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Abstract 
 

Digital hardware systems are the foundation of our modern digital society with its innumerable 

interconnected digital devices, ranging from smartphones to the emerging Internet of Things 

(IoT) as well as traditional PCs and cloud servers. Digital hardware is realized in form of 

integrated circuits (ICs), i.e., microchips, that often perform various security-critical functions. 

They are, thus, attractive targets for attacks and malicious manipulations. This dissertation is 

concerned with a specific method to understand the inner structures and functionalities of 

microchips – hardware reverse engineering (HRE). On the one hand, HRE supports the analysis 

of ICs, for example, for the detection of malicious manipulations such as hardware Trojans or 

intellectual property (IP) theft. On the other hand, HRE can be applied to illegitimate ends that 

include, for example, product piracy, or the injection of malicious hardware backdoors and 

Trojans. Such malicious manipulations can have far-reaching consequences such as monetary 

losses, reputational damage for chip manufacturers, or security threats for critical 

infrastructures in which the manipulated chips are implemented. As tools that automate the 

entire HRE process do not yet exist, hardware reverse engineers have to make sense out of 

semi-automated HRE steps that are driven by human problem-solving processes and cognitive 

factors, such as intelligence or prior domain-specific knowledge. Consequently, the success of 

HRE strongly depends on the analysts’ cognitive processes. However, the understanding of the 

underlying cognitive processes and factors in HRE have thus far not gained much attention in 

the research community, and remain largely unexplored and opaque.  

In this doctoral thesis, I aim to analyze these poorly understood human problem-solving 

processes in HRE. An underlying motivation is to focus on the malicious aspects of HRE (e.g., 

IP theft; insertion of backdoors), as they are associated with severe consequences, and to 

prevent analysts from performing HRE with malicious goals. For this, it will be essential to 

provide ICs with appropriate protection mechanisms (i.e., obfuscation). We argue that a 

comprehensive understanding of not only the technical but especially the unexplored cognitive 

processes in HRE can help to derive ideas for future developments of appropriate obfuscation 

methods impeding HRE – which we coin cognitive obfuscation.   

In the first part of this thesis, we present a methodological approach in order to circumvent 

the methodological problem that HRE experts are rare and thus, not widely available. In this 

context, we derive guidelines from educational and psychological research on skill acquisition 

to develop a university-level HRE course. Within two studies, we show that our HRE course 
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promotes HRE skill acquisition in students with backgrounds in cyber security and thus, enable 

them to participate in our main study. 

The second part forms the core of the dissertation. In this, we conduct our main study to 

systematically investigate human problem solving of hardware reverse engineers on different 

levels of expertise (i.e., eight intermediates; one HRE expert). All participants are asked to 

analyze a realistic gate-level netlist of an unknown IC. In order to investigate applied problem-

solving strategies and their efficiency, we apply an iterative open coding scheme to analyze 

2.445 single HRE actions of the nine participants. Our results reveal, for example, that two 

intermediates with above-average test results in the intelligence sub-factor working memory 

complete the HRE task in a solution time that is comparable to the solution time of the HRE 

expert.  

In the final part of this thesis, I discuss our results on HRE problem-solving processes in 

the light of established psychological theories and taxonomies of human problem solving. 

Based on our findings, I conclude, for example, that HRE problem-solving performance may 

be a function of both expertise and cognitive abilities, that is also relevant in the context of 

cognitive obfuscation. In the context of our results, I develop initial ideas for cognitively 

challenging tasks that may raise the cost of HRE to an unattractive level, and therefore, may 

serve as an impulse for the development of cognitive obfuscation. 
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Kurzfassung (German Summary) 
 

Digitale Hardwaresysteme sind die Grundlage unserer modernen digitalen Gesellschaft mit 

ihren unzähligen und miteinander verbundenen digitalen Geräten, die von Smartphones über 

das sich entwickelnde Internet der Dinge (IoT) bis hin zu traditionellen PCs und Cloud-Servern 

reichen. Digitale Hardware wird in Form von integrierten Schaltkreisen (ICs), d. h. Mikrochips, 

realisiert, die oft verschiedene sicherheitskritische Funktionen ausführen. Daher sind sie 

attraktive Ziele für Angriffe und bösartige Manipulationen. Diese Dissertation beschäftigt sich 

mit einer speziellen Methode, um die inneren Strukturen und Funktionalitäten von Mikrochips 

zu verstehen – dem Hardware Reverse Engineering (HRE). HRE unterstützt einerseits die 

Analyse von ICs, z.B. zur Erkennung von bösartigen Manipulationen wie Hardware-Trojanern 

oder von Diebstahl geistigen Eigentums (IP). Andererseits kann HRE auch zu illegitimen 

Zwecken eingesetzt werden, z. B. zur Produktpiraterie oder zum Einschleusen von bösartigen 

Hardware-Backdoors und Trojanern. Solche böswilligen Manipulationen können 

weitreichende Folgen haben, wie etwa monetäre Verluste, Reputationsschäden für Chip-

Hersteller oder Sicherheitsbedrohungen für kritische Infrastrukturen, in denen die 

manipulierten Chips eingesetzt werden.  

Aktuell gibt es kein Werkzeug, das den gesamten HRE-Prozess automatisiert, wodurch 

AnalystInnen gezwungen sind halbautomatisierten HRE-Schritten einen Sinn zu verleihen. 

Dies ist abhängig von menschlichen Problemlöseprozessen und kognitiven Faktoren wie 

Intelligenz oder domänenspezifischem Vorwissen. Demnach hängt der Erfolg von HRE stark 

von den kognitiven Prozessen der AnalystInnen ab. Das Verständnis der zugrundeliegenden 

kognitiven Prozesse und Faktoren in HRE hat jedoch bisher in der Forschungsgemeinschaft 

nicht viel Aufmerksamkeit erhalten und bleibt weitgehend unerforscht und undurchsichtig.  

In dieser Dissertation ziele ich darauf ab, diese kaum verstandenen menschlichen 

Problemlöseprozesse in HRE zu analysieren. Eine zugrundeliegende Motivation ist es, sich auf 

die bösartigen Aspekte von HRE (z.B. IP-Diebstahl; Einfügen von Backdoors) zu 

konzentrieren, da diese mit schwerwiegenden Konsequenzen verbunden sind. Zudem sollen 

AnalystInnen perspektivisch davon abgehalten werden, HRE mit bösartigen Zielen 

durchzuführen. Dazu wird es unerlässlich sein, ICs mit geeigneten Schutzmechanismen (z. B. 

Obfuskation) auszustatten. Um HRE zu erschweren, argumentieren wir, dass ein umfassendes 

Verständnis nicht nur der technischen, sondern vor allem der unerforschten kognitiven Prozesse 
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bei HRE helfen kann, Ideen für zukünftige Entwicklungen geeigneter Obfuskationsmethoden 

abzuleiten – die wir als kognitive Obfuskation bezeichnen.   

Im ersten Teil dieser Arbeit stellen wir einen methodischen Ansatz vor, um das 

methodische Problem zu umgehen, dass HRE-ExpertInnen rar und daher nicht allgemein 

verfügbar sind. In diesem Zusammenhang leiten wir Richtlinien aus der pädagogischen und 

psychologischen Forschung zum Erwerb von Fähigkeiten ab, um einen HRE-Kurs auf 

Universitätsniveau zu entwickeln. Im Rahmen von zwei Studien zeigen wir, dass unser HRE-

Kurs den Erwerb von HRE-Fähigkeiten bei Studierenden mit einschlägigem Hintergrund im 

Bereich der IT-Sicherheit fördert und sie somit befähigt, an unserer Hauptstudie teilzunehmen. 

Der zweite Teil bildet den Kern der Dissertation. In diesem führen wir unsere Hauptstudie 

durch, um das menschliche Problemlösen von AnalystInnen (acht Nicht-ExpertInnen; ein HRE-

Experte) systematisch zu untersuchen. Alle StudienteilnehmerInnen werden gebeten, eine 

realistische Netzliste eines unbekannten ICs zu analysieren. Um die angewandten 

Problemlösestrategien und deren Effizienz basierend auf 2.445 einzelne HRE-Aktionen der 

neun TeilnehmerInnen zu untersuchen, wenden wir ein iteratives offenes Kodierungsschema 

an. Unsere Ergebnisse zeigen beispielsweise, dass zwei Nicht-ExpertInnen mit einem 

überdurchschnittlich hohe Testergebnis im Intelligenz-Subfaktor Arbeitsgedächtnis die HRE-

Aufgabe in einer Lösungszeit erledigen, die mit der Lösungszeit des HRE-Experten 

vergleichbar ist.  

Im letzten Teil dieser Arbeit diskutiere ich unsere Ergebnisse zu HRE-

Problemlöseprozessen im Licht etablierter psychologischer Theorien und Taxonomien des 

menschlichen Problemlösens. Aus unseren Ergebnissen schließe ich beispielsweise, dass die 

HRE-Problemlöseleistung eine Funktion sowohl der Expertise als auch der kognitiven 

Fähigkeiten sein kann, was wiederrum auch im Kontext der kognitiven Obfuskation relevant 

ist. Im Zusammenhang mit unseren Ergebnissen entwickle ich erste Ideen für kognitiv 

herausfordernde Aufgaben, die die Kosten von HRE auf ein unattraktives Maß erhöhen und 

somit als Impuls für die Entwicklung von kognitiver Obfuskation dienen können. 

 

 

 

 

 



V 

 

Acknowledgements 
 

I would like to express my deepest appreciation to my both advisors, Nikol Rummel and 

Christof Paar, who have extraordinarily supported me throughout all these years of my PhD. 

My PhD was one of the most exciting journeys of my life and provided me with so many new 

impressions and experiences. I would like to thank Nikol Rummel very much for being such a 

great PhD advisor over all these years and always supporting me – whether it was writing 

papers, this thesis, or preparing for presentations at conferences and workshops. Furthermore, 

I would like to thank Christof Paar very much for his academic support, and for always 

encouraging and believing in me. Thank you for letting me become part of the Emsec family.  

I would particularly like to thank my Tandempartner Steffen Becker. Without you, working on 

this topic would not have been possible – thank you for enabling this great and exciting 

interdisciplinary collaboration! I also look back with pleasure on our joint work trips - even if 

things didn't always go smoothly due to the weather and we ended up exploring the Boston 

airport, these were still great trips.   

In this context, I am also extremely grateful for the interdisciplinary work environment provided 

by the graduate school SecHuman! I would like thank Susanne Kerstens, Anne Thiele, and 

Astrid Wichmann very much for their support in SecHuman.  

I would like to take this opportunity to thank Sebastian Strauß for the great academic 

discussions and enriching exchanges about music during our shared office time. Thanks also 

for your great support in writing this thesis. It’s closing time! Furthermore, I would like to thank 

Leonie Schaewitz for being such a great office mate and for her support in writing my papers.  

I am very thankful to Marc Fyrbiak and Nils Albartus for being so patient in explaining 

hardware reverse engineering to me. Nils, I will always remember our trips to Amherst and our 

Chaos-WG – Bacon everywhere! Furthermore, I would like to thank Max Hoffmann very much 

for his enormous support in programming the HRE game. I would like to thank Philipp Koppe 

for forcing me to climb a wall and thereby giving me my new favorite hobby, bouldering. I also 

hope that with you and Maik Ender many more bouldering and hiking adventures will follow.  

I am also grateful for Anna Keune and Charleen Brand for their time correcting my "Denglish" 

– I really appreciate it! I am also thankful for the support of my PP-colleagues Julia Eberle, 

Julia Erdmann, Christian Hartmann, Valentina Nachtigall, Meike Osinski, and Selina Yek. 

Furthermore, I am thankful for the support of my colleagues from the Emsec-squad Susanne 



VI 

 

Engels, Carl-Daniel Hailfinger, Endres Puschner, Falk Schellenberg, Julian Speith, Paul Staat, 

Johannes Tobisch, Sebastian Wallat, and Pascal Zimmer.  

Many studies would not have been possible without the great support of the student assistants 

Isabell Bohm, Luisa Jansen, Zehra Karadag and René Walendy. Many thanks for everything! 

I would also like to thank Nesrin Denizer, Adnan El Arja, and Irmgard Kühn very much for 

their support in organizing everything around my PhD.  

Finally, but by no means least, I would like to thank my wonderful family Bernd Wiesen, Uta 

Wiesen, Vanessa Wiesen, and Marcus Haffmanns for their fantastic love and unbelievable 

support. Thank you so much for always believing in me and standing by my side! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VII 

 

Table of Contents 

Abstract I 

Kurzfassung (German Summary) III 

Acknowledgements V 

1 Introduction 9 

2 Theoretical Background and Research Structure 15 

2.1 A Definition of Hardware Reverse Engineering 15 

2.2 Problem Solving in Hardware Reverse Engineering 17 

2.3 Expertise and Problem Solving 21 

2.4 Intelligence and Problem Solving 23 

2.5 Methodological Challenge – Unavailable HRE Experts 25 

2.6 Research Goals 26 

2.7 Thesis Overview 28 

3 Promoting Skill Acquisition in Hardware Reverse Engineering: Educational 

Guidelines and Practical Insights 34 

3.1 Introduction and Contributions 35 

3.2 Background and Guidelines 36 

3.2.1 Background on Learning with Multiple Netlist Representations 36 

3.2.2 Guidelines for Learning HRE with Multiple Netlist Representations 39 

3.2.3 Background on Skill Acquisition 41 

3.2.4 Guidelines for the Acquisition of HRE skills 42 

3.2.5 Background on Supporting Students’ Motivation 43 

3.2.6 Guideline for Enhancing Students’ Motivation in Learning HRE 43 

3.3 Summary of Guidelines and Description of HRE course design 44 

3.4 Methods 48 

3.5 Results 53 

3.6 Discussion 56 

3.7 Limitations and Future Work 58 

3.8 Conclusion 59 

4 Problem Solving in Hardware Reverse Engineering 60 

4.1 Introduction and Contributions 61 

4.2 Methods 63 

4.3 Results 72 

4.3.1 Results RQ1a 72 

4.3.2 Discussion RQ1a 77 



VIII 

 

4.3.3 Results RQ1b 78 

4.3.4 Discussion RQ1b 79 

4.3.5 Results RQ2 80 

4.3.6 Discussion RQ2 87 

4.3.7 Results RQ3 88 

4.3.8 Discussion RQ3 90 

5 General Discussion 93 

6 Initial Ideas for Cognitive Obfuscation 100 

6.1 Overloading the Capacity of the Working Memory 100 

6.2 Developing Misleading HRE Challenges 103 

7 Limitations and Future Studies 106 

8 Conclusion 108 

9 Appendix 111 

9.1 References 111 

9.2 Example Script 126 

9.3 Detailed Code Book 126 

9.4 Full HRE Taxonomy 134 

9.5 List of Abbreviations 139 

9.6 List of Figures 140 

9.7 List of Tables 141 

9.8 About the Author 143 

9.9 Eidesstattliche Erklärung 146 

 

 

 

 

 

 

 

 



9 

 

1 Introduction  
 

The digitalization of our society is advancing at an ever-faster pace, making computing systems 

and communication technologies an integral part of our everyday lives. For example, the market 

for Internet of Things devices (IoT-devices) is constantly rising and is forecasted to reach $1.4 

trillion by 2027 (Crane, 2021), connecting billions of users worldwide in the business, private, 

or automotive sectors. The digital hardware devices, usually given as integrated circuits (ICs) 

or microchips, are considered trusted in virtually any computing system. Although a variety of 

software components implement security mechanisms, they all depend on the underlying 

hardware devices for actually executing the security functions. Thus, the correct function of 

microchips is crucial for the security (and often also safety) of many if not most digital devices 

on which the digital society relies.  

A commonly applied method to understand an IC’s structure and functionalities is called 

Hardware Reverse Engineering (HRE). HRE is used to achieve legitimate goals (e. g., hardware 

Trojan detection, identification of counterfeit products, analysis of a competitor’s product), but 

also to achieve illegitimate goals (e.g., malicious manipulations, overproduction and 

counterfeiting; intellectual property (IP) piracy) (Quadir et al., 2016). In terms of illegitimate 

goals, HRE can be applied during the global fabrication process of hardware chips, during 

which several (untrusted) stakeholders have access to valuable hardware designs and may be 

able to commit IP piracy or insert manipulations (Rostami, Koushanfar, & Karri, 2014). Those 

malicious manipulations in hardware chips are major concerns for many stakeholders, because 

the deployment of manipulated hardware chips in critical infrastructure (e.g., cellular networks; 

power grids; sensitive applications in aerospace or military) may have serious consequences 

and can compromise the security of an entire system (Guin et al., 2014; Guin, DiMase, & 

Tehranipoor, 2014; Becker, Regazzoni, Paar, & Burleson, 2013).  

A gate-level netlist is defined as a logical circuit that is composed of gates and their 

interconnections (Becker et al., 2020). During HRE, high-level information is extracted from a 

low-level circuit during two major stages (Azriel, Ginosar, & Mendelson, 2019). First, the 

reverse engineer retrieves a gate-level netlist from the IC through several sub-steps including, 

for example, delayering and imaging of the single IC layers or post-processing of all images to 

assemble the gate-level netlist (overviews by Torrance & James, 2009 or Quadir et al., 2016). 

Besides this, it is also possible to obtain a gate-level netlist through online interception of design 

information. In a second step, a hardware reverse engineer aims to obtain a better understanding 
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(i.e., sense-making) of the recovered netlist, the chip structure, or specific functionalities, for 

example, the identification of IP blocks (Becker et al., 2020). These processes of understanding 

the netlist are included in the second step of HRE (Azriel, Ginosar, & Mendelson, 2019) that 

have been so far only rudimentarily addressed in prior research.  

In order to understand the netlist, hardware reverse engineers apply a set of semi-

automated and customized tools, as fully automated HRE tools do not exist so far (Becker et 

al., 2020). Analysts typically apply HRE tools that enable the analysis of the present netlist, for 

example, by developing specific algorithms on the netlist (Chisholm, Eckmann, Lain, & Veroff, 

1999), or by conducting manual and visual analysis of specific netlist components (Wallat et 

al., 2019). Due to the lack of tools that allow for fully-automated netlist analysis, HRE always 

involves the analysts’ cognitive processes such as problem solving that is governed by their 

cognitive capabilities. Surprisingly, these cognitive processes, which determine the success of 

HRE, have been little explored in prior research and remain poorly understood.  

