hierarchy of the sub-category Error Introduction and absolute number of assigned

open codes per participant.

Table 9. Hierarchy of the sub-category Troubleshooting and absolute number of assigned open

codes per participant.

135

Table 10. Hierarchy of the sub-category Test and Validation and absolute number of assigned

open codes per participant.

Table 11. Hierarchy of the sub-category Code Adjustments and absolute number of assigned

open codes per participant.

136

Table 12. Hierarchy of the sub-category Reversing Strategy Decisions and absolute number of

assigned open codes per participant.

137

Table 13. Hierarchy of the sub-category Inspection and Information Gathering and absolute

number of assigned open codes per participant.

138

Table 14. Hierarchy of the sub-category Reversing Milestones and Sub-Goals and absolute

number of assigned open codes per participant.

Table 15. Hierarchy of the sub-category Reversing Problems and absolute number of assigned

open codes per participant.

Table 16. Hierarchy of the sub-category External Influences and absolute number of assigned

open codes per participant.

139

9.5 List of Abbreviations

ACT-R Adaptive Control of Thought-Rational

AES Advanced Encryption Standard

CPS ... Complex problem solving

FPGA Field Programmable Gate Array

FSM ... Finite State Machine

GND ... Ground

GUI ..Graphical User Interface

HCI .. Human Computer Interaction

HRE Hardware Reverse Engineering

IC ... Integrated circuit

IoT ... Internet of Things

IP ... Intellectual property

IRB .. Institutional review board

LTM ... Long-term-memory

LUT .. Look-up Table

PR .. Perceptual Reasoning

PS ... Processing Speed

QCM Questionnaire on Current Motivation

RAT .. Remote Associates Test

RQ ... Research question

SRE .. Software Reverse Engineering

VCC ... Voltage common collector

WAIS Wechsler Adult Intelligence Scale

WM .. Working Memory

140

9.6 List of Figures

Figure 1. Overview and structure of this doctoral thesis. .. 29

Figure 2. Example Moore Finite State Machine (FSM) circuit as a state transition graph (upper

left) with associated gate-level netlist in (1) visual graph-based representation (lower left), and

(2) textual representation with an exemplary gate library in Verilog. 37

Figure 3. Screenshot of HAL’s GUI. Left: Text-based representation of netlist components.

Middle: Graphical representation of the unknown netlist. Right: Python editor for script-based

netlist interactions. Bottom left: Details widget providing additional information 67

Figure 4. Example Section of Participant 8’s Pre-Processed Log File with 6 of 153 Total

Events (Extract of Script of Participant 8 is Attached in the appendix). 69

Figure 5. HRE Problem-Solving Model with the two main categories Reversing Actions and

Code Development, and the nine sub-categories at level two. Numbers in brackets indicate the

number of unique codes per sub-category. ... 74

Figure 6. Comparison between intermediates and expert. Left: Most frequently observed codes

of the expert. Middle: Most frequently observed codes shared by expert and intermediates.

Right: Most frequently observed codes of the intermediates. .. 78

Figure 7. Strategy steps and solution times of the participants. Boxes on the bottom left: Darker

values represent stronger focus on the respective action. Boxes on the bottom right symbolize

whether the step occurred in the beginning, biddle or end of the HRE problem-solving process.

 .. 82

Figure 8. Scatter plot of solution time (x-axis) and working-memory scores (y-axis). Note: P3

and expert did not participate in the cognitive tests. .. 89

Figure 9. Example script executed by Participant 8 while working on the HRE problem-solving

task. .. 126

141

9.7 List of Tables

Table 1. Overview about HRE Course Requirements and Guidelines About How Requirements

can be met. .. 46

Table 2. Levels of Difficulty, Netlist Complexity, Number of Netlist Components and

Guidance for each HRE Task Ranging From + (low) to +++ (high). (Adapted from Becker et

al., 2020) ... 50

Table 3. Means (M) and Standard Deviations (SD) of Solution Probabilities (in %; N = 38) and

of Solution Times (in hh:mm; N = 20). .. 54

Table 4. Descriptive Data with Means (M) and Standard Deviations (SD) of the four QCM

Factors (N = 38) with (1=strongly disagree; 5 = strongly agree). .. 55

Table 5. Descriptive Data with Means (M) and Standard Deviations (SD) of Mental Effort and