Although there has been prior works that explored sense-making processes of software 

reverse engineers (Votipka, Rabin, Micinski, Foster, & Marzurek, 2020), or the effectiveness 

of software obfuscation methods (e.g., Ceccato et al., 2009; Ceccato et al., 2014), only little 

prior research has already dealt with the exploration of human factors in HRE. In terms of HRE, 

there is one relevant prior work by Lee and Johnson-Laird (2013) who explored problem-

solving processes during reverse engineering of Boolean systems. The participants were asked 

to draw electrical circuits that controlled electrical lights or a water flow system. The authors 

conducted five laboratory experiments with students who had no prior domain-specific 

knowledge and showed that the difficulty of reverse engineering of Boolean systems is 

influenced by the number of components of the system and the dependencies of the components 

(Lee & Johnson-Laird, 2013). Furthermore, they found that students applied one of the two 

problem-solving strategies of either focusing on the output or single components. Based on 

their results, Lee and Johnson-Laird (2013) defined reverse engineering of Boolean systems as 

a specific type of human problem solving that has not been investigated by psychologists 

before. Since Lee and Johnson-Laird’s (2013) study task lack in comparability to a realistic 

HRE tasks, it is questionable to what extent Lee and Johnson-Laird’s (2013) results are 

applicable to problem-solving processes in HRE. Previously, we (Becker et al., 2020) 

conducted an exploratory investigation into the technical processes of HRE. We proposed a 

three-phased model of HRE consisting of i) candidate identification; ii) candidate verification; 

and iii) realization. We suggested that hardware reverse engineers have to pass through these 
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three phases to successfully analyze a gate-level netlist. Furthermore, an initial comparison 

between the HRE processes of two reverse engineers showed that the faster participant chose a 

strategy comparable to divide-and-conquer, whereas the slower participant solved the HRE task 

through trial-and-error.  

Within this doctoral thesis, I aim to achieve an overarching research goal: understanding 

human factors that play a role in HRE. The understanding of human factors in HRE is essential 

in order to estimate the effort of hardware reverse engineers or to support the development of 

sound countermeasures impeding HRE – suggested as cognitive obfuscation (Wiesen et al., 

2019a; Becker et al., 2020). Although prior research has advanced the understanding of 

cognitive processes in reverse engineering (Lee & Johnson-Laird, 2013; Becker et al., 2020), it 

is necessary to conduct further explorations for the following reasons. Since Lee and Johnson-

Laird (2013) conducted their studies under artificial laboratory conditions and included tasks 

that were limited in their comparability to realistic HRE settings, it is unclear if their results of 

cognitive processes in reverse engineering of Boolean systems are applicable to HRE problem 

solving. If we aim to achieve a comprehensive understanding of HRE problem solving and to 

derive ideas for future developments of cognitive obfuscation, it is necessary to conduct a study 

with realistic HRE task under realistic HRE conditions (e.g., including HRE tools).  

However, researchers who aim to explore human factors in HRE face the methodological 

challenge that HRE experts often work for highly-specialized companies or government 

agencies which have intrinsic motivations not to reveal information about their HRE working 

processes. Furthermore, the worldwide population of HRE experts is also very small. Both 

aspects make the efforts to locate and recruit those experts not only very time-consuming, but 

also often unsuccessful.   

Because human factors are strongly involved in HRE, researchers who aim to receive a 

better understanding of HRE need to apply an interdisciplinary approach. By combining 

hardware security and cognitive psychology, we tried to address this research problem. The 

realization of the interdisciplinary approach and research project was enabled by the 

interdisciplinary environment of the SecHuman graduate school. In the SecHuman graduate 

school, interdisciplinary tandem teams consisting of two doctoral students from different 

disciplines conduct research on an overarching security-related research question.  

Accordingly, most of the results and work steps originate from the interdisciplinary 

collaboration with my tandem partner Steffen Becker. My role in this tandem constellation was 

to explore human factors in HRE (i.e., problem-solving processes; the role of cognitive abilities 
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and expertise in HRE) from a cognitive psychological perspective, whereas Steffen Becker’s 

research focus was on the technical aspects of HRE.  

Main Contributions of Doctoral Thesis 

Cybersecurity topics in human-computer interaction (HCI) research have gained importance 

over the last decade. According to (Stephanidis et al., 2019), research on security has become 

one of the seven grand challenges for the HCI community. In this dissertation, methods and 

theoretical concepts of cognitive psychology and HCI research are adapted to explore the 

behavior of hardware reverse engineers who were asked to solve a realistic HRE task. Prior 

research has long considered the human factor in designing secure and usable systems with the 

goal to improve the interaction between security aspects and specific user groups, such as end 

users (e.g., Sasse, Brostoff, & Weirich, 2001) or software developers (e.g., Acar, Stransky, 

Wermke, Mazurek, & Fahl, 2017). However, the long-term goal of this doctoral thesis is not to 

improve the interaction between users (in our case hardware reverse engineers) and the system 

(a gate-level netlist as the HRE target), but rather to make HRE more difficult by deriving 

suggestions for sound countermeasures impeding HRE. This twist on the typical HCI 

framework (i.e., improving the interaction between user and system) may be a novel direction 

for the HCI community.  

The development of initial ideas for cognitive obfuscation in the end of this dissertation 

is based on a multi-step research approach to receive a better understanding of human factors 

in HRE. The following list summarizes the main contributions of this dissertation:  

1. Embedding of technical HRE problems in psychological theory  

Following the theoretical considerations by Lee and Johnson-Laird (2013), I defined 

underlying cognitive processes in HRE as problem-solving processes. The theoretical 

embedding in existing psychological theories of human problem solving builds the 

foundation to investigate cognitive processes and potentially influencing factors such as 

prior knowledge or intelligence in HRE in a theory-based and structured way. 

2. Development and evaluation of a methodological approach to explore human 

factors in HRE 

As mentioned above, the recruitment of HRE experts is very costly and often unsuccessful. 

Since there is hardly any research on the cognitive processes in HRE, there are also no 

methodological recommendations on how to circumvent the problem that HRE experts are 
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unavailable for research. Together with the interdisciplinary research team, I developed and 

evaluated a methodology that enabled students to acquire a sufficient amount of HRE skills 

and prepared those students to participate in the main study on exploring human factors in 

HRE.  

3. Conducting of an empirical study to explore human factors in HRE 

In collaboration with my co-authors, I designed and conducted a main study in order to 

explore underlying human factors in HRE. In this study, participants with different levels 

of HRE expertise were asked to solve a realistic HRE task. The participants’ problem 

solving was explored by an iterative open coding procedure of 2445 single log entries. 

Besides behavioral log files, cognitive abilities and the level of prior domain-specific 

knowledge was measured in the main study.  

4. Exploration of human factors in HRE 

o Exploration of problem-solving processes in HRE: The overarching goal of 

this dissertation is to obtain a meaningful and comprehensive understanding of 

human factors in HRE, defined as problem-solving processes – processes that 

have been poorly investigated by prior research so far. Within the doctoral 

thesis, we explored the problem-solving performance of hardware reverse 

engineers who were asked to solve a realistic HRE task. Therefore, we 

conducted a main study on HRE problem solving and analyzed the problem-

solving processes by applying an iterative open coding scheme based on the 

well-established Grounded Theory (Strauss & Corbin, 1998). Our results 

showed, for example, that it seemed as if a single best HRE strategy did not exist 

for the problem at hand and different problem-solving processes may lead to 

efficient solutions. In addition, we identified several difficulties that hardware 

reverse engineers faced during the HRE problem solving. The findings are also 

discussed in a broader context of established psychological literature on problem 

solving. 

o Exploration of cognitive factors in HRE problem solving: Besides the 

exploration of problem-solving processes in HRE, we investigated whether the 

level of expertise or of cognitive abilities play a role in HRE problem solving. 

Our exploration showed that two intermediates solved the HRE task with an 

efficiency comparable to the HRE expert. Furthermore, our data showed that 

participants with above-average scores in the intelligence sub-factor working 
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memory tended to solve the HRE task faster than participants with lower 

working memory scores. Based on our results, I concluded that HRE problem 

solving may be a function of both expertise and cognitive abilities, and discuss 

this point in the light of psychological literature.   

 

5. Deriving initial ideas for cognitive obfuscation 

Beyond the contribution to the main goal (i.e., understanding human factors in HRE), I 

developed initial ideas for sound countermeasures impeding HRE – so called cognitive 

obfuscation (Becker et al., 2020; Wiesen et al. 2019) (see Chapter 6). I suggested that 

countermeasures impeding the cognitive processes of HRE should consider both expertise 

and cognitive abilities of analysts, as both factors may support efficient HRE problem 

solving. For example, prior psychological research suggested potential characteristics of 

tasks that have posed huge challenges for experts (e.g., Chi 2006). Against this background, 

I suggested to develop obfuscation tasks in which experts could not rely on their prior 

domain-specific knowledge and cannot apply standard-strategies through which these 

experts may lose efficiency in their HRE problem solving. As the cognitive factor working 

memory may also contribute to efficiently solving HRE tasks, I derived initial ideas for 

obfuscation tasks that aim to overload the capacity of hardware reverse engineers’ working 

memory.  
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2 Theoretical Background and Research Structure 
 

In Sections 2.1-2.5, I present relevant technical and psychological background in the context of 

HRE, and describe the methodological problem that HRE experts are unavailable for research. 

In Section 2.6, I build upon the presented background to present my research goals to analyze 

the so far poorly understood problem-solving processes in HRE. Finally, I provide an overview 

of the structure of the dissertation and a brief summary of included studies and publications 

(Section 2.7). 

 

2.1 A Definition of Hardware Reverse Engineering  

 

Rekoff (1985) defined reverse engineering as a process through that a reverse engineer retrieves 

underlying structures, components, and functionalities of an existing system without access to 

its high-level description. The process of reverse engineering is commonly employed in various 

domains such as software, electronics (e.g., microchips), mechanical engineering, or in the 

context of cybersecurity as the two principle types: Hardware and Software Reverse 

Engineering. HRE is a tool to retrieve information about the inner structure and functionality 

of microchips and is applied for both legitimate (e.g., detection of hardware Trojans) or 

illegitimate (e.g., IP infringement) purposes (Fyrbiak et al., 2018b; Quadir et al., 2016) (see 

Introduction).  

In order to analyze an unknown chip design, HRE is typically conducted through the 

following two stages. First, the analyst performs several steps to retrieve a model of the chip (a 

so called “gate-level netlist”) that consists of gates and their interconnections (Torrance & 

James, 2009). In a real-world context, those gate-level netlists consist of thousands or millions 

of logic components, and can be retrieved from an IC or a Field Programmable Gate Array 

(FPGA) or from an interception of design information (Becker et al., 2020). Although the 

retrieval of a gate-level netlist is very effortful and requires a highly specified set of methods, 

tools and materials, prior research has shown that trained specialists are able to reliably extract 

a netlist from both ICs and FPGAs (Ding et al., 2013; Moradi, Baranghi, Kasper, & Paar, 2011; 

Torrance & James, 2009; Ender, Moradi, & Paar, 2020). 

Second, after extracting the netlist, the analyst actively combines several different 

techniques to achieve a given goal, for instance, to find or understand IP blocks, to extract 
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cryptographic keys (Wallat, Fyrbiak, Schlögel, & Paar, 2017) or to detect malicious 

manipulations. In order to achieve the specific reversing goal, the second HRE phase typically 

involves human cognitive abilities to recognize specific modules, to identify blocks of interest, 

to retrieve a detailed understanding of Boolean sub-circuits, or to recover high level register 

(Azriel et al., 2019; Fyrbiak et al., 2018b; Subramanyan et al., 2014; Albartus, Hoffmann, 

Temme, Azriel, & Paar, 2020; Becker et al., 2020). Due to the complex design of commercial 

hardware, analysts usually have to create custom solutions or need to perform detailed manual 

analysis of single netlist components (Becker et al., 2020; Fyrbiak et al., 2017).  

Nevertheless, the tool support in the domain of HRE is not as mature as, for example, in 

the domain of Software Reverse Engineering (SRE). SRE is regularly applied to use cases such 

as malware detection, security analysis, obsolescence management, or the realization of 

interoperability (Eilam, 2011). Therefore, SRE is commonly applied to analyze highly 

optimized bytecode (i.e., strings consisting of zeroes and ones) that is received from machine 

code or binary files that run on specific devices (Gomulkiewicz & Williamson, 1996). Software 

reverse engineers commonly use specific tools to conduct SRE, such as decompilers, 

disassemblers, low-level debuggers and packet sniffers. In the past decades, several advanced 

SRE tool suites (e.g., IDA Pro; Ghidra) have been developed and provide software reverse 

engineers a variety of (semi-) automated functionalities that suite to the analysts’ individual 

reversing goals. The SRE community benefits from long-standing tool development, an active 

research community, and well-established business cases that have led to the advancement from 

mostly manual SRE analysis to predominately automated process (Gandotra, Bansal, & Sofat, 

2014). In terms of HRE, some developments of specific tool suites have been advanced in the 

past, such as the HRE tool HAL by Fyrbiak et al. (2018a). HAL, as a uniform platform, offers 

several functionalities that are essential for conducting HRE (e.g., graph-based visualization of 

gate-level netlists or an interactive netlist exploration via a Python console).  

Although HRE tools like HAL exists, they do not support a fully automated analysis of 

the gate-level netlist, and hardware reverse engineers are usually forced to make sense out of 

previously described semi-automated steps. Thus, cognitive processes and abilities of the 

analysts critically influence and determine the success of HRE. Surprisingly, those underlying 

cognitive processes that have a huge impact on HRE, have barely been considered by prior 

research and remain poorly understood. So far, only little research has been investigated to 

explore and define those underlying cognitive processes in HRE. Within this thesis, I contribute 

to this research gap by systematically analyzing cognitive processes of hardware reverse 
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engineers. In order to impede HRE, we argue that it may be a valuable approach to develop 

obfuscation schemes that consider both, the technical and the cognitive processes of HRE – 

suggested as cognitive obfuscation (Becker et al., 2020; Wiesen et al., 2019a). Based on our 

findings on HRE problem solving, I develop initial ideas for cognitively challenging 

obfuscation tasks in the final part of my dissertation. 

 

2.2 Problem Solving in Hardware Reverse Engineering 

 

As shown above, prior research has already investigated general technical analysis methods of 

HRE. However, HRE also requires custom solutions as well as analysts’ skill, knowledge, and 

cognitive processes. Surprisingly, so far little is known about these cognitive processes that 

influence HRE performance of human reverse engineers. In the following, I present relevant 

prior findings on problem solving in reverse engineering of Boolean systems. As more research 

on cognitive processes in HRE is lacking thus far, I refer to more general psychological research 

findings on the definition of problem solving and influencing factors such as the level of 

expertise or the level of cognitive abilities of a problem solver.  

Lee and Johnson-Laird (2013) define reverse engineering of Boolean systems, i.e., binary 

logic expressions, as a specific and strongly understudied type of human problem solving. In 

their theoretical model, reverse engineering of Boolean systems is specified as:    

„ [...] the process of working out how to assemble components with known properties into 

a system that has the input-output relations of a target system” Lee and Johnson-Laird 

( 2013, p. 20).  

In other words, during reverse engineering of Boolean systems, problem solvers infer the 

underlying mechanisms of a given system, and investigate how single components of the system 

influence specific outputs, and if these components also depend on each other. In their work, 

Lee and Johnson-Laird (2013) conducted five laboratory studies with students who had no 

domain-specific knowledge. During these five experiments, the participating students were 

asked to draw Boolean circuits that would control electric lights or a water flow system. The 

authors concluded that reverse engineering of Boolean systems was influenced by three factors: 

(1.) The number of variable components (i.e., the switches), (2.) their number of settings that 

yielded the positive outputs (i.e., light comes on), (3.) the interdependence of components that 

influenced the outputs. Additionally, Lee and Johnson-Laird (2013) collected interview data 
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during their experiments that enabled them to draw conclusions about applied problem-solving 

strategies of the participating students. The results revealed that the participants chose one of 

two main initial strategies: They focused either on a single output at a time or on a single 

component at a time. Moreover, the qualitative data showed that participants extended the 

solutions they gained from previous sub-problems to the next sub-problem.  

It nevertheless remains an open research question whether Lee and Johnson-Laird’s 

(2013) results are applicable to describe problem-solving processes in HRE for two main 

reasons. First, Lee and Johnson-Laird (2013) included task materials of simple Boolean systems 

in their experiments that are strongly limited in their comparability to complex real-world HRE 

tasks. During realistic HRE challenges, hardware reverse engineers have to make sense of 

hundreds of thousands or millions of logic components included in a gate-level netlist. Second, 

they recruited students who lacked relevant background knowledge for example in digital 

circuits, Boolean algebra, or electrical engineering. However, it can be assumed that hardware 

reverse engineers possess and apply domain-specific knowledge and skills to analyze a real-

world gate-level netlist that in turn strongly questions the generalizability of the results of Lee 

and Johnson-Laird (2013) to the HRE domain. Thus, it is necessary to conduct studies with 

realistic HRE settings (e.g., realistic task materials; realistic tool support; participants with 

domain-specific expertise) that closely approximates real-world conditions to systematically 

explore problem-solving processes in HRE and influencing factors of the human analysts.  

In 2020, we (Becker et al., 2020) exploratorily investigated the technical processes of 

HRE and proposed an HRE model consisting of the following three phases: (1.) Candidate 

Identification, (2.) Candidate Verification, and (3.) Realization. We suggested that hardware 

reverse engineers analyzed an unknown gate-level netlist by passing through these three phases. 

We found that analysts applied a set of both manual analyses (e.g., visual identification of 

important netlist components) and semi-automated steps (e.g., verification of components based 

on developed programs or algorithms). Within an exploratory analysis we compared a fast and 

a slow hardware reverse engineer. Our results showed that the faster participant applied a 

strategy that could be described as divide-and-conquer, and that the slower participant chose 

the HRE task through a trial-and-error strategy. Furthermore, we found that the cognitive factor 

working memory played a role in solving the HRE task time-efficient. I will refer to that result 

in greater detail in my general discussion (see Chapter 5). In our paper (Becker et al., 2020), 

we contributed to the understanding of technical processes underlying HRE, but also derived 

the need for further research. Hence, it is essential to systematically analyze problem-solving 
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processes in greater detail and compare applied strategies of more than two hardware reverse 

engineers.  

As only little prior research on problem solving in HRE exists, I will refer to more general 

findings of problem-solving research in other domains. Prior psychological research defines 

problem solving as an essential cognitive ability and a key competence that enables people to 

solve complex situations in their daily lives (Funke, Fischer, & Holt, 2018). In the beginning 

of a problem-solving situation, the problem solvers are in the initial state in that they lack the 

knowledge for producing an immediate and routine solution. In order to bridge the gap between 

the initial state and the desired goal state, i.e., the problem solution, the problem solvers can 

apply a set of cognitive operators (e.g., problem-solving strategies) (e.g., Fischer, Greiff, & 

Funke, 2011; Dörner & Funke, 2017). As suggested by Newell and Simon (1972) it is 

assumable that problem solving in many domains (and thus also in HRE), may pass through 

seven stages: Problem categorization; Construction of a mental problem representation; Search 

for suitable operators (e.g., strategies or procedures); Application of selected operators; 

Evaluation of solution; Iterative refinement of strategies if solution is not satisfactory; Storage 

of solution.  

In order to describe and define types of problem solving, prior psychological research has 

established a broad range of taxonomies. The taxonomy of Reitman (1965) that distinguishes 

between well-defined and ill-defined problems, is widely accepted and applied is. Well-defined 

problems are characterized by a representation in a problem space, a clearly defined goal state, 

and a clear set of means enabling the problem solver to reach the goal state (Dörner & Funke, 

2017). The Tower-of-Hanoi problem is an example for a well-defined in that the problem solver 

receives three rods and several different-sized discs. The clearly defined goal is to move the 

discs from the left to the right rod in ascending order of disc diameter. In order to solve the 

problem, the problem solver has a clearly defined set of means (e.g., only one disc can be moved 

at a time; no larger discs can be put on smaller ones).  

In contrast to well-defined problems, ill-defined or complex problems cannot be 

represented in a problem space, and have neither a clear problem definition, nor a clearly 

defined goal state, nor precisely defined means for solving the problem (Dörner & Funke, 

2017). Funke (2012) defines five characteristics of complex problems: 1) complexity, 2) 

connectivity, 3) dynamics, 4) intransparency, and 5) polytely. More precisely, complex 

problems consist of multiple and interacting variables (complexity) that are interconnected 

(connectivity). Moreover, these multiple and interacting variables of the complex problem 
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system change due to the influence of the problem solver or independently (dynamics). 

Furthermore, the structure of the complex problem (e.g., information about variables, or 

problem states) is partially or completely intransparent to the problem solver (intransparency) 

and whereby the problem solver must try to actively gain knowledge about the problem. In 

order to solve the complex problem, the problem solver has to handle many, and sometime even 

mutually exclusive goals (polytely). Dörner and Funke (2017) continue in defining complex 

problems by outlining that complex systems include at least the following three characteristics: 

1) there are different levels of abstraction through which a complex system can be described; 

2) a complex system includes dynamics that lead to the system’s development over time, the 

system’s history and current state, as well as the system’s (unpredictable) future; 3) a complex 

system is knowledge-rich, and the problem solver activates large semantic networks and a 

wealth of potential problem-solving strategies (domain-specific and domain-general).  

The so-called Lohhausen problem is a classic problem system for assessing complex 

problem-solving performance. In the Lohhausen problem, the problem solver takes over the 

role of a mayor of a small town and has to manage more than 2000 variables of a dynamically 

changing system (Dörner, 1980). Prior research defines that barriers between the initial state 

and the goal state of complex problems state can only be overcome by problem solver who 

apply non-routine solution methods (Funke, 2012; Mayer, 1992; Mayer & Wittrock, 2006). 

Furthermore, the problem solver needs to acquire knowledge about the system’s variables and 

structure (i.e., knowledge-acquisition phase; Novick & Bassok, 2005). To transfer the initial 

state into the goal state, the problem solver applies the previously acquired knowledge 

(knowledge-application phase, Novick & Bassok, 2005). Based on knowledge-acquisition and 

application, the problem solver builds a problem representation that leads to the selection of 

cognitive operators (e.g., problem-solving strategies) (e.g., Mayer & Wittrock, 2006; Novick 

& Bassok, 2005).  

Lee and Johnson-Laird (2013) presented in their theoretical model on reverse engineering 

of Boolean systems that reverse engineering may be a specific and so far poorly understood 

type of human problem solving. Unfortunately, the authors did not conduct a typological 

embedding of reverse engineering in existing research on human problem solving. Thus, it is 

an open question to which problem-solving taxonomy HRE can be assigned or to what extent 

HRE problem solving combines aspects of well-defined or ill-defined problems. In order to 

understand HRE problem solving and also to explore correlations with prior domain-specific 

knowledge or intelligence, it would be valuable if researchers would derive a theoretical 
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analysis and definition of HRE as a specific type of human problem solving. This embedment 

would support the psychological community to discuss and explore this specific type of 

problem solving in greater detail.  

 

2.3 Expertise and Problem Solving 

 

An individual’s level of domain-specific expertise has been shown to mainly influence the 

problem-solving performance in many domains such as chess (Chase & Simon, 1973a, 1973b) 

or medicine (Lesgold et al., 1988). Unfortunately, practically no research has been conducted 

on how HRE experts analyze an unknown netlist to retrieve components or if HRE experts and 

non-experts differ in their problem-solving performance. Although, there are some best practice 

examples by HRE experts who analyzed unknown netlists (Tarnovsky, 2019; Thomas, 2015), 

controlled and systematic psychological studies on how HRE experts analyze an unknown chip 

design are missing thus far. Against this background, I refer to general findings in expertise 

research to define my research goal on analyzing potential expertise-related differences in HRE. 

A wealth of prior research has shown that expertise develops due to years of daily 

deliberate practice (Ericsson, Krampe, & Tesch-Römer, 1993), and that superior performance 

by experts is based on domain-specific knowledge (Nokes, Schunn, & Chi, 2010). Other 

researchers postulate that expertise is related to talent (Galton, 1870), and can be described as 

a combination of genetic dispositions and experience (e.g., Simonton, 1999). Furthermore, 

research has shown that differences in superior performance by experts may be influenced by 

general cognitive ability factors (e.g., intelligence score; working memory capacity), without 

denying the major influence of domain-specific knowledge and skills (e.g., Hambrick, 

Burgoyne, & Oswald, 2019; Grabner, Neubauer, & Stern., 2006).  

Differences between experts and non-experts in problem solving are based on the experts’ 

domain-specific knowledge that supports experts in solving domain-specific problems faster 

and more accurately than non-experts (Nokes at al., 2010). Prior research suggests that experts 

activate domain-specific knowledge and strategies to solve the current problem with low 

cognitive effort (Alexander, 2003; Chi, 2006) and apply their skills with greater automaticity 

(Schneider, 1985; Chi, 2006). Ericsson and Kintsch (1995) suggest that experts have developed 

effective long-term working memories that support experts in retrieval of prior knowledge to 

solve problems, and also enables experts to circumvent the common limits of the memory. Due 
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to their rich, and well-organized knowledge structures, experts acquire new knowledge from 

problem solving more easily than novices, and are more efficient in merging novel domain-

specific knowledge into already stored knowledge structures (Nokes et al., 2010).  

Prior research has revealed several results when experts achieve the best solution in 

solving domain-specific problems. In the following, I present some examples that outline 

differences between experts and novices in solving problems. For example, experts percieve 

and categorize a problem in a way that is different from non-experts. Lesgold and colleagues 

(1988) showed that medical experts were able to figure out the correct shape and size of 

abnormalities in medical picture. Compared to those experts, medical novices only identified 

fractions of the presented abnormalities (Lesgold et al., 1988). Furthermore, a study in the 

domain of physics revealed that physic experts and novices categorized the same problems on 

a different level of abstraction, whereas experts categorized the problems on deeper levels of 

abstraction (Chi, Feltovich, and Glaser, 1981). Similar results on differences in problem 

perception and categorizations of experts were shown in various other domains such as 

mathematics (Silver, 1979), computer programming (Adelson, 1981), and engineering design 

(Moss, Kotovsky, & Cagan, 2006). Nokes and colleagues (2010) summarize that these 

differences in problem perception and categorization are based on experts’ domain-specific 

well-structured knowledge.  

Prior research showed that experts and non-experts also differ in the final stages of 

problem solving (i.e., solution evaluation and storage). Experts seemed to evaluate longer than 

novices, whether the solution met the problem requirements (Groen & Patel, 1988; Voss & 

Post, 1988). Furthermore, during the evaluation phase, experts identified and corrected more 

errors than novices, and were also more willing to modify their strategies, than novices (Nokes 

et al., 2010). In contrast, novices proceed with incorrect assumptions and errors, as shown in 

the context of a historical task (Wineburg, 1998; Nokes et al., 2010).  

In summary, a wealth of prior research has shown how expertise influences single stages 

of a problem-solving process, suggesting that experts solve problems more efficiently than non-

experts. It is an open question as to whether problem solving of HRE experts is more efficient 

than problem solving employed by HRE non-experts. It is assumable, based on prior findings 

in expertise research, that HRE experts may solve HRE problems more efficient due to their 

profound level of domain-specific knowledge. Against the background of this chapter, it is 

highly likely that expert hardware reverse engineers have developed an extensive base of 

knowledge and set of skills through years of deliberate practice (Ericsson et al., 1993). These 
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profound knowledge structures may enable HRE experts to perceive, categorize, and select 

suitable strategies more efficiently than HRE non-experts. Such HRE experts may have gone 

through years of deliberate practice that enabled them to develop rich and well-organized 

knowledge structures. Consequently, those HRE experts may have been able to produce and 

store efficient solutions by leveraging their fast problem-solving and procedural work flows 

(e.g., schemas and chunks stored in long term working memory (Ericsson and Kintsch, 1995)). 

To frame the point in more everyday terms, an expert reverse engineer may know at once how 

to overcome an HRE task similar to a situation in which a chess master immediately recognizes 

which moves are feasible (e.g., Chase & Simon, 1973a) or in which a skilled physician is able 

to immediately render a diagnosis based on observable symptoms (Lesgold et al., 1988).   

 

2.4 Intelligence and Problem Solving 

 

Besides expertise and prior domain-specific knowledge, prior research has also analyzed the 

influence of general intelligence or sub-factors of intelligence on problem-solving performance. 

As I am not aware of any prior research that has investigated the impact of general intelligence 

or sub-factors of intelligence on the problem-solving performance in HRE, I refer to more 

general findings on the relation between intelligence and problem solving in the following 

chapter. As it is also unclear, which aspects of simple and / or complex problems are included 

in HRE (see Background), I present the relation between intelligence and both types of problem 

solving.  

Prior researchers have established various definitions of intelligence. I quote the working 

definition by Gottfredson (1997, p. 13) who defined intelligence as followed:  

„Intelligence is a very general mental capability that, among other things, involves the 

ability to reason, plan, solve problems, think abstractly, comprehend complex ideas, learn 

quickly, and learn from experience. It is not merely book-learning, a narrow academic 

skill, or test-taking smarts. Rather, it reflects a broader and deeper capability for 

comprehending our surroundings, ‚catching on‘, ‚making sense‘ of things, or ‚figuring 

out‘ what to do.“ Gottfredson (1997, p. 13).  
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Besides several definitions, prior research has also presented a wealth of theories of 

intelligence. Spearman (1927) defined intelligence as a single trait and proposed the concept of 

general intelligence (g). Other representatives are for example Cattell (1987) with the 

distinction between fluid and crystallized intelligence, or Thurstone (1938) who proposed a 

division of intelligence into seven primary factors.  

As outlined by Wenke, Frensch and Funke (2005), a wealth of prior research has 

investigated the relation between simple problem solving and individual intelligence, 

postulating that if a relation exists it might be on modest size (i.e., r = .30) (e.g., Sternberg, 

1982). Subsequently, analyzing problem-solving processes in simple problems was 

hypothesized as a means of specifying cognitive processes that form intelligence (Resnick and 

Glaser, 1975).  

In terms of complex problem solving (CPS), the relation to individual intelligence is not 

that clear as it is to simple problem solving, what is also discussed in a meta-review by Stadler 

et al. (2015). Theoretically, CPS includes several aspects (e.g., the integration of information) 

that are also part of intelligence definitions (Sternberg & Berg, 1986). But other CPS 

characteristics such as dynamics or intransparency are not included in definitions of 

intelligence. This theoretical ambiguity is also reflected in contradictory study results on the 

relation between CPS performance and intelligence, ranging from non-significant (e.g., Joslyn 

& Hunt, 1998; Putz-Osterloh, 1985) to strong correlations (e.g., Funke & Frensch, 2007; 

Wüstenberg, Greiff, & Funke, 2012). For example, the significant differences of participants’ 

CPS performance could not be explained by general intelligence (Brehmer, 1992; Rigas & 

Brehmer, 1999). Furthermore, Kluwe, Misiak and Haider (1991) summarized in a meta-review 

that 11 studies failed in showing a close relation between intelligence scores and the 

performance in CPS tasks. Subsequently, Wenke and colleagues (2005) postulated that 

convincing empirical data on the relation between global intelligence and CPS performance 

does not exist (without denying a hypothetical relation between the both constructs).  In 

contrast, other studies found correlations between CPS performance and general intelligence. 

For example, prior research showed correlations between various measures of CPS and general 

intelligence between r = .33 and r = .63 (Gonzalez, Thomas and Vanyukow, 2005), or 

correlations of r = .40 between CPS performance in Tailershop tasks and general intelligence 

(Süß, Kersting, & Oberauer, 1991; see also Stadler et al., 2005).   
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In terms of problem solving in HRE, the influence of individual intelligence or sub-factors of 

intelligence has not been investigated by prior research. Hence, it is unclear if intelligence plays 

a role in solving HRE tasks, and should be investigated in research.  

2.5 Methodological Challenge – Unavailable HRE Experts 

 

Researchers who plan to conduct experimental studies in HRE face the methodological problem 

that HRE experts are unavailable for research. The very small worldwide population of HRE 

experts makes the efforts to locate them not only very time-consuming, but also often 

unsuccessful. The availability of those HRE experts for studies is even more aggravated when 

one considers that HRE experts often work for highly-specialized companies or government 

agencies. Those companies and agencies often impose contractual restrictions that forbid HRE 

experts from revealing details of their working processes. Such otherwise potentially willing 

and available HRE experts are consequently unable to participate in research that explores HRE 

processes and underlying cognitive factors.  

Prior research in other cybersecurity domains (e.g., developer studies in the context of 

security software engineering) also faced the methodological problem of recruiting large 

samples of expert developers that is why usable security researchers often choose to recruit 

students with relevant backgrounds (besides professionals) (e.g., Acar et al., 2017; Naiakshina, 

Damilova, Tiefenau, & Smith, 2018). Prior research presents contrary results on the 

comparability of developer experts and computer science students. Naiakshina et al. (2019) 

showed that computer science students and freelancers behaved similarly with regard to secure 

password storage. Acar and colleagues (2017) found that self-reported status as student or 

professional did not significantly influence the functionality, security, or security perception of 

written Python code. In contrast, Naiakshina and colleagues (2020) conducted a password-

storage study with computer science students, freelancers, and company developers. Their 

results revealed that company developers performed better with regard to security measures 

than students and freelancers (Naiakshina et al., 2020). However, Naiakshina and colleagues 

(2020) do not deny the fact, that including students in cybersecurity studies will reveal valuable 

insights, but also outline that the effects of different treatments for different participant groups 

(e.g., prompting for secure password storage) are needed to achieve valuable results with a 

student sample.  
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The methodological problem in HRE research raises the question how studies on problem 

solving in HRE can be conducted when experts are unavailable for research and global 

populations of analysts are very small. Although the recruitment of students to study HRE 

problem solving may be a valuable starting point, it nevertheless remains unclear, how to train 

students in HRE in order to enable them to solve realistic HRE tasks during the study. HRE 

tasks are highly specific and are commonly not part of any computer science nor cybersecurity 

study program at universities. There is an almost complete lack of educational courses in the 

HRE field and HRE training happens almost entirely on the job, which even makes it more 

difficult to recruit students for our studies. It remains unclear, how a course on teaching HRE 

has to be designed in order to promote HRE skill acquisition in students that prepares them to 

solve a realistic HRE task.  

 

2.6 Research Goals  

 

In my dissertation, I aim to accomplish one overarching research goal, namely the analysis of 

underlying human factors in HRE with a specific view on problem-solving processes and the 

role of cognitive abilities and expertise. In addition to my main research goal, I establish two 

sub-goals that emerged from the reviewed literature on human problem solving. Beyond the 

contributions to the main research goal and the sub-goals, I aim to develop initial ideas for 

cognitive obfuscation based on the main results. In the following, I will describe the goals of 

my dissertation in more detail.  

Overarching Research Goal: Analyzing Problem-Solving Processes in HRE 

It is unclear how hardware reverse engineers proceed in analyzing an unknown netlist and what 

kind of problem-solving processes and strategies are involved in HRE. Furthermore, it remains 

unanswered by prior research how efficient the applied problem-solving strategies are and 

which problems and difficulties hardware reverse engineers face during HRE. In order to 

accomplish the overarching research goal, we conducted an empirical study with hardware 

reverse engineers who were asked to solve a realistic HRE task. We analyzed the problem-

solving processes in HRE and furthermore, systematically explored applied problem-solving 

strategies. I discuss the findings from our empirical study on HRE problem solving in the light 

of established psychological theories on human problem solving and in the light of Lee and 

Johnson-Laird’s (2013) theory of reverse engineering of Boolean systems.   
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As shown in the background of the dissertation (see Background), different variables (e.g., 

expertise) influence problem-solving performance. However, in the area of HRE problem 

solving, it is unexplored whether cognitive factors of hardware reverse engineers play a role in 

analyzing an unknown netlist. To address this question, I derive two sub-goals, which are 

briefly presented below. 

Sub-Goal 1: Investigating the Role of Expertise in HRE Problem Solving 

Previous research has shown (see Background) that expertise and domain-specific knowledge 

play a role in several problem-solving domains and often resulted in experts solving a problem 

more accurately and efficiently than novices or intermediates (e.g., Nokes et al., 2010). 

Nevertheless, it remains an open question whether this is also true for the HRE domain and if 

HRE experts are better at analyzing an unknown netlist than non-experts. In order to shed light 

on this question, the present work recruited hardware reverse engineers on different levels of 

expertise (i.e., intermediates and expert) to investigate expertise-related differences in HRE 

problem solving.  