Perceived Task Difficulty in the Four HRE tasks with N=38 (1= very very low / high; 7 =very

very easy / difficult). .. 55

Table 6. Code System with Numbers of Assigned Open Codes per Category, Sub-Category,

and Participant. (A detailed view of all open codes and the frequency with which they were

assigned to each participant is shown in the appendix.) .. 73

Table 7. Time spent on the HRE Task (minutes), Scores of the Cognitive Factors Working

Memory (WM), Processing Speed (PS), and Perceptual Reasoning (PR). 90

Table 8. Hierarchy of the sub-category Error Introduction and absolute number of assigned

open codes per participant. ... 134

Table 9. Hierarchy of the sub-category Troubleshooting and absolute number of assigned open

codes per participant. .. 134

Table 10. Hierarchy of the sub-category Test and Validation and absolute number of assigned

open codes per participant. ... 135

Table 11. Hierarchy of the sub-category Code Adjustments and absolute number of assigned

open codes per participant. ... 135

Table 12. Hierarchy of the sub-category Reversing Strategy Decisions and absolute number of

assigned open codes per participant. .. 136

Table 13. Hierarchy of the sub-category Inspection and Information Gathering and absolute

number of assigned open codes per participant. .. 137

Table 14. Hierarchy of the sub-category Reversing Milestones and Sub-Goals and absolute

number of assigned open codes per participant. .. 138

Table 15. Hierarchy of the sub-category Reversing Problems and absolute number of assigned

open codes per participant. ... 138

142

Table 16. Hierarchy of the sub-category External Influences and absolute number of assigned

open codes per participant. ... 138

143

9.8 About the Author

Curriculum Vitae

Personal Data

 Name: Carina Yasmin Wiesen

 Address: Ruhr-Universität Bochum

 Universitätsstr. 150

 D – 44780 Bochum

Education

 since 2017 Ph.D. Student, Ruhr-Universität Bochum, Germany

2015 M.Sc., Applied Cognitive Science and Media Science,

Universität Duisburg-Essen

2013 B.Sc., Applied Cognitive Science and Media Science,

Universität Duisburg-Essen

2007 Abitur, Marienschule Opladen, Gymnasium des Erzbistums

Köln, Opladen, Germany.

144

Peer-Reviewed Publications in Journals

Wiesen, C., Becker, S., Walendy, R.; Paar, C., & Rummel, N. (under review). The Anatomy of

a Hardware Reverse Engineering Attack: Insights into Cognitive Processes during Problem

Solving. ACM Transactions on Computer-Human Interaction TOCHI.

Peer-Reviewed Publications in Conferences / Workshops

Becker, S., Wiesen, C., Albartus, N., Rummel, N., & Paar, C. (2020). An Exploratory Study of

Hardware Reverse Engineering – Technical and Cognitive Processes. Sixteenth Symposium on

Usable Privacy and Security (SOUPS 2020).

Wiesen, C., Becker, S., Paar, C., & Rummel, N. (2019). Promoting Skill Acquisition in

Hardware Reverse Engineering. In Proceedings of the 2019 IEEE Frontiers in Education Con-

ference (FIE), Cincinnati, OH, USA, 2019.

Wiesen, C., Becker, S., Fyrbiak, M., Albartus, N., Elson, M., Rummel, N., & Paar, C. (2018).

Teaching Hardware Reverse Engineering: Educational Guidelines and Practical Insights. In

2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering

(TALE) (pp. 438-445). IEEE.

Participation in Selected Conferences and Workshops

Becker, S., & Wiesen, C. (2020). Towards Cognitive Obfuscation. RuhrSec IT Security

Conference, Ruhr University Bochum, May, 2020.

Wiesen, C. (2019). Towards Cognitive Obfuscation: Analyzing Human Factors to Impede

Hardware Reverse Engineering. Talk at the International Workshop on Cryptography,

Robustness, and Provably Secure Schemes for Female Young Researchers (CrossFyre) at TU

Darmstadt (co-located to Eurocrypt 2019), May 2019.

Wiesen, C., Becker, S., Paar, C., & Rummel, N. (2019). Acquisition of Hardware Reverse

Engineering Competency in IT Security – An Explorative Field Study. Paper presented at the

European Association for Research on Learning and Instruction (EARLI) in Aachen, Germany,

August 2019.

145

Becker, S., Wiesen, C., Albartus, N., Wallat, S., Rummel, N., & Paar, C. (2019). Poster

presented at IACR Transactions on Cryptographic Hardware and Embedded Systems, CHES

2019, Atlanta, USA, August 26 – 28, 2019)

Wiesen, C., Elson, M., Fyrbiak, M., Becker, S., Paar, C., & Rummel, N. (2018). Hardware

Reverse Engineering als eine spezielle Art des Problemlösens. Vortrag auf dem 51. Kongress

der Deutschen Gesellschaft für Psychologie (DGPs), 15.09.-20.09.2018, Frankfurt am Main.