Sub-Goal 2: Investigating the Role of Cognitive Abilities in HRE Problem Solving 

As shown in the background (see Background), the level of cognitive abilities can influence 

problem-solving performance (e.g., Gonzalez et al., 2005). However, it is unclear whether 

cognitive factors such as intelligence or sub-factors of intelligence play a role in HRE problem 

solving. In order to address this question, we examined whether the level of cognitive abilities 

was correlated with time-efficient problem-solving performance in HRE.  

Development of Initial Ideas for Cognitive Obfuscation 

Beyond the contributions to the main goal and the two sub-goals of my doctoral thesis, I aim to 

develop initial ideas for cognitive obfuscation. As outlined above (see Background), we 

suggested that sound countermeasures impeding HRE should also consider cognitive processes 

and cognitive factors of hardware reverse engineers (e.g., Wiesen et al., 2019a). Based on our 

findings from our study on HRE problem solving, I develop initial ideas for future research in 

this novel field of cognitive obfuscation methods, which could impede both expertise-related 

and cognitive abilities-related processes, as both seemed to play a role in HRE problem solving.  
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2.7 Thesis Overview 

 

The thesis consists of three parts that address the previously established research goals of the 

dissertation (see Research Goals), with i) preparation part (see Chapter 3), ii) main part (see 

Chapter 4), and iii) conclusion part (see Chapter 5) including initial ideas for cognitive 

obfuscation impeding HRE (Figure 1 illustrates the structure of the dissertation.). The thesis 

combines parts of four papers that comprise our scientific work on problem-solving processes 

in HRE.  

As outlined above (see Background), researchers who plan to conduct studies on 

cognitive processes in HRE, face the problem that HRE experts are unavailable for research 

and that global populations of hardware reverse engineers are very small. In order to circumvent 

this problem and to enable our main study, we suggested, developed and evaluated a 

methodological approach (preparation part). In order to explore underlying cognitive processes 

and factors in HRE, we conducted an empirical study and analyzed applied problem-solving 

strategies, their time-efficiency, and influencing cognitive factors such as the working memory 

of the participants (main part). Finally, I addressed our main results of the empirical study on 

human factors in HRE by discussing them in terms of previous findings on human problem 

solving (conclusion part).   
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Preparation Part (Chapter 3) HRE Course Development & 

Evaluation 

Analysis of Human Problem-

Solving Processes in HRE  
 

HRE Problem-Solving Strategies and 

Time-Efficiency 
 

Role of Cognitive Abilities in HRE 

Problem Solving 
 

Role of Expertise in HRE Problem 

Solving 

General 

Discussion   

Initial Ideas for 

Cognitive 

Obfuscation  

 

Main Part (Chapter 4) 

Conclusion Part  

(Chapters 5 and 6) 

Figure 1. Overview and structure of this doctoral thesis.  
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Preparation Part – Circumventing the Methodological Challenge   

Sections of the following papers are incorporated into the preparation part of the dissertation 

(see Chapter 3) that suggests an approach to circumvent the challenge that HRE experts are 

unavailable for research. 

Wiesen, C., Becker, S., Fyrbiak, M., Albartus, N., Elson, M., Rummel, N., & Paar, C. (2018, 

December). Teaching Hardware Reverse Engineering: Educational Guidelines and 

Practical Insights. In 2018 IEEE International Conference on Teaching, Assessment, 

and Learning for Engineering (TALE) (pp. 438-445). IEEE. 

Wiesen, C.; Becker, S., Paar, C., & Rummel, N. (2019). Promoting Skill Acquisition in 

Hardware Reverse Engineering. In Proceedings of the 2019 IEEE Frontiers in Education 

Conference (FIE), Cincinnati, OH, USA, 2019. 

The preparation part comprises our prior work on circumventing the methodological challenge 

that HRE experts are unavailable for research. In order to solve this challenge, we developed 

an educational HRE course that enabled students with relevant backgrounds to participate in 

our main study on HRE problem solving. As HRE was not part of university programs, it was 

unclear how to develop an HRE course that taught students a sufficient amount of HRE skills, 

domain-specific knowledge, and specific competencies. As realistic HRE processes commonly 

involve the analysis of textual or graphical representations of the netlist, we argued that students 

needed to acquire conceptual and perceptual competencies to work with and learn from these 

multiple netlist representations. Against a wealth of prior educational and psychological 

research, we derived specific guidelines for an HRE course design that aimed to promote the 

acquisition of HRE skills and specific competencies.  

Finally, the preparation part of the dissertation presents an evaluation if the course 

promoted HRE skill acquisition in students with relevant backgrounds. Therefore, two studies 

at a German and a North American university were conducted that included undergraduate and 

graduate students enrolled in cyber security and electrical engineering programs. Our results 

showed that the students were able to achieve high solution probabilities in the first three 

practical HRE tasks. Nevertheless, the solution probability in the most complex and realistic 

task 4 decreased significantly (but was still on a satisfactory level). Furthermore, our results 

showed that students were motivated by the realistic HRE task and the realistic working 

scenario (e.g., solving the HRE tasks with the tool HAL). We presented our findings in the light 
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of course improvements and suggested that the course would be a sufficient tool to prepare 

students in participating in our main study.  

In summary, the preparation part of the doctoral thesis includes a necessary working step 

that enabled us to conduct our main study on HRE problem solving by including trained 

students on intermediate levels of HRE expertise.  

Main Part – Analyzing HRE Problem Solving 

The main part (see Chapter 4) forms the core of my dissertation as it aims to accomplish the 

overarching research goal of analyzing the underlying problem-solving processes in HRE. In 

addition to a detailed and in-depth analysis of HRE problem-solving processes and applied 

problem-solving strategies, the main part also presents results on the role of relevant cognitive 

factors such as intelligence and expertise in HRE problem solving. 

Becker, S., Wiesen, C., Albartus, N., Rummel, N., & Paar, C. (2020). An Exploratory Study of 

Hardware Reverse Engineering – Technical and Cognitive Processes. Sixteenth 

Symposium on Usable Privacy and Security (SOUPS 2020), Conference Paper.  

Wiesen, C., Becker, S., Walendy, R.; Paar, C., & Rummel, N. (submitted for review; Nov. 

2020). The Anatomy of a Hardware Reverse Engineering Attack: Insights into Cognitive 

Processes during Problem Solving. ACM TOCHI  

Within the main part of the dissertation, we conducted an experimental study at a German 

university to analyze problem-solving processes in HRE. As prior research on systematically 

analyzing applied problem-solving strategies in HRE is limited thus far, we collected behavioral 

data in form of automatically recorded log files of each participant while they solved a realistic 

HRE task. In general, prior research suggested that expertise played a role in solving problems 

(e.g., Simon & Simon, 1978). In order to analyze if expertise and prior domain-specific 

knowledge were relevant in solving the HRE task, we included participants on different levels 

of HRE expertise in our study (eight intermediates; one HRE expert). All intermediates acquired 

necessary domain-specific knowledge and skills through the HRE course evaluated in the 

preparation part of the dissertation. Following the successful completion of the HRE course, 

the intermediates were asked to solve the HRE task within 2 weeks using the HRE tool HAL. 

Additionally, we were able to recruit one HRE expert out of the professional network of one of 

the co-authors.  
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Furthermore, prior research postulated that intelligence and specific sub-factors of intelligence 

influence problem-solving performance (e.g., Stadler et al., 2015). Thus, in order to accomplish 

second research sub-goal of the dissertation we included a state-of-the art intelligence test 

(Wechsler Adult Intelligence Scale, Wechsler, 2008) in our study to compare participants with 

lower and higher intelligence scores in their HRE problem-solving performance.  

Using an iterative open coding scheme based on the well-established Grounded Theory method 

(Strauss & Corbin, 1998), we conducted an in-depth analysis and derived a detailed mapping 

of the HRE problem-solving process. The results provided a hierarchical taxonomy of HRE 

problem-solving steps as well as an analysis of applied problem-solving strategies and their 

time-efficiency. The results showed that all hardware reverse engineers used unique problem-

solving strategies and that there seemed to be no single best strategy. The results also revealed 

that the HRE expert was able to achieve the fastest solution time. However, two intermediates 

solved the HRE task with solution times that were comparable to the expert’s solution time. 

Furthermore, the intelligence sub-factor working memory seemed to play a role in achieving 

time-efficient solutions in HRE, as participants with higher levels of working memory tended 

to solve the HRE task faster than participants with lower scores of working memory.  

In summary, the main part of my doctoral thesis accomplishes the overarching research 

goal by presenting an in-depth-analysis of applied problem-solving strategies and their time-

efficiency in HRE. Furthermore, the main part of the thesis demonstrates findings in the light 

of both research sub-goals 2 and 3 concerning the role of expertise and the role of cognitive 

abilities (e.g., working memory) in HRE problem solving.  

Conclusion Part – General Discussion 

Within the conclusion part (see Chapter 5), I discuss our findings on problem solving in HRE 

and influencing cognitive factors of hardware reverse engineers from two perspectives. First, I 

discuss our findings in the light of the ongoing debate in psychology questioning the influence 

of expertise and cognitive abilities on problem-solving performance. Our results revealed that 

two intermediates with above-average scores in the intelligence sub-factor working memory 

solved the HRE task with an efficiency that was comparable to the HRE expert. Against this 

background, I hypothesize that besides expertise, also cognitive abilities may play a role in 

efficiently solving the HRE task. 
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Furthermore, the discussion led to several new hypotheses. For instance, I use commonly 

applied problem-solving taxonomies of simple and complex problems as a theoretical 

instrument to embed HRE problem solving in established theories and models of human 

problem solving. I suggest that HRE problems may include aspects of both simple and complex 

problems, and thus, may be a specific type of human problem solving as previously suggested 

by Lee and Johnson-Laird (2013).  

Beyond the discussion of our findings in the light of my main research goals, I develop 

initial ideas for cognitive obfuscation that aim to impede the cognitive processes that are 

involved in HRE (see Chapter 6). Our results suggested, that HRE problem solving may be 

based on both expertise (i.e., high levels of domain-specific knowledge and profound 

experience in HRE problem solving), and intelligence (i.e., especially the sub-factor working 

memory). Consequently, I suggest that during the development of cognitive obfuscation 

schemes both factors should be considered. For instance, Ericsson and Kintsch (1995) 

hypothesized that experts were able to circumvent the limited capacity of their working memory 

by their well-structures long-term working memory. Thus, countermeasures that solely aim to 

overload the capacity of the working memory may be not sufficient enough for hardware 

reverse engineers who also possess well-structured knowledge. Against this background, I 

suggest that cognitive obfuscation should also include obfuscation tasks that aim to create a 

challenge for analysts with higher levels of HRE expertise and prior experience.  
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3 Promoting Skill Acquisition in Hardware Reverse Engineering: 

Educational Guidelines and Practical Insights 
 

Disclaimer: The content of this chapter concerning educational and psychological guidelines 

(Introduction, Educational Research as the Foundation for an HRE Lab Course, Guidelines for 

a course design) was previously published as parts of the paper “Teaching Hardware Reverse 

Engineering: Educational Guidelines and Practical Insights” that was submitted in the 

Proceedings of 2018 IEEE International Conference on Teaching, Assessment, and Learning 

for Engineering. This paper was written together with my co-authors Steffen Becker, Marc 

Fyrbiak, Nils Albartus, Malte Elson, Nikol Rummel, and Christof Paar. I have reformulated the 

respective parts and partly also rearranged them.  

Furthermore, the content of this chapter concerning the course structure and the course 

evaluation (methods, results, discussion and implications for future HRE course designs) was 

previously published as parts of the paper “Promoting Skill Acquisition in Hardware Reverse 

Engineering” that was submitted in the Proceedings of 2019 IEEE FIE Frontiers of Education 

Conference. This paper was written together with my co-authors Steffen Becker, Nils Albartus, 

Christof Paar, and Nikol Rummel. I have reformulated the respective parts and partly also 

rearranged them. Please note, that some sub-parts of the papers were not relevant for the 

overall argumentation of the dissertation, and were not included. Furthermore, I included an 

additional background section within this chapter. The additional educational and 

psychological background is essential to derive guidelines for the development of an HRE 

course that aims to promote HRE skill acquisition in students. 

As all parts of the paper were conducted with my co-authors, I will use the academic “we” to 

highlight this fact.  
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3.1 Introduction and Contributions 

 

As outlined in the background of this thesis (see Background), researchers who aim to conduct 

studies with hardware reverse engineers, face the problem that HRE experts are unavailable for 

research. One approach to extend the number of reverse engineers, who may be potentially 

willing to participate in our study on HRE problem solving, is to promote HRE skill acquisition 

in students with relevant backgrounds. The inclusion of students in security studies when 

professionals are unavailable was considered as a valuable approach in related security domains 

(e.g., Naiakshina et al., 2018). As our studies on HRE problem solving included a realistic HRE 

task, it was essential to support students in acquiring skills and knowledge in HRE, which 

prepared them to solve realistic HRE tasks. Therefore, we suggested to develop an HRE course 

that was influenced by realistic conditions of HRE practice (e.g., reversing tasks; tool support).  

As there existed an almost complete lack of educational courses in HRE and structural 

guidance on how to teach HRE skills, we reviewed findings from educational research (e.g., 

learning with multiple graphical representations) and cognitive psychology (e.g., skill 

acquisition based on declarative and procedural knowledge). Based on this foundation, we 

proposed structural guidelines for an HRE course design that would effectively support students 

with relevant backgrounds in acquiring HRE skills. Finally, we conducted an evaluation of the 

effectiveness of the course in teaching HRE skills.  

In summary the contributions of this chapter are: 

• Educational Guidelines: To the best of our knowledge, we were one of the first who 

established structured guidelines derived from prior psychological and educational 

research on skill acquisition and learning with graphical and textual representations to 

develop an HRE course. These guidelines formed the basis for our educational course 

that aimed to promote HRE skill and knowledge acquisition with a particular focus on 

gate-level netlist reverse engineering. As the analysis of both graphical and textual 

representations of a netlist was essential in HRE, our guidelines incorporated structures 

to support learning from and working with both types of netlist representations.  

• HRE Course Structure: Based on the proposed guidelines, we developed an HRE 

course. This HRE course consisted of two phases focusing the acquisition of declarative 

knowledge (lecture phase) and of procedural knowledge (practical phase with four 

different HRE tasks). Specific instructional and learning principles were included to 

promote students’ acquisition of specific competencies (e.g., perceptual competencies) 
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that would support them in learning from and working with multiple netlist 

representations. Furthermore, students were asked to solve the HRE tasks of the course 

by using the HRE tool HAL (Fyrbiak et al., 2018a).  

• Evaluation of HRE course. We systematically evaluated if our HRE course enabled 

students to acquire HRE skills within two exploratory studies at a German and a North 

American university in winter term 2018/2019. Finally, we presented our research 

questions, methods, and findings of our evaluation study.  

 

3.2 Background and Guidelines 

 

First, we will present relevant background from educational and cognitive psychology that may 

be relevant for teaching students to work with graphical and textual netlist representations 

during an HRE course. This includes prior research findings in i) learning from and working 

with multiple representations; ii) promoting skill acquisition; iii) enhancing students’ 

motivation. Besides these theoretical constructs, we will outline specific instructional principles 

that are hypothesized by prior researchers to promote specific competencies that enable students 

to learn from specific representations. Based on this theoretical background, we will derive 

specific guidelines for an HRE course design.   

 

3.2.1 Background on Learning with Multiple Netlist Representations 

 

Under realistic conditions, hardware reverse engineers have to make sense of various 

representational forms of a gate-level netlist. Figure 2 (from Wiesen et al., 2018) provides 

textual and graphical representations of a netlist. The human analyst is forced to obtain the 

correct information from both sources in order to achieve their reversing goal. Hence, a course 

that aims to promote skill acquisition in HRE has to consider the integration of both 

representational forms of a gate-level netlist. From an educational point of view, the retrieval 

of information from both representations, can pose certain challenges to reverse engineers, and 

especially to novices who have to learn how to work with and learn from HRE-specific 

representations (e.g., Rau, 2017). Within the following section, we present relevant background 

in educational and psychological research that provides guidance on how these challenges can 

be met.  
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Opportunities and Challenges – Learning with Graphical Representations 

 

Graphical representations can support students’ learning success by making abstract concepts 

more accessible (Schnotz, 2014; Rau, 2017), and by depicting supplementary information that 

enables students to build a deeper understanding of novel content (Ainsworth, 2006, 2014; Rau, 

2017). Despite their value in supporting students’ learning processes, graphical representations 

can also be challenging for students. Prior research showed that especially the so-called 

representation dilemma posed such a challenge (Ainsworth, 2006; McElhaney, Chang, Chui, & 

Linn, 2015; Rau, 2017). According to Rau (2017), students face a representation dilemma when 

they are asked to learn new content knowledge that they do not yet understand from graphical 

representations that they also do not yet understand. In order to overcome representation 

dilemma and to benefit from the inclusion of graphical representations as parts of the 

educational program, it is essential that students develop specific competencies (e.g., Rau, 

2017).  

In the following section, we present an overview of these competencies. We describe in 

which ways they may support students in recognizing how graphical representations depict 

relevant information to solve a task or to acquire new skills and knowledge. Furthermore, we 

present prior research findings the development of these specific competencies may be 

supported.  

Figure 2. Example Moore Finite State Machine (FSM) circuit as a state transition graph (upper 

left) with associated gate-level netlist in (1) visual graph-based representation (lower left), and 

(2) textual representation with an exemplary gate library in Verilog. 
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Competencies for Learning from and Working with Graphical Representations 

In order to overcome the representation dilemma, prior research has suggested that students 

need to acquire representational competencies that are defined as skills and knowledge that 

support students to use and learn from graphical representations to solve the task (Gilbert, 2005; 

2008; Rau, 2017). In this context, prior research distinguishes between two types of 

representational competencies: (1) conceptual competencies, and (2) perceptual competencies 

(Rau, 2017). It is suggested that these two types of representational competencies are acquired 

through different types of learning processes and thus, through different types of instructional 

support (Goldstone, 1997; Kellman & Massey, 2013; Koedinger, Corbett, & Perfetti, 2012; Rau 

2017).  