Becker, S., Wiesen, C., Fyrbiak, M., Rummel, N., & Paar, C. (2018). Hardware Reverse

Engineering & Cognitive Countermeasures. Poster and Demo presented at the Intel-CRI-CARS

Workshop 2018 at Intel, Hillsboro Oregon (17-18 May 2018).

Invited Publications (Not peer-reviewed)

Wiesen, C., Albartus, N., Hoffmann, M., Becker, S., Wallat, S., Fyrbiak, M., Rummel, N., &

Paar, C. (2019). Towards cognitive obfuscation: impeding hardware reverse engineering based

on psychological insights. In Proceedings of the 24th Asia and South Pacific Design

Automation Conference (pp. 104-111). ACM.

Becker, S., Wiesen, C., Paar, C., & Rummel, N. (2019). Wie arbeiten Reverse Engineers?.

Datenschutz und Datensicherheit-DuD, 43(11), 686-690.

146

9.9 Eidesstattliche Erklärung

Ich versichere an Eides statt, dass ich die eingereichte Dissertation selbstständig und ohne

unzulässige fremde Hilfe verfasst, andere als die in ihr angegebene Literatur nicht benutzt und

dass ich alle ganz oder annähernd übernommenen Textstellen sowie verwendete Grafiken,

Tabellen und Auswertungsprogramme kenntlich gemacht habe. Außerdem versichere ich, dass

die vorgelegte elektronische mit der schriftlichen Version der Dissertation übereinstimmt und

die Abhandlung in dieser oder ähnlicher Form noch nicht anderweitig als Promotionsleistung

vorgelegt und bewertet wurde.

Weiterhin erkläre ich, dass digitale Abbildungen nur die originalen Daten oder eine eindeutige

Dokumentation von Art und Umfang der inhaltsveränderten Bildbearbeitung enthalten.

Ich versichere ebenfalls, dass keine kommerzielle Vermittlung oder Beratung in Anspruch

genommen wurde.

Unterschrift

	Abstract
	Kurzfassung (German Summary)
	Acknowledgements
	1 Introduction
	2 Theoretical Background and Research Structure
	2.1 A Definition of Hardware Reverse Engineering
	2.2 Problem Solving in Hardware Reverse Engineering
	2.3 Expertise and Problem Solving
	2.4 Intelligence and Problem Solving
	2.5 Methodological Challenge – Unavailable HRE Experts
	2.6 Research Goals
	2.7 Thesis Overview

	3 Promoting Skill Acquisition in Hardware Reverse Engineering: Educational Guidelines and Practical Insights
	3.1 Introduction and Contributions
	3.2 Background and Guidelines
	3.2.1 Background on Learning with Multiple Netlist Representations
	3.2.2 Guidelines for Learning HRE with Multiple Netlist Representations
	3.2.3 Background on Skill Acquisition
	3.2.4 Guidelines for the Acquisition of HRE skills
	3.2.5 Background on Supporting Students’ Motivation
	3.2.6 Guideline for Enhancing Students’ Motivation in Learning HRE

	3.3 Summary of Guidelines and Description of HRE course design
	3.4 Methods
	3.5 Results
	3.6 Discussion
	3.7 Limitations and Future Work
	3.8 Conclusion

	4 Problem Solving in Hardware Reverse Engineering
	4.1 Introduction and Contributions
	4.2 Methods
	4.3 Results
	4.3.1 Results RQ1a
	4.3.2 Discussion RQ1a
	4.3.3 Results RQ1b
	4.3.4 Discussion RQ1b
	4.3.5 Results RQ2
	4.3.6 Discussion RQ2
	4.3.7 Results RQ3
	4.3.8 Discussion RQ3

	5 General Discussion
	6 Initial Ideas for Cognitive Obfuscation
	6.1 Overloading the Capacity of the Working Memory
	6.2 Developing Misleading HRE Challenges

	7 Limitations and Future Studies
	8 Conclusion
	9 Appendix
	9.1 References
	9.2 Example Script
	9.3 Detailed Code Book
	9.4 Full HRE Taxonomy
	9.5 List of Abbreviations
	9.6 List of Figures
	9.7 List of Tables
	9.8 About the Author
	9.9 Eidesstattliche Erklärung