Conceptual Competencies. Conceptual competencies are defined as knowledge and skills 

that enable students to relate graphical representations to prior knowledge or to identify and 

choose the most suitable parts of a graphical representation with the riches amount if relevant 

information that supports them in solving the present task (Rau, 2017). Koedinger and 

colleagues (2012) have suggested that students develop conceptual competencies through 

sense-making processes. In general, sense-making is defined as a process in which an individual 

combines various information and ideas in a meaningful way to solve a present task (Dougherty 

and Drumheller, 2006). Prior research suggests that sense-making processes are verbally 

mediated as students are asked to verbally explain how a graphical representation includes 

information (Rau, 2017; Koedinger et al., 2012; Chi, Bassok, Lewis, Reimann, & Glaser, 1989; 

Gentner, 1983).  

Perceptual Competencies. Besides conceptual competencies, perceptual competencies 

are also suggested to be relevant to overcome the representation dilemma (Rau, 2017). 

Perceptual competencies are defined as the ability that enables a student to immediately and 

effortless detect the meaning of a graphical representation and to identify visual patterns 

(Gibson, 1969; Rau, 2017). Perceptual competencies include the concept of fluency in 

recognizing and processing visual information from and about the graphical representation to 

solve the task at hand (Airey & Linder, 2009; Kozma & Russell, 2005; Rocke, 2010; Wertsch 

& Kazak, 2011; Rau, 2017). Koedinger and colleagues (2012) argue that perceptual 

competencies are acquired through inductive learning processes that are defined as nonverbal 

automatic processes and are relevant for visual pattern recognition (Rau, 2017). Furthermore, 

Koedinger and colleagues (2012) suggest that students acquire perceptual competencies while 

they learn to discriminate, classify, and categorize information (Rau, 2017). As perceptual 
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competencies are nonverbal processes, prior research argues that perceptual competencies may 

be acquired by experienced-based learning with numerous examples, and not by direct 

instructions (Gibson, 1969; 2000; Kellman & Massey, 2013; Richman, Gobet, Staszewski, & 

Simon, 1996; Rau, 2017).  

 

Competencies for Connection-Making Abilities 

Besides representational competencies, students may also benefit from connection-making 

abilities that enable them, for example, to connect multiple several visual representations, to 

identify and explain similarities or differences between visual representations, or to connect 

between textual and visual representations (Rau, 2017). As outlined above, both textual and 

graphical representations are essential in gate-level netlist reverse engineering as both types of 

representations depict relevant information (see Figure 2). The learning processes that support 

the acquisition of connection-making abilities are described as verbally mediated sense-making 

processes that use graphical representations in authentic tasks (Rau, 2017).  

 

In summary, HRE processes are based on working with textual and graphical 

representations of gate-level netlists. Consequently, a course promoting skill acquisition in this 

field should integrate these two forms of representations. Prior research has shown that learning 

with both representations can be beneficial and challenging at the same time, described as the 

representation dilemma (e.g., Rau, 2017). In order to overcome the representation dilemma, 

students need to acquire conceptual and perceptual competencies that can be acquired through 

different learning processes and instructional support (e.g., Koedinger et al., 2012). Based on 

this, we propose four guidelines for an educational course that teaches HRE. 

 

3.2.2 Guidelines for Learning HRE with Multiple Netlist Representations 

 

Guideline 1 – Integration of Graphical Representations  

As outlined before, working with graphical representations of a gate-level netlist is a common 

practice in HRE. Furthermore, prior research has shown that the integration of graphical 

representations in an educational program can be beneficial for students – especially for those 

students with lower levels of prior domain-specific knowledge (Kalyuga & Singh, 2015; Mayer 

& Feldon, 2014; Rau, 2017), and if the graphical representation includes further relevant 

information (Schnotz & Bannert, 2003; Rau, 2017). Thus, domain-specific graphical 

representations of gate-level netlists as parts of tasks and exercises, should be an integral part 
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of a course that teaches HRE and prepares students in the best possible way to solve realistic 

HRE tasks. 

 

Guideline 2 – Support the Development of Conceptual Competencies  

Beside the presented benefits, learning from and working with graphical representations can 

pose a challenge for students, especially for those who are using representations for the first 

time (Rau, 2017). In order to overcome the representation dilemma, prior research suggests 

specific instructional support to promote the acquisition of conceptual competencies (Rau, 

2017). According to Koedinger and colleagues (2012) the acquisition of conceptual 

competencies is based on verbally-mediates sense-making processes. These sense-making 

processes are hypothesized to be activated by instructional support that engages students in 

active reasoning, for example by prompting students to self-explanations about how they 

applied a specific graphical representation or by engaging them in discussion with other 

students about how to solve the task at hand (Koedinger et al., 2012). Hence, a course on 

teaching HRE should support students’ development of conceptual competencies by including 

specific instructional principles such as self-explanations.  

 

Guideline 3 – Support the Development of Perceptual Competencies  

Besides conceptual competencies, perceptual competencies are suggested to support students 

in overcoming the representation dilemma (Rau, 2017). In order to prepare students to 

immediately recognize visual patterns and to effectively process information depicted from a 

graphical representation, it is important to support the development of students’ visual fluency 

(Airey & Linder, 2009; Kozma & Russell, 2005; Rocke, 2010; Wertsch & Kazak, 2011; Rau, 

2017). As suggested by prior research, inductive learning processes may support the acquisition 

of perceptual competencies (Koedinger et al., 2012). Exercises, such as experienced-based 

learning with numerous examples is suggested to support the acquisition of visual fluency and 

perceptual competencies (Gibson, 1969; Kellman & Massey, 2013; Richman, Gobet, 

Staszewski, & Simon, 1996; Rau, 2017). Thus, an educational course on teaching HRE should 

involve such repetitive exercises of working with graphical representations of gate-level netlists 

to support students in developing visual fluency for detecting relevant patterns therein. 
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Guideline 4 – Support to Develop Connection-Making Abilities  

As shown in Figure 2 above, gate-level netlists can be represented both graphically and 

textually. Against this background, it is essential that an HRE course supports students in the 

acquisition of connection-making abilities within different netlist representations and between 

the textual and graphical representations of netlists (Rau, 2017). According to Rau (2017) 

connection-making abilities are mediated by verbal sense-making processes. Thus, an HRE 

course should prompt students by specific instructions to actively reflect and explain their 

solutions verbally during lectures.  

 

3.2.3 Background on Skill Acquisition  

 

With the goal of designing the HRE course to enhance the acquisition of HRE skills, we 

acknowledged the distinction between declarative and procedural knowledge acquisition by 

assuming that knowledge is first acquired declaratively, and is then transformed into a 

procedural form (Anderson, 1982).  

Prior research has brought many findings to light how both knowledge types are acquired. 

According to the Adaptive Control of Thought-Rational (ACT-R) (Anderson, 1982), 

knowledge is represented in two ways (Tenison & Anderson, 2016): Declarative knowledge 

that consists of facts or strategies (i.e., knowing that), and procedural knowledge that consists 

of specific actions and procedures of how to achieve goals (i.e., knowing how) (e.g., Nokes et 

al., 2010). The acquisition of declarative (verbal) and procedural (non-verbal) knowledge is 

supported by various learning processes (Koedinger et al., 2012). Prior research suggests that 

declarative knowledge is acquired through understanding and sense-making processes that 

involve verbally-mediated (oral and written) and explicit processes in which students attempt 

to understand and reason (Chi & Ohlsson, 2005; Nokes et al., 2010). Students need to be 

actively engaged in understanding and reasoning (Koedinger et al., 2012). Specific processes 

are hypothesized to support learning processes of declarative knowledge, for example, 

comprehension, analogy building, or self-explanation (Chi & Ohlsson, 2005; Nokes et al., 

2010). Procedural knowledge (or skill) is suggested to be acquired through repeated practice of 

a specific task (Anderson, 1982, 1987).  

The learning mechanism behind procedural knowledge is knowledge compilation 

(Anderson, 1987). According to Anderson (1987), declarative knowledge is compiled or 

combined into a set of procedural rules to solve a specific problem. With practice (repetitions 

in solving specific problems), these context-specific procedures are concentrated or chunked 
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together (Anderson, 1987). These sets of skills can be quickly and efficiently applied in order 

to solve a problem (Anderson, 1987). A learning mechanism for knowledge compilation is 

defined as memory and fluency-building processes (Koedinger et al., 2012). Memory and 

fluency-building processes are characterized by nonverbal learning processes that involve 

strengthening memory and compiling knowledge (Koedinger et al., 2012). Fluency is defined 

as the ability to quickly and accurately solve a problem (Kilpatrick, Swafford, & Findell, 2001), 

as knowledge is composed and automatically accessible (Singer-Dudek & Greer, 2005; 

Skinner, Fletcher, & Henington, 1996). Prior findings showed that students with high scores in 

fluency maintain their skills over time (Singer-Dudek & Greer, 2005) and perform better on 

more complex tasks than students with lower fluency (Skinner et al., 1996).  The learning 

mechanism of spacing and testing (Pashler et al., 2007; Koedinger et al., 2012) is suggested to 

support non-verbal memory and fluency-building processes, and thus, the acquisition of 

procedural knowledge.  

We suggest to design the HRE course based on general cognitive psychological research 

on skill acquisition (Anderson, 1982) that is supported by certain types of instructions and 

assignments as described. To achieve this goal, we derive two guidelines for designing the HRE 

course.  

 

 

3.2.4 Guidelines for the Acquisition of HRE skills 

 

Guideline 5 – Support the Acquisition of Declarative Knowledge (Lecture Phase) 

As suggested by prior research, various verbally-mediated (oral and written) and explicit 

learning processes lead to the acquisition of declarative knowledge (Chi & Ohlsson, 2005; 

Nokes et al., 2010). Thus, a course that aims to promote HRE skill acquisition should include 

specific instructional principles that facilitate the learning of declarative HRE facts, theories, 

and concepts. Therefore, we suggest to include prompted self-explanation (Koedinger et al., 

2012) and accountable talks (Michaels, O’Connor, & Resnick, 2008; Koedinger et al., 2012) 

that are related the acquisition of domain-specific declarative knowledge.  

Guideline 6 – Support to Transform Declarative Knowledge into Procedural Knowledge 

(Practical Phase) 

Prior research showed that procedural knowledge is acquired based on knowledge compilation 

(Anderson, 1987). Knowledge compilation is related to specific learning mechanisms such as 

non-verbal memory and fluency-building processes (Koedinger et al., 2012). In order to support 
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students in compiling their declarative HRE knowledge and to become more fluently in solving 

HRE specific tasks, the HRE course should include the learning mechanism of spacing and 

testing (Pashler et al., 2007; Koedinger et al., 2012). Additionally, non-verbal processes such 

as induction and refinement processes (e.g. Worked Examples) may improve the accuracy of 

knowledge through generalization, categorization, discrimination, or causal induction 

(Koedinger et al., 2012).   

 

3.2.5  Background on Supporting Students’ Motivation  

 

Furthermore, motivation is often described as a central driver of devoting years to deliberate 

practice and learning (Litzinger, Lattuca, Hadgraft, & Newstetter, 2011). A high level of 

motivation leads to more cognitive engagement, more learning, and higher levels of 

achievement (Pintrich, 2003), and is therefore relevant to the development of a course on HRE 

that supports students’ learning processes. Since motivation is a key element in learning, we 

suggest to employ the following design principles in our course to enhance students’ motivation 

by the following guideline for the development of an HRE course.  

 

3.2.6 Guideline for Enhancing Students’ Motivation in Learning HRE 

 

Guideline 7 – Support Students’ Motivation over the HRE Course 

Prior research suggested several mechanisms that may raise and promote students’ motivation. 

As outlined by Litzinger and colleagues (2011) or Pintrich (2003), higher levels of motivation 

may lead to greater cognitive engagement and learning, when tasks and materials cater both 

personal and situational interest. Hence, exercises and task of the HRE course should be 

stimulating and engaging (e.g., by including realistic HRE challenges such as finding control 

logic in a gate-level netlist). Moreover, motivation may be promoted by the integration of 

realistic materials and tasks (Ambrose, Bridges, DiPietro, Lovett, & Norman, 2010), such as 

the HRE tool HAL that combines realistic graphical and textual representations of a netlist. 

Both, the authentic HRE tasks and the application of a realistic HRE tool may build connections 

to students’ intended profession, and thus, may increase the perceived value of the learning 

experience, which again may lead to enhanced motivation (Ambrose et al., 2010). Pintrich 

(2003) postulates that students who believe they are able to solve the present task are stronger 
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motivated in terms of effort and persistence. Thus, it is essential for the development of the 

HRE course to consider tasks that are on an appropriate level of difficulty. 

  

3.3 Summary of Guidelines and Description of HRE course design   

 

In the following, we provide structural details of the HRE course and indicate how each aspect 

of the HRE course complies with the previously established guidelines. Table 1 summarizes 

derived guidelines for the HRE course and how these can be met by for example specific task 

instructions. 

 

HRE Course Structure and HRE Tasks   

 

Our goal was to develop an HRE course that promotes HRE skill acquisition in students with 

relevant background (e.g., cyber security; computer science; electrical engineering), and that 

prepares them in participating in our HRE main study. We divided the HRE course in two 

phases – a lecture phase and a practical phase. Thus, we followed the ACT-R-model (Anderson, 

1982) that showed how skills were acquired. The lecture phase of the HRE course aimed at the 

acquisition of declarative HRE knowledge; the practical phase at the transformation of 

declarative into procedural HRE knowledge (skills). During the HRE course students acquired 

declarative knowledge by verbally-mediated facts, theories, and concepts related to the relevant 

fields of electrical engineering, Boolean algebra, and graph theory through two 90-minute 

lectures and one homework assignment per week. We aimed to achieve the acquisition of 

declarative knowledge through the integration of verbally-mediated exercises that encouraged 

students to explain their solutions to other students in accountable discussions. Following the 

lecture phase, students participated in the practical phase consisting of four HRE tasks (detailed 

descriptions in methods). By including spacing and testing exercises (Pashler et al., 2007; 

Koedinger et al., 2012), and worked examples (Sweller & Cooper, 1985), we aimed to enhance 

their long-term retention and improve their fluency in solving HRE tasks. Moreover, through 

the incorporation of worked examples (Sweller & Cooper, 1985) into the curriculum we aimed 

to enable students to learn more robustly from tasks that are interleaved with problem solving 

practice (Koedinger et al., 2012).  

Furthermore, the course consisted of five HRE tasks with growing complexity that had to 

be completed individually by each participant. Each task lasted 2-3 weeks and contained the 

following subtasks: (1) reading of domain-specific scientific papers, (2) pen & paper exercises, 
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and (3) practical reverse engineering tasks. By reading and understanding of 1-2 scientific 

papers students learned domain-specific content knowledge for subsequent tasks while the pen 

& paper exercises supported them in reproducing and internalizing the content knowledge. The 

acquired content knowledge was first applied to small-scale examples, and subsequently in 

more complex contexts during the practical reverse engineering tasks (3). At the beginning of 

each HRE task, theoretical and practical background was taught in one introductory session and 

after the submission deadline, solutions were discussed and students were encouraged to present 

their solutions to the class.  

Relevance with Respect to Guidelines. The course design consisted of several exercises 

and HRE tasks that aimed to support students in developing perceptual competencies as defined 

in guideline 3 (e.g., through repeated tasks involving the use of graphical representations). 

Furthermore, the course structure satisfied guideline 2 and the development of conceptual 

competencies, by encouraging active discussions during the lab sessions or presentation by 

students who explained their solutions. The lecture phase that may promote the acquisition of 

declarative knowledge through specific learning mechanisms contributed to guideline 5. Both, 

the integration of spacing and testing, as well as worked examples may also support students in 

applying their declarative knowledge to solve the four practical HRE tasks, what may lead to 

the transformation of declarative into procedural knowledge. The practical phase of the HRE 

course therefore contributed to the fulfillment of guideline 6.  

 

Learning and Working with realistic HRE tool HAL  

 

In cases where higher levels of motivation are associated with greater cognitive engagement 

and learning (Litzinger et al., 2011; Pintrich, 2003), tasks and materials must cater to both 

personal and situational interest. The HRE tool HAL (Fyrbiak et al., 2018a) is commonly 

applied in HRE practice and assists reverse engineers in analyzing complex gate-level netlists.  

As suggested by prior research (Ambrose et al., 2010), realistic and authentic materials 

and tasks could enhance students’ level of motivation. Thus, we included the realistic HRE 

software HAL and realistic HRE tasks in our HRE course. In this context, we aimed to increase 

the perceived value of the students’ learning experience, what again could lead to enhanced 

motivation (Ambrose et al., 2010).  

Relevance with Respect to Guidelines. The inclusion of HAL supported the demands 

of guideline 1 as HAL provided a learning environment that integrated realistic graphical and 

textual representations of gate-level netlists. Furthermore, the realistic HRE tool HAL and the 
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realistic HRE tasks contributed to guideline 7 in raising the students’ level of motivation that 

may lead to greater cognitive engagement and learning.  

 

Table 1. Overview about HRE course requirements and guidelines about how requirements can 

be met. 

HRE Course 

Requirements 

Guidelines for HRE course 

Overcome 

representation 

dilemma  

  

Promote working with 

domain-specific 

representations 

Guideline 1: Include HRE-specific 

graphical representations in HRE course 

Conceptual competencies 

(e.g., Rau, 2017) 

Guideline 2: Promote acquisition of 

conceptual competencies by promoting 

students’ sense-making processes (e.g., 

inclusion of instructional principles such 

as self-explanations in course) (Koedinger 

et al., 2012) 

Perceptual competencies 

(e.g., Rau, 2017) 

Guideline 3: Promote development of 

students’ perceptual competencies with 

focus on promoting students’ visual 

fluency in recognizing relevant patterns in 

HRE netlists by repetitions of numerous 

HRE examples (e.g., Kellman & Massey, 

2013) 

Connection-making abilities 

(e.g., Rau, 2017) 

Guideline 4: Support students’ 

connection-making abilities in 

recognizing how textual and graphical 

representations complement each other in 

HRE by activating sense-making 

processes with instructions prompting 

students to actively reflect about and 

explain their solutions (Rau, 2017).  
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Promote HRE 

skill acquisition 

Acquisition of declarative 

knowledge (ACT-R; 

Anderson 1982) 

Guideline 5: Promote the acquisition of 

declarative knowledge by promoting 

verbally-mediated (oral and written) and 

explicit learning processes such as 

prompted self-explanation and 

accountable talks (e.g., Koedinger et al., 

2012)  

Transformation of 

declarative knowledge into 

procedural knowledge 

(ACT-R; Anderson 1982).  

Guideline 6: Promote the acquisition of 

HRE skills by focusing on students’ HRE 

knowledge compilation (Anderson, 1987) 

by promoting memory fluency-building 

processes (e.g., spacing and testing) 

(Pashler et al., 2007; Koedinger et al., 

2012) or by induction and refinement-

processes (e.g., worked examples) 

(Sweller & Cooper, 1985) 

Raise students’ 

motivation in 

acquiring HRE 

skills 

Higher levels of motivation 

may lead to greater 

cognitive engagement and 

learning (e.g., Litzinger et 

al., 2011) 

Guideline 7: Enhance students’ 

motivation by including authentic HRE 

task and realistic HRE working scenarios 

(e.g., HRE tool HAL) to raise the 

perceived value of the learning experience 

(Ambrose, et al., 2010). 
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3.4 Methods 

 

In order to evaluate if our course enabled HRE skill acquisition, we conducted two studies with 

students from one German and one North American university. We formulated the following 

research questions (RQs).   

 

1. Does students’ performance in solving HRE tasks improve with increasing experience 

in HRE? 

2. How does the HRE course affect the students’ levels of motivation over all HRE tasks? 

3. Do the students perceive the growing complexity of the four HRE tasks? 

 

 

Participants 

One study was conducted with 18 participants (mean age M = 23.1, SD = 1.8; 9 undergraduates) 

who studied cyber security or electrical engineering at a German university. Overall 20 students 

(mean age M = 23.5, SD = 2.3; 9 undergraduates) who were enrolled in electrical engineering 

or computer science programs participated in the second study that was conducted at a North 

American university. Five participants had to be excluded because they did not complete all 

tasks and the amount of data was not sufficient for analysis. Both studies were completed in the 

winter term of 2018/19, and all participants provided written informed consent beforehand. All 

participants were recruited from the HRE course in that the studies were embedded. Since, all 

participants from both universities had a similar study procedure (i.e., similar tasks; similar 

materials) we were able to merge the two samples in our analyses. The institutional review 

board (IRB) of the North American university approved the study. Both universities were 

selected due to their strong programs in cyber security, and computer engineering. In both 

studies, the participating students received a monetary compensation for the invested time in 

answering study related surveys and tests. The participants’ privacy was ensured by randomly 

assigned pseudonyms in both studies. Participants consistently used these pseudonyms instead 

of their clear names throughout all materials and procedures regarding the two studies.  

 

 



49 

 

Materials 

HRE tool HAL 

The HRE tool HAL (Fyrbiak et al., 2018a; Wallat et al., 2019) served as the underlying 

educational environment for the HRE tasks of the practical phase of the HRE course. 

Commonly, HAL assists hardware reverse engineers in analyzing complex gate-level netlists 

and allows for the development of custom plugin by its extensibility (Fyrbiak et al., 2018a; 

Wallat et al., 2019). In particular, HAL provides both textual and graphical representations of 

the gate-level netlist under inspection that are depicted in an interactive Graphical User 

Interface (GUI). The graphical representation of a netlist enables analysts to perform detailed 

manual inspections and highlighting of crucial netlist components. Furthermore, HAL provides 

an integrated Python shell to interact with and process the netlist via aforementioned plugins.  

HRE Tasks  

The practical phase of the course consisted of four HRE tasks, of which each contained the 

following sub-tasks: (1) the reading of relevant scientific papers, (2) pen & paper exercises, and 

(3) practical reverse engineering tasks. In order to create HRE tasks that included realistic 

reversing goals and sub-tasks, the individual HRE tasks were discussed and optimized in 

advance with representatives from industry. 

In the following, we describe the single HRE tasks with special emphasis on the practical 

tasks. All practical HRE tasks included flat FPGA netlists and had to be solved with HAL. 

Those netlists did not have any high-level information such as variable and signal names, 

comments, hierarchies, or module boundaries. Furthermore, the netlists consisted of global 

input and output buffers, Look-Up Tables (LUTs) and Multiplexers for combinational logic, 

Flip-Flops for sequential logic and their interconnections. Please note, that hereafter all of those 

netlist components are simply referred to as gates.  

The HRE tasks were characterized by an increasing difficulty due to an increasing 

complexity of the tasks themselves (e.g., growing number of netlist components), and a 

decreasing level of guidance by the lecturers and instructional support in the single task sheets 

(see Table 2; adapted from Becker et al., 2020).  
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Table 2. Levels of difficulty, netlist complexity, number of netlist components and guidance 

for each HRE task ranging from + (low) to +++ (high). (Adapted from Becker et al., 2020) 

 Difficulty Level 

of Tasks 

Netlist 

Complexity 

Number of netlist 

components 

Level of 

Guidance 

HRE Task 1 + + 131 +++ 

HRE Task 2 ++ + 138 +++ 

HRE Task 3 ++ + 128 ++ 

HRE Task 4 +++ ++ 2176 ++ 

 

HRE Task 1 – Introduction to Gate-level Netlist Reverse Engineering: The goal of 

this task was to introduce the HAL environment and its basic features to the students. In the 

practical part of this task, students were asked to analyze the data path of an unknown 

substitution-permutation-network called ToyCipher. Therefore, students identified the block 

and key sized of the cipher that served as a basis to decide if the implementation was round-

based or unrolled. Furthermore, they had to identify S-Boxes. HRE task 1 was characterized by 

a relatively low complexity with 131 netlist components and straightforwardness of the task 

itself, and could be solved mostly by manual inspections of the graphical netlist representation 

in HAL.  

HRE Task 2 – Control Logic Reverse Engineering: The goal of this task was to teach 

students the understanding and implementation of methods used for semi-automated extraction 

of a control logic – Finite State Machine (FSM). This task included a slightly modified variant 

of the ToyCipher from HRE task 1. Students were asked to reverse engineer the control logic 

of the netlist by identifying the logic gates of an FSM. Therefore, students applied graph-based 

analysis and manual inspection of relevant netlist components. The basic functionality as well 

as the complexity with 138 netlist components was comparable to HRE task 1. 

HRE Task 3 – Reverse Engineering of Obfuscated Control Logic: The goal of HRE 

task 3 was to teach students how a netlist is protected (i.e. hardware obfuscation) and how to 

break such a protection. The netlist in this task consisted of 128 gates and was a second variant 

of the ToyCipher. Furthermore, the underlying netlist included the control flow obfuscation 

method Harpoon (Chakraborty & Bhunia, 2009). In this context, obfuscation is defined as a 

transformation that obstructs high-level information without changing functionality (Wiesen et 

al., 2019a) with the goal of impeding HRE. The HRE task 3 asked students to extract the gates 

that implemented the control logic and to analyze the obfuscation method. Therefore, students 
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had to differentiate which gates were part of the obfuscation and which gates belonged to the 

original netlist. Finally, students disabled the obfuscation by patching the initial state and by 

verifying their results through dynamic analysis of the netlist. The basic functionality and the 

complexity of the underlying netlist were comparable to the previous tasks. Additionally, HRE 

task 3 focused on the acquisition of an understanding of obfuscated control logic and on 

conducting dynamic netlist analysis. 

HRE Task 4 – Advanced Encryption Standard (AES) Key Extraction: The goal of 

the final HRE task 4 was to extract a hardcoded key from a netlist implementing a real-world 

AES design, whereas AES is a widely applied encryption algorithm. The first sub-task was to 

retrieve high-level information (about e.g., functionality, the presence of the key schedule, the 

key length, and the hardware architecture) from this substantially more complex netlist with 

2176 gates. As S-Boxes serve as a potential anchor for attacks on hard-coded keys, the second 

sub-task asked students to write a script to identify the S-Box logic. Based on this, students 

extracted the hard-coded key through manipulation and dynamic analysis of the underlying 

netlist. In order to solve the fourth HRE task, students had to apply HRE skills and knowledge 

they had acquired from previous HRE tasks. Such knowledge and skills were for example, the 

derivation of high-level information, identification of functional blocks, and dynamic netlist 

analysis. 

 

Measures & Instruments 

Solution Probability 

In the studies, we focused on observing changes to and influences on the dependent variable 

solution probability accuracy in the task (solution probability). The calculation of the solution 

probability was based on the participants’ grading they received for the four HRE tasks of the 

HRE course. The per-task solution probabilities were standardized as percentage to enable 

comparison.  The resulting scores were the basis from that we calculated the per-task solution 

probabilities. The scores from every task were standardized as percentage to enable comparison 

on a scale of 0% to 100%. Three teaching assistants and the lecturer collaboratively graded the 

participants’ solutions from both studies using a detailed gradebook with sample solutions.  
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Solution Time 

The computation of the solution time was based on the log files, which were automatically 

recorded by HAL. These log files included behavioral data of each student and a time stamp 

for each activity in HAL. The students’ solution times were calculated per HRE task. In order 

to calculate the time spent on task accurately, we defined an inactivity threshold of one hour 

and subtracted time periods that lasted longer than one hour from the total solution time.   

 

Further variables of interest 

Control Variables  

A self-developed questionnaire on socio-demographics asked participants to provide 

information about their age, major, and target degree.  

Questionnaire on Current Motivation (QCM) 

In order to investigate the students’ level of motivation in solving the single HRE tasks, we 

employed the Questionnaire on Current Motivation (QCM) (Rheinberg, Vollmeyer, & Burns, 

2001). The 18 items of the QCM measured four motivational factors. On a five-point Likert 

scale from 1 (strongly disagree) to 5 (strongly agree) participants were asked to rate their current 

level of i) expected challenge of a task (“This task is a real challenge for me”); ii) probability 

of success (“I think I am up to the difficulty of this task”); iii) participants’ interest (“I would 

work on this task even in my free time”), iv) anxiety of failure (“I’m afraid I will make a fool 

out of myself”). Our participants answered the QCM via the online survey provider Soscisurvey 

for every single HRE task. For further analysis, we computed means of the four sub factors 

after inverting items that were pooled differently.  

Measures on Cognitive Load 

As commonly applied in current research on Cognitive Load (Schmeck, Opfermann, Van Gog, 

Paas, & Leutner, 2015), we integrated the Perceived Task Difficulty Scale (Bratfisch, Borg, & 

Dornic, 1972), and the Mental Effort Scale (Paas, 1992) in both studies. The Cognitive Load 

Scales were included to measure if the students recognized the increasing complexity of the 

HRE tasks, and to rate how high or low their mental effort during the HRE tasks was. 

Participants rated their Perceived Task Difficulty on a 7-point Likert Scale, ranging from 1 

(very very easy) to 7 (very very difficult). Additionally, students were asked to rate their 

invested amount of mental effort on a 7-point Likert Scale, ranging from 1 (very very low) to 7 
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(very very high) via the online survey provider Soscisurvey. We computed the means of each 

scale for further analysis. 

Study Procedure 

We conducted both studies with a quasi-experimental setting and a within-subject design during 

the winter term 2018/2019 at one German and one North American university. Both studies 

were included in the practical phase of the HRE course. After providing written informed 

consent, the participants received a randomly-assigned pseudonym. In the beginning of both 

studies, participants were asked to answer an online questionnaire on socio-demographics. For 

the four HRE tasks, we applied a similar procedure to collect data. After participants had read 

the assignment of the current HRE task, they were asked to rate their current level of motivation 

(QCM) regarding the HRE task at hand. After they had finished the current HRE task, they 

answered the two Cognitive Load Scales on Mental Effort and Perceived Task Difficulty.  

 

3.5 Results  

 

Results for RQ 1: Does students’ performance in solving HRE tasks improve with increasing 

experience in HRE? 

In order to answer RQ 1, we conducted a repeated-measures ANOVA of solution probabilities 

and solution times with the software IBM SPSS Statistics (please note that all following 

calculations were performed with this software, which is not explicitly mentioned again). As 

all participants had the same study procedure, we were able to merge the participants from both 

samples in our analysis. The repeated-measures ANOVA for comparing the mean of solution 

probabilities across the four HRE tasks revealed that students’ solution probability decreased 

significantly in the most complex HRE task 4, F (3,35) =7.09, p =.00, η2 = .38. It should be 

noted, however, that the mean solution probability (M = 77.2, SD = 31.4) was still at a 

satisfactory level. The results of a repeated-measure ANOVA showed significant differences 

between the means of solution time across the four HRE tasks, with F (3; 17) = 5:66, p = .03, 

η2 = .50. The post-hoc analysis revealed that the solution time differed significantly between all 

tasks, except for solution time between tasks 1 and 3, and tasks 2 and 4. Table 3 summarizes 

descriptive data of solution probabilities and solution times. 
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Table 3. Means (M) and standard deviations (SD) of solution probabilities (in %; N = 38) and 

of solution times (in hh:mm; N = 20). 

  Solution Probability (%)  Solution Time 

  M SD  M SD 

HRE Task 1  97 5.9  03:19 02:39 

HRE Task 2  95 16.5  06:31 04:45 

HRE Task 3  93 14.8  03:03 02:34 

HRE Task 4  77 31.4  05:07 04:05 

 

 

Results for RQ 2: How does the HRE course affect the students’ levels of motivation over all 

HRE tasks? 

In order to analyze if the practical phase of our course design supported continuous motivation 

(RQ 2), we computed the repeated-measure ANOVA of the QCM. The analysis revealed no 

significant differences for the students’ levels of motivation across the four times of measures. 

Within the dissertation, I added repeated-measure ANOVA’s to test for differences in the four 

motivational factors Interest, Probability of Success, Anxiety, and Challenge over the four HRE 

tasks. The results showed no significant differences between the participants’ levels of Interest, 

with F (3, 35) = 2.09, p = .11, η² = .15; for Probability of success with F (3, 35) = .73, p = .53, 

η² = .05; and Anxiety with F (3, 35) = .16, p = .92, η² = .14. We found a significant difference 

in Challenge with F (3, 35) = 5.29, p = .00, η² = .31. Post-hoc analysis revealed significant 

differences in individuals’ levels of Challenge between task 1 and 4 (p = .03); 2 and 4 (p = .04); 

3 and 4 (p = .00)., showing that students perceived the challenge of task 4 as significantly higher 

than the challenge of the other HRE tasks. The descriptive analyses showed medium to above-

average levels of motivation over all HRE tasks (Table 4). 
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Table 4. Descriptive data with means (M) and standard deviations (SD) of the four QCM-factors 

(N = 38) with (1=strongly disagree; 5 = strongly agree). 

  HRE Task 

  
1  2  3  4 

QCM Factor 

 
M SD  M SD  M SD  M SD 

Interest 
 

3.31 0.58  3.24 0.61  3.11 0.74  3.52 0.79 

Challenge 
 

3.27 0.78  3.25 0.89  3.00 0.91  3.66 0.74 

Probability of 

Success 

 
2.64 0.47  2.58 0.40  2.63 2.51  2.73 0.45 

Anxiety 
 

2.55 0.73  2.60 0.80  2.52 0.69  2.65 0.90 

 

 

Results for RQ3: Do students perceive the growing complexity of the four HRE tasks? 

In order to analyze if students perceived the increasing complexity of the single tasks, we 

conducted a repeated-measures ANOVA for the two Cognitive Load scales. The analysis 

revealed that students reported a significant higher Mental Effort in HRE task 4 compared to 

task 1 with, F (3, 35) = 3.56, p = .024, η2 = .23. The repeated measures ANOVA for the 

Perceived Task Difficulty scale showed significant results between the means of task 2 

compared to task 3, and compared to task 4, with F (3, 35) = 18.77, p = .000, η2 = .62. These 

results showed that students perceived the growing complexity of the tasks. I added a summary 

of the descriptive data of participants’ cognitive load in Table 5.  

Table 5. Descriptive data with means (M) and standard deviations (SD) of mental effort and 

perceived task difficulty in the four HRE tasks with N=38 (1= very very low / high; 7 =very 

very easy / difficult). 

  HRE Tasks 

  
1  2  3  4 

Variable 

 
M SD  M SD  M SD  M SD 

Mental Effort  3.45 1.43  4.42 1.30  4.42 1.17  4.26 1.59 

Task Difficulty  3.67 1.24  3.61 1.29  5.39 1.26  5.24 1.71 
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3.6 Discussion 

 

The contribution of this chapter is twofold. First, we derived concrete guidelines for an HRE 

course structure based on prior results from educational and psychological research. The goal 

was to design the course to promote HRE skill acquisition in students with relevant 

backgrounds, for example in cyber security or electrical engineering. Second, we evaluated in 

two exploratory studies if the HRE course promoted HRE skill acquisition in students. Our 

results suggested that our HRE course may be a suitable instrument to prepare students to 

participating in our study on HRE problem solving.  

During HRE, hardware reverse engineers analyze both graphical and textual 

representations of a gate-level netlist. Consequently, a course that aims to prepare students in 

solving realistic HRE tasks, should support students in working with and learning from those 

multiple HRE representations. As there was a complete lack of educational HRE courses in 

university programs, we developed the course based on prior findings from educational and 

psychological research. Against the background of these prior research findings we derived 

concrete guidelines for the HRE course. Those guidelines suggested to include specific 

instructional principles that should support students in acquiring specific competencies (e.g., 

perceptual competencies) that in turn would prepare them in working with and learning from 

multiple representations during HRE problem solving. Furthermore, following the theoretical 

considerations of the ACT-R model (Anderson 1982), we divided the course into two phases. 

The goal of the lecture phase (i.e., first phase of the course) was to teach students relevant 

declarative HRE knowledge (e.g., Boolean algebra; microchip architectures). The second 

phase, the practical phase, consisted of four practical exercises in which students were asked to 

solve HRE tasks in a realistic setting (i.e., applying the HRE tool HAL; solving realistic HRE 

sub-tasks). In order to solve those practical tasks, students needed to apply HRE knowledge, 

they had previously acquired in the lecture phase. By actively applying the declarative 

knowledge to solve the practical HRE tasks, the declarative knowledge should be gradually 

transformed into skills (procedural knowledge).  

In the second part of this chapter, we evaluated if our course promoted the acquisition of 

HRE skills in students with relevant backgrounds, and analyzed their problem-solving 

performance in the four HRE tasks of the practical phase. Our results showed that students 

achieved high solution probabilities in HRE tasks 1, 2 and 3. Thus, we hypothesized that the 

lecture phase of the HRE course enabled the acquisition of HRE skills that supported the 
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students to solve the HRE tasks. As the first three HRE tasks differed in their reversing goals 

but were developed based on the same cipher, we hypothesized that students were able to apply 

knowledge and skills they acquired in the analysis of HRE task 1 in order to solve HRE tasks 2 

and 3 with high solution probabilities. Furthermore, our analysis revealed that students spent 

more time for solving HRE task 2 than for solving task 1. As students were asked to implement 

automated solutions in task 2 for the first time, the longer solution times in task 2 were not 

surprising. In terms of solution times, we found that the students tended to complete task 3 

faster than task 2 (although task 3 was more complex than task 2). We hypothesized that 

memory and fluency-building processes were involved, and students developed their solution 

based on declarative and procedural HRE knowledge (Koedinger et al., 2012). In other words, 

students applied their knowledge gained in task 2, for solving task 3 faster, thus demonstrating 

that they built a set of HRE knowledge and skills (including sets of problem-solving strategies) 

that enabled them to become more fluent.  

Furthermore, our results showed that the solution probability decreased in the most 

complex HRE task 4. This result may be based on the fact that HRE task 4 significantly differed 

from the previous HRE tasks in term of its complexity and requirements. However, we observed 

that the standard deviation was relatively high and that some students were able to achieve a 

very high solution quality in task 4 despite its complexity. This leads to two conclusions. On 

the one hand, weaker students should be supported in solving the more complex tasks (e.g., by 

offering support or by additional exercises that prepare them for the more complex HRE tasks). 

Second, this result also has consequences for the main study on exploring HRE problem 

solving. If the main study aims to investigate realistic problem-solving processes it might be a 

valuable approach to include only those students with the best solution quality in the complex 

HRE task. This would avoid that irrelevant influences (e.g. struggles with Python or HAL) 

could impair the analysis of HRE problem-solving process and bias the results.  

Furthermore, we argue that the HRE course enabled students to solve the representation 

dilemma (Rau, 2017) as the participants achieved high solution probabilities in the HRE tasks. 

As proposed by our established guidelines, we included specific instructional (e.g., self-

explanation; Koedinger et al.; 2012) and task principles to promote the acquisition of conceptual 

and perceptional competencies as well as connection-making abilities (Rau, 2017). We 

emphasize that future HRE courses should include those principles. Based on the established 

guidelines, we included spacing and testing (Pashler et al., 2007) as well as worked examples 

(Sweller & Cooper, 2005) to support students’ development of memory fluency-building 
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processes and induction and refinement-processes (Koedinger et al., 2012). We hypothesize 

that these principles supported students HRE knowledge compilation (Anderson, 1987) and 

thus, may have enabled them to acquire HRE skills. These two instructional principles should 

be part of future HRE courses. 

According to Litzinger and colleagues (2011) we aimed to achieve higher levels of 

motivation that may lead to greater cognitive engagement and learning. Following our 

established guidelines, we included realistic HRE tasks and the HRE tool HAL. Our analysis 

revealed that students had above-average levels of motivation throughout the four HRE tasks. 

We assume that the integration of stimulating and realistic HRE tasks on an appropriate 

difficulty level (growing complexity) that had to be solved with the realistic HRE tool HAL led 

to the students’ high levels of motivation. Therefore, those realistic aspects of the lecture phase 

should still be included in future HRE courses.  

 

3.7 Limitations and Future Work 

 

This presented work has limitations that should be investigated. This work is limited by the 

small sample sizes. Future studies on HRE skill acquisition should conduct analysis with larger 

sample sizes. Furthermore, our study did not specifically evaluate if the included instructional 

principles significantly influenced the acquisition of perceptual and conceptual competencies. 

We can only hypothesize that the included principles (e.g., worked examples) are suitable for 

acquiring HRE skills, but not if they are the optimum for supporting HRE skill acquisition. It 

would be preferable in future studies to quantify the influence of specific instructional 

principles and if they support the acquisition of competencies during HRE skill acquisition. 

Furthermore, our data led us to assume that declarative knowledge had been transformed into 

procedural knowledge (skills). A closer examination of these two knowledge types assigned to 

the two phases of the HRE course might prove interesting. Moreover, this study is a first 

investigation to fill the research gap of skill acquisition in HRE, leading to the fact that the 

generalizability to other areas is limited. Our research prompted us to make several observations 

about potential future research on HRE skill acquisition. In order to analyze problem-solving 

processes in HRE, future studies should focus on occurred errors and difficulties during HRE. 

Finally, the integration of a second complex task would help reveal more individual differences 

between students.   



59 

 

3.8 Conclusion 

 

Researchers who aim to explore cognitive processes in HRE face the methodological problem 

that HRE experts are unavailable for research. One methodological approach that could enable 

such studies is to involve trained students. So far, no university-level HRE course existed and 

HRE training happened almost on the job. Furthermore, there was an almost complete lack of 

research that has explored how HRE skills and knowledge could be acquired.  

Against the background of prior psychological and educational research findings, we 

derived specific guidelines for a course design aiming to promote HRE skill acquisition in 

students with relevant backgrounds. Within the scope of two exploratory studies, we evaluated 

the HRE course and its effectiveness in teaching HRE skills and knowledge. Our results showed 

that students (enrolled in Bachelor’s and Master’s cyber security and electrical engineering 

programs) were able to acquire HRE knowledge and skills. The students achieved very high to 

high solution probabilities in specific HRE tasks. In terms of future runs of the HRE course, 

educators need to consider that in the most complex task 4, some students (e.g., with lower 

scores in processing speed) achieved lower solution probabilities. Thus, future HRE courses 

should include specific exercises how to process and work with visual information received 

from the graphical representation of a gate-level netlist to support weaker students.  

In summary, we hypothesize that the developed HRE course may be a suitable instrument 

to promote HRE skill acquisition in students with relevant backgrounds. Therefore, we suggest 

to include this HRE course as an HRE training to prepare students to solve a realistic HRE task 

of the main study.   
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4 Problem Solving in Hardware Reverse Engineering 
 

Disclaimer: The content of this chapter was previously published and submitted as parts of two 

papers. The introduction, methods, results, and general discussion concerning HRE problem-

solving processes and correlations with levels of expertise were taken from the paper “The 

Anatomy of a Hardware Reverse Engineering Attack: Insights into Cognitive Processes during 

Problem Solving” that is currently under review at the journal ACM TOCHI. This paper was 

written together with my co-authors Steffen Becker, René Walendy, Christof Paar, and Nikol 

Rummel.  

Furthermore, parts of this chapter concerning the correlation of cognitive abilities with HRE 

problem solving (methods, results, discussion) were taken from the published paper “An 

Exploratory Study of Hardware Reverse Engineering – Technical and Cognitive Processes” 

(Becker et al., 2020) that was presented at the 16th Symposium on Usable Privacy and Security 

(SOUPS) in August 2020 together with my co-authors Steffen Becker, Nils Albartus, Nikol 

Rummel, and Christof Paar.  Please note, that some sub-parts of the papers were not relevant 

for the overall argumentation of the dissertation, and were not included. 

As both papers were conducted together with my co-authors, I will use the academic “we” to 

highlight this fact.  
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4.1 Introduction and Contributions 

 

As outlined in greater detail above (see Background), HRE is a common tool to retrieve crucial 

information from an unknown chip design. As fully-automated HRE tools do not yet exist, the 

analysts’ cognitive processes and cognitive abilities are hypothesized to mainly form the 

primary determinants of success (e.g., Becker et al., 2020). Nevertheless, the analysis of those 

underlying cognitive processes and factors in HRE has thus far been limited to a small amount 

of prior research. Lee and Johnson-Laird (2013) were one of the first to define reverse 

engineering of Boolean systems as a specific type of human problem solving. Besides these 

first results, HRE problem-solving processes and especially their time-efficiency or the ways 

in that they are impacted by levels of expertise or cognitive abilities, remain so far poorly 

understood.    

We pursue those research gaps by systematically analyzing the problem-solving 

processes of hardware reverse engineers who solve a realistic HRE task. Thereby, we 

contributed to the overarching research goal (see Research Goals) by analyzing underlying 

problem-solving processes in HRE.   

Furthermore, prior research on HRE problem solving is also lacking in analyzing the 

influence of expertise or of cognitive abilities on the problem-solving performance. Therefore, 

we included participants with different levels of HRE expertise and analyzed if their levels of 

expertise may lead to differences in the problem-solving process. Thereby, we contributed the 

sub-goals 1 and 2 of this thesis (see Research Goals). In the main study, we included 

experienced students enrolled in cyber security and electrical engineering programs. 

Beforehand, they acquired a sufficient amount of HRE knowledge and skills by successfully 

passing the HRE training as it has been demonstrated to prepare students with relevant 

backgrounds to solve realistic HRE tasks (see Chapter 3). Prior research on HRE problem 

solving is also strongly limited in exploring the role of an individual’s level of intelligence on 

the HRE problem-solving performance. Hence, we analyzed participants on different levels of 

intelligence and sub-factors of intelligence to retrieve insights on the role of intelligence in HRE 

problem solving.  
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Against this background, we formulated the following research questions (RQs):  

 

I. RQ1a. Which problem-solving processes can be observed while hardware reverse 

engineers are solving a realistic HRE task?  

II. RQ1b. Are there differences in the HRE problem-solving process between analysts 

with different levels of expertise?    

III. RQ2. Can differences in the time-efficiency of applied problem-solving strategies be 

identified? 

IV. RQ3. Do cognitive abilities play a role in HRE problem solving? 

 

We investigated these RQs by systematically analyzing the problem-solving processes of 

hardware reverse engineers on different levels of expertise and cognitive abilities who were 

asked to solve a realistic HRE task. To that end, we conducted an empirical study with nine 

hardware reverse engineers (eight top-performing intermediates; one HRE expert). In order to 

systematically explore applied problem-solving strategies and their time-efficiency, we 

analyzed 2445 single log entries by applying an iterative open coding scheme. Furthermore, we 

pursued how the level of expertise and cognitive abilities was correlated to the problem-solving 

performance.  

In summary the contributions of this chapter are: 

1) Based on our qualitative log-file analysis by applying an iterative open coding based on 

Grounded Theory (Strauss & Corbin, 1998), we developed a detailed hierarchical HRE 

problem-solving model. This model consisted of and defined 103 discrete problem-

solving actions that hardware reverse engineers applied to solve the HRE task.  

2) We provided unique and in-depth insights into applied problem-solving strategies and 

their time-efficiency. 

3) We presented differences between the study participants with varying levels of 

expertise, as two intermediates were able to achieve time-efficient solutions that were 

comparable to the HRE expert.  

4) Our results suggested that besides expertise, the intelligence sub-factor working 

memory may play a role in time-efficiently solving the realistic HRE task.   
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4.2 Methods 

 

Study Overview 

We conducted the empirical study with nine reverse engineers with intermediate and expert 

levels of expertise during the summer term of 2019 at a German university. The participants on 

intermediate levels acquired a sufficient amount of HRE skills and knowledge by successfully 

completing the HRE training (see Chapter 3). We collected behavioral log file data that 

consisted of 1141 executed scripts, 68 console inputs, and 1217 manual activities from nine 

participants. The study participants successfully solved a realistic HRE task over the period of 

two weeks with the HRE tool HAL. In addition, participants were asked to answer a series of 

additional questionnaires (e.g., self-assessment of domain-specific expertise; intelligence test). 

In order to systematically examine applied problem-solving strategies, we applied a well-

established iterative open coding methodology based on the Grounded Theory approach by 

Strauss and Corbin (1998). Furthermore, we qualitatively related the identified problem-solving 

strategies to time on task as well as to levels of expertise and cognitive abilities.   

Participants 

In summary, eight students on intermediate levels in HRE and one HRE expert voluntarily 

participated in our study. A total of 22 students who were enrolled in either their last year of a 

three-year Bachelor's cybersecurity program or in a Master's cybersecurity program composed 

the population of the HRE intermediates. In order to achieve an intermediate level of HRE 

expertise that enabled them to solve the realistic HRE task, all students had successfully 

completed the HRE training (see Chapter 3). Of the original 22 students, eight withdrew their 

participation in the study or could not be included in the analysis due to missing or incomplete 

data. 

Eight top-performing students (mean age M = 24 years; SD = 4 years) were selected from 

the group of intermediates. This was motivated by the fact that we aimed to derive a 

representative and generalizable HRE problem-solving model that would represent realistic 

behaviors of hardware reverse engineers as closely as possible. Those eight top-performing 

students seemed to be the most suitable proxy for realistically analyzing hardware reverse 

engineers, besides the HRE expert. Furthermore, by selecting these top-performing students, 

we aimed to avoid the inclusion of HRE-unrelated issues in our HRE problem-solving model, 

such as insufficient programming skills or difficulties in the application of the HRE tool HAL 

(see Description of HAL). This top-performing group of intermediates achieved a mean 
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solution percentage of 97.5% with 7.1% standard deviation over all four HRE training tasks. 

The HRE task was solved by the top-performing intermediates with a mean solution percentage 

of 98.5% with a standard deviation of 1.9%. The intermediates’ solutions were graded 

collaboratively by three teaching assistants based on a detailed gradebook with sample 

solutions. The teaching assistants assigned solution probabilities on a scale ranging from 0% to 

100%. The solution probability of 100% was assigned to solutions in that participants 

completely removed the implemented watermark from the netlist (see description of watermark 

task).  

As previously outlined (see Background), recruiting HRE experts can pose a 

methodological challenge for researchers. We were able to recruit at least one HRE expert by 

leveraging the professional network of one of the authors. This HRE expert was a researcher in 

the field of hardware security and stated to have five years of experience in conducting HRE. 

Furthermore, the expert claimed to typically spent between 20 and 30 hours per week on solving 

HRE tasks. In addition, the expert invested between 20 to 30 hours per week in HRE-related 

tasks such as software and hardware programming activities. Finally, the expert was 

characterized by considerable amount of prior domain-specific experience in HRE-related 

topics (e.g., high-level and low-level programming languages), and by a significant amount of 

domain-specific knowledge in HRE-related topics such as chip architectures (e.g., FPGA) or 

crucial netlist components (e.g., FSM).  

Ethical Considerations 

All participants (the 22 intermediates and the expert) provided written informed consent before 

entering the study. We emphasized that the study participation was voluntary and outlined that 

a withdrawal from the study was possible at any time and without stating reasons (including the 

deletion of all study-related data). For the completion of study-related materials and tasks, the 

22 students received a monetary compensation. In order to protect participants’ privacy, we 

randomly assigned pseudonyms to the participants that were used instead of their clear names 

on all study-related materials and during all study-related activities. The pseudonyms were 

subsequently replaced with numbers as part of the data analysis. Since there was no ethics 

committee at the institute at the time the study was conducted, the data protection officer of the 

German university at which the study was conducted, reviewed and approved the privacy-

protection procedures of this study.  
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Materials 

HRE Skill Training for Students 

In order to support students in solving the realistic HRE task, it was essential that those students 

acquired a suitable amount of HRE-specific knowledge and skills beforehand. Therefore, we 

included the 14-week HRE training course that was proven efficient in transforming declarative 

HRE knowledge into HRE skills (see Chapter 3). Even if not yet HRE experts, the high solution 

percentages in the four HRE training tasks of the eight top-performing students proved that they 

had acquired an intermediate level of expertise through the successful completion of the HRE 

course. Despite the fact that the four HRE training tasks were built upon real-world HRE 

scenarios (e.g., extraction of an AES; reversing an obfuscated circuit), the HRE training course 

did not include any best practice or solution strategies specific to the realistic HRE task of the 

study. This was an effort to avoid biasing or artificially enhancing the performance of the 

participating students in the realistic HRE task. At the same time, we feel that the missing 

preparation of the students on how to specifically solve the realistic HRE task during the HRE 

training did not deprive them of essential prior experience. We would like to emphasize that 

the HRE course was holistic and comprehensive, and that no training includes every possible 

novel scenario that may have to be solved in the specific field.  As the HRE expert already 

possessed the required HRE knowledge and skills, and also collected prior experience in 

working with the HRE tool HAL, the expert did not complete the HRE training.  

HRE Task 

In order to capture and observe realistic problem-solving processes, it is essential include a 

representative task that is directly sampled from a real-world situation (Charness & Tuffiash, 

2008). As a well-known and widely used method, so-called watermarks, are applied to detect 

hardware counterfeits (Abdel-Hamid, Tahar, & Aboulhamid, 2003). Hardware manufacturers 

mark their IP by embedding those watermarks in their microchips to impede theft of their 

innovative developments. Accordingly, the detection of the watermark in an unauthorized clone 

of the original netlist can prove that the netlist, and thus the IP, has been counterfeited (Becker 

et al., 2020). Consequently, when an analyst plans to build an illegal clone of the original netlist, 

the watermark has to be detected and removed from the netlist. 

Against this background, the HRE task of the study directed the study participants to 

identify and remove a watermark from the gate-level netlist – a challenge that can be found in 

real-world scenarios as shown above. The gate-level netlist of the HRE task consisted of 4.653 

Boolean gates, memory components, and their interconnections and contained a watermark 
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scheme as proposed by Schmid, Ziener and Teich (2008) implementing a copyright protection. 

The goals of the HRE task were to remove the watermark and to clone the circuit without the 

watermark whereby the infringement of the IP would be unable to be proven. In order to remove 

the watermark, participants were asked to identify the specific netlist components that 

implemented the watermark in a first step. In the second step, participants were asked to develop 

a custom technique to extract and remove the watermark from all the identified components.  

HRE Tool HAL  

HAL was developed by Fyrbiak and colleagues (2018a) and was included in our study as a tool 

that enabled participants to conduct HRE analysis in order to remove the watermark from the 

given gate-level netlist. At the same time, HAL also assisted the researchers in the analysis of 

problem-solving processes, as the tool enabled the automatic recordings of behavioral log files 

of every single participant.  

Researchers and experts in the HRE domain use HAL (available on GitHub, Chair for 

Embedded Security, 2019; Wallat et al., 2019) as a state-of-the art HRE tool to analyze netlists 

of unknown chip designs. HAL provides a rich GUI to the analysts (Figure 3), and allows 

reverse engineers to focus on conducting HRE analysis with no need for further tool 

development. Nevertheless, HAL does not provide any (semi-)automated netlist analysis 

methods. Both, manual / visual and script-based analysis are possible due to HAL’s GUI. 

Hardware reverse engineers are supported in their manual analysis of specific netlist 

components such as gates and their interconnections by a textual and graphical representation 

of the netlist, which is integrated in HAL’s GUI. Furthermore, as it is a common method in 

HRE practice and also part of the complex HRE task, HAL allows analysts to interactively 

script and test their reversing methods by in integrated Python shell. Therefore, HAL supports 

the script-based analyses of and the interaction with the netlist by providing multiple reverse 

engineering-specific Python commands.   

Students who participated in our study, practiced how to use both manual and script-based 

analysis with HAL during the four HRE training tasks of the HRE course. The HRE expert 

gained prior experience in the expert’s daily work practice that included netlist analysis with 

HAL. In order to simulate a realistic HRE scenario within our study that was comparable to 

that in which HRE experts normally work, we included the following aspects: a manual for 

HAL that contained i) specific operating instructions, ii) detailed information of HRE-specific 

Python commands, iii) examples of code snippets demonstrating HAL’ capabilities.  
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Collected Data 

Demographic Questions 

All participants were asked to provide information about their sociodemographic backgrounds. 

Therefore, we included two short questionnaires in the study. One of these questionnaires was 

developed for the student participants, and asked them to answer questions about their age, 

major, and target degree. The second questionnaire was designed for the HRE expert and asked 

the expert to self-rate the level of HRE expertise including questions on age, highest level of 

education, current job position, HRE expertise level, year of relevant experience in HRE, as 

well as hours spent on performing HRE per week. In developing the expert questionnaire, we 

were oriented to the measurement of the level expertise among software reverse engineering 

experts according to Votipka and colleagues (2020).  

Cognitive Abilities 

We included the Wechsler Adult Intelligence Scale (WAIS-IV) to assess participants’ cognitive 

abilities (Wechsler, 2008). The WAIS-IV included the measurement of three sub-factors of 

intelligence. First, the ability to accurately interpret and work with visual information was 

measured by the factor perceptual reasoning, that consisted of three tests: Block design 

Figure 3. Screenshot of HAL’s GUI. Left: Text-based representation of netlist components. 

Middle: Graphical representation of the unknown netlist. Right: Python editor for script-based 

netlist interactions. Bottom left: Details widget providing additional information 
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(participants were asked to rearrange 3-dimensional blocks to match patterns), matrix reasoning 

(participants completed 2-dimensional series of figures), and visual puzzles (participants chose 

three figures out of six to build a 2-dimensional geometric shape). The second intelligence sub-

factor working memory reflected the ability to memorize information and to perform mental 

operations by applying that information. It consisted of two tests: Digit span (participants 

repeated a series of numbers spoken to them), and arithmetic (participants solved under time 

pressure several arithmetical problems spoken to them). Processing speed measured the 

participants’ ability to quickly and efficiently process visual information. It consisted of two 

tests: Symbol search (participants were asked to search symbols accurately in a given time 

limit), and coding (participants needed to transcribe a unique geometric symbol with its 

corresponding Arabic number accurately under time pressure).  

Behavioral Log Files 

The HRE tool HAL automatically generated and saved log files from each of the nine 

participant’s problem-solving steps during the netlist analysis. These nine log files consisted of 

148 to 467 single log entries. Log entries included text files with time-stamps and one of the 

following events:  

i. A script-based analysis step with the executed Python script, information about the 

syntactical correctness of the Python script, and the corresponding console output; 

ii. A short Python console input with information about syntactical correctness of the 

Python script, and the corresponding console output; 

iii. A manual analysis step (e.g., selection of a netlist component such as a gate or a net) 

and the unique identifier of the selected netlist component; 

iv. Marker for (in)activity phases including information about the duration of these phases.  

In summary, the nine log files of the hardware reverse engineers included 2445 single events 

(of which 1141 executed Python scripts, 68 console inputs, 1217 manual netlist component 

selections, and 19 idle events). In order to prepare for the subsequent open coding analysis, the 

log files were pre-processed by displaying the events together with associated information in 

tabular form. Figure 4 shows a section of such a pre-processed log file.  
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Timestamps Type Attribute Component ID or File Name 

… … … … 

3,822 s Script Working 003822_Participant8.py 

3,856 s Manual Gate 514 

4,240 s Script Erroneous 004240_Participant8.py 

4,268 s Script Working 004268_Participant8.py 

4,334 s Manual  Gate 531 

4,341 s Manual Net 2,437 

… … … … 

Figure 4.  Example Section of Participant 8’s Pre-Processed Log File with 6 of 153 Total Events 

(Extract of Script of Participant 8 is Attached in the appendix). 

 

Data Analysis Method 

Iterative Open Coding based upon Grounded Theory 

Each event of the nine participants was qualitatively analyzed by applying an iterative open 

coding approach that was based on the Grounded Theory methodology by Strauss and Corbin 

(1998). Known as a well-established and standard research method from the social sciences, 

the Grounded Theory methodology is often applied in research domains in which theories and 

models are lacking thus far (Charmaz & Belgrave, 2007). Since this is also the case for theories 

and models of cognitive processes in HRE and Grounded Theory provides explicit guidelines 

that facilitate the analysis of HRE problem-solving processes, we decided to apply such an 

iterative open coding.  

The process of the iterative open coding was as follows. As some single consecutive 

events overlapped strongly in terms of content, we decided to group them first. This combined 

1232 consecutive events into segments that should facilitate the qualitative analysis. These 

segments consisted mostly of manual netlist interactions and barely of consecutive console 

inputs or executed Python scripts. Before we could assign open codes, each single event had to 

be described in detail. This very detailed description formed the basis for developing an open 

coding scheme that could then be iteratively refined. The annotation of each event and segment 

consisted of the following aspects:  

I. The recorded problem-solving step was described (e.g., “The executed script iterates 

over all netlist components and checks if their name contains the string Look-up Table 

(LUT).”, or “Manual selection of a netlist component implementing a watermark.”).  
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II. The duration (in seconds) of the problem-solving step was added. 

III. Any changes compared to the previous step were described (e.g., “The participant added 

three lines of code containing one print statement, one if-clause, and the reversing-

specific Python function get\_data\_by\_key()”).  

IV. The observed behavior was explained (e.g., “The watermarking is implemented by 

LUTs”. Therefore, the participant filters the netlist components for LUTs.”).  

We assigned one or more open codes that captured the most relevant annotations. These 

open codes were assigned to the single segments in the evaluation table.  Examples for assigned 

open codes are “script-based inspection of watermark candidates” or “successful correction of 

syntactical errors”. The iterative open coding procedure started with two researchers who 

collaboratively annotated and encoded the log files of four participants with the goal to create 

an initial code book. During this step, the initial open code book was continuously updated and 

previous segments were re-coded as necessary. Based on the initial code book, a third researcher 

annotated and encoded the log files of the five remaining participants. After all participants’ 

problem solving had been encoded, all three researchers reviewed and discussed the 

annotations, include new codes in code book, and retroactively applied any such codes where 

applicable.  

In summary, the final code book includes 103 different unique open codes that represent 

a compacted version of the single segment annotations and describe the observed HRE 

problem-solving processes of our nine participants. An external researcher independently coded 

71 randomly selected segments from three randomly chosen participants with the existing code 

book and achieved an inter-coder reliability of 84.5%. Overall, we assigned the 103 unique 

open codes 1887 times across the 1232 annotated segments.  

Taxonomy of Open Codes 

Based on the final code book, we developed an HRE problem-solving taxonomy during several 

rounds of discussion. First, we grouped related open codes into problem-solving clusters. The 

grouping was based on similarities between single open codes. These problem-solving clusters 

were then subordinated into nine sub-categories. These sub-categories represented the 

participants’ problem solving during the study (RQ1), and also build the foundation for the 

analysis of problem-solving strategies and their efficiency (RQ2).  

Eight of the nine sub-categories could be arranged into two main categories. The first main 

category comprised all problem-solving processes that were related to Python programming 
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actions. The second main category included all reversing-specific actions. Based on the HRE 

problem-solving taxonomy, we were able to develop a “language” to describe observed 

problem-solving processes and to analyze differences between participants (RQ1b).  

Total Solution Time 

Based on the time stamps in the automatically generated log files we were able to compute the 

total solution time per participant. During the log file analysis, we found idle events that were 

unrelated to the HRE task and could be clearly identified as breaks based on their annotations 

and wall-clock time (i.e., time of the day at which they occurred). Those idle times were 

excluded from the total solution time. We included the total solution time to identify differences 

in the time-efficiency of applied problem-solving strategies (RQ2).  

Incorporating Open Code Duration 

We noticed that the mere number of open codes did not provide a sufficient granular metric to 

describe the problem-solving strategies of the hardware reverse engineers (RQ2). Thus, we 

included the incorporation of participants’ solution time. Therefore, we first divided the total 

solution time of the participants in 50 time windows of 2% each1.  

We then analyzed which open code(s) were assigned in each of the 50 time windows. 

This resulted in a fine-grained measure of the relative amount of time that a participant spent 

on a single action (i.e., described by the annotated open code). Based on this metric, we were 

able to analyze which open codes were assigned towards the beginning, middle, or end of the 

participants’ time on task. In summary, the incorporation and detailed analysis of participants’ 

time spent on specific open codes, contributes to the analysis of applied problem-solving 

strategies and their efficiency to answer RQ2.  

 

Summary of Study Procedures 

Before the 14-week HRE training and the study started, all participants signed the informed 

consent document. Furthermore, all participants received a randomly assigned pseudonym they 

were asked to use instead of their clear names during the study. All participants answered the 

questionnaire on socio-demographics via an online survey provider. Attentionally, the 

intelligence test (i.e., WAIS-IV) was conducted in a 60 to 90 minutes face-to-face session with 

                                                 
1 We also tested for smaller time windows, e.g., of 1%, but could not detect any gain in accuracy. 
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one of the researchers. After the successful completion of the HRE training, the HRE task 

materials consisting of a short task description, the watermarked netlist, and a copy of the paper 

in which the implemented watermark was introduced were distributed to the participants. The 

participants had two weeks to complete the HRE task, without precise specifications as to what 

time of day they wanted to work or whether they wanted to solve the task in one session or 

spread over several days. After completing the tasks, participants uploaded their log files to a 

server located at the university and received a monetary compensation for working on study-

related tasks.  

 

4.3 Results 

 

In the following, the results of our analysis to answer the three RQs introduced in the beginning 

of this chapter (see Research Questionss) are presented. In order to answer RQ 1a, we developed 

an HRE problem-solving model based on a taxonomy were derived from the detailed analysis 

of the behavioral log files of the nine participants. In the context of RQ 1b, we build upon the 

foundational HRE problem-solving model to explore differences between the HRE expert’s and 

the eight intermediates’ problem-solving processes. Furthermore, we analyze time-efficiency 

of the applied problem-solving strategies to answer RQ 2. Finally, we explore the role of 

cognitive abilities in HRE problem solving (RQ3). We included a brief discussion after each of 

these three main results. All analyses were performed with self-developed analysis programs, 

as well as Microsoft Excel and MAXQDA. 

 

4.3.1 Results RQ1a  

 

RQ1a: Which problem-solving processes can be observed while participants are solving a 

realistic HRE task? 

As previously described in the section Data Analysis Method (see Methods), we systematically 

analyzed and categorized the log files of the participants (eight intermediates, one HRE expert) 

after the completed the realistic HRE task of the study.  

The 103 unique open codes were grouped into nine sub-categories that enabled us to 

describe the observed HRE problem-solving processes in detail and to develop an HRE 

problem-solving model, which is presented in Figure 5 below. Within our analysis, we found 
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that eight of the nine sub-categories could be grouped into one of the two main HRE problem-

solving categories: Reversing Actions or Code Development. The main category Reversing 

Actions combined all actions that directly related to the HRE problem-solving process. In 

contrast, the main category Code Development included actions that focused on the 

development of Python programming code. The ninth sub-category External Influences 

combined all actions that were not related to reverse engineering or coding activities and 

encompassed codes that included exogenous influences upon the HRE problem-solving process 

such as external interruptions (i.e., short breaks during the reversing process). 

We assigned the open codes sorted by sub-categories to the individual actions of the nine 

participants. In the problem solving of P5 we did not identify any actions that could be assigned 

to the sub-category of External Influences. Table 6 provides an overview about the total number 

of assigned open codes per participant aggregated at the sub-category level.  

 

Table 6. Code System with Numbers of Assigned Open Codes per Category, Sub-Category, 

and Participant. (A detailed view of all open codes and the frequency with which they were 

assigned to each participant is shown in the appendix.)   

  P1 P2 P3 P4 P5 P6 P7 P8 Expert 

  Reversing action 

Inspection and 

Information Gathering  

 
10 17 15 11 23 17 25 19 23 

Reversing Milestones 

and Sub-Goals 

 
13 12 13 16 19 19 15 10 11 

Reversing Problems  6 2 10 9 5 8 8 1 1 

Reversing Strategy 

Decisions 

 
11 17 21 24 31 17 41 9 37 

Total  40 48 59 60 78 58 89 39 72 

  Code Development 

Code Adjustment  49 39 42 49 70 38 41 20 63 

Error Introduction  24 14 27 46 26 22 25 7 31 

Test and Validation  27 12 30 32 45 14 22 7 43 

Troubleshooting  63 24 49 74 52 39 35 20 49 

Total  163 89 148 201 193 113 123 54 186 

External Influence  23 7 5 9 0 3 19 8 3 
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Our developed HRE problem-solving model had a hierarchical structure that included four 

levels, progressing from general to specific: The highest level of the model included the main 

categories, the sub-categories were included at the second level, which were followed by 

clusters and finally by open codes at levels three and four. Figure 5 visualizes the HRE problem 

solving model with the first two levels including main categories, and sub-categories. The 

numbers of unique open codes specify how many different open codes were assigned to the 

sub-category or the cluster. The number of assigned open codes indicated how often a unique 

open code was assigned to a participant’s problem-solving actions.  

 

Figure 5. HRE Problem-Solving Model with the two main categories Reversing Actions and 

Code Development, and the nine sub-categories at level two. Numbers in brackets indicate the 

number of unique codes per sub-category. 

 

Main Category: Reversing Actions 

The main category Reversing Actions included 63 unique open codes that were assigned 543 

times to actions of the nine study participants. The next analysis step revealed that these open 

codes belonged to one of the following four sub-categories: Inspection and Information 

Gathering, Reversing Strategy Decisions, Reversing Milestones and Sub-Steps, and Reversing 

Problems.  

The first sub-category, Inspection and Information Gathering, included all actions that 

participants performed to retrieve information about the netlist and its components (e.g., 

assigned clusters Exploration or Identification) or actions that aimed to retrieve detailed 

information about (crucial) netlist components (e.g., assigned cluster Inspection). The number 
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of open codes that was assigned to the cluster Inspection was larger than the number of open 

codes pertaining to the cluster Exploration or Identification. Within the sub-category Inspection 

and Information Gathering, manual netlist analysis steps were predominant (15 unique open 

codes; assigned 135 times), whereas the number of script-based netlist analysis actions was 

smaller (15 unique codes, assigned 25 times). The following open codes were assigned most 

frequently in this sub-category: in-depth manual inspection of watermark candidates (assigned 

39 times), manual selection of irrelevant gates (assigned 14 times), and manual netlist 

exploration (assigned 13 times).  

The second sub-category, Reversing Strategy Decisions, included actions or decisions that the 

participants performed to solve sub-problems of the HRE task. We organized the assigned open 

codes in this sub-category into the following three clusters: Strategies and Approaches (14 

unique open codes, assigned 135 times), Change of Strategy (3 unique open codes, assigned 14 

times), and Sub-Step Preparation (2 unique open codes; assigned 59 times). The most frequently 

assigned open codes in the sub-category Reversing Strategy Decisions were both open codes 

of the cluster Sub-Step Preparation and were assigned with equal frequency. The second most 

commonly assigned open codes in this sub-category were Duplication of partial solutions for 

watermark candidates (17 times) and Reversion to a proven approach (10 times).  

The third sub-category, Reversing Milestones and Sub-Goals, contained open codes that 

described actions through which progress in the HRE problem-solving process was achieved. 

Examples for assigned open codes are Identification of watermark candidates or Removal of 

the watermark. This sub-category included the following clusters in descending order of 

significance: Achieving Milestones (4 unique codes, assigned 54 times), Achieving Sub-Goals 

(3 unique codes, assigned 21 times), Systematic Approach to Considering Milestones (3 unique 

codes, assigned 43 times).  

The fourth sub-category, Reversing Problems, combined actions that indicated quite the 

opposite of the previous sub-categories. The codes grouped in the sub-category, Reversing 

Problems, contained problem-solving steps that were error-prone or that led to a dead end in 

the problem-solving process. We subdivided the sub-category in the following clusters: 

Confusion (3 unique codes, assigned 16 times), Failed Attempts (2 unique codes, assigned 12 

times), and Lack of Understanding (3 unique codes, assigned 22 times). The most frequently 

assigned open codes in this sub-category were Reversing-specific lack of understanding 

(assigned 11 times), Lost track of the reversing approach (assigned 9 times), and Dead end 

(assigned 8 times).  
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Main Category: Code Development 

The second main category, Code Development, grouped programming-related actions and 

included the following four sub-categories: Error Introduction, Troubleshooting, Test and 

Validation, and Code Adjustments. Every HRE task, including the HRE task, involved 

development of programming code or customized scripts as full automated HRE tool support 

did not exist. Therefore, the sub-category, Code Development, was considered in the analysis 

of HRE problem solving. Nevertheless, many open codes which were assigned to actions 

occurred in the context of the present HRE task, may also occur in contexts other than HRE.  

The first sub-category, Error Introduction, included the following two clusters: Semantic 

Errors (2 unique open codes, assigned 98 times) and Syntactical Errors (2 unique open codes, 

assigned 115 times) that were identified during the development of Python code to solve the 

HRE task. For example, Introduction of semantic errors was an open code that was assigned 

87 times in this sub-category.  

The second sub-category, Troubleshooting, combined the actions grouped into two 

clusters: Error Search and Correction Attempts (5 unique open codes, assigned 136 times), and 

Error Correction (5 unique open codes, assigned 269 times). Examples for open codes of the 

second sub-category were Successful correction of syntactical errors (assigned 160 times), and 

General debugging (assigned 57 times).   

The third sub-category, Test and Validation, combined two cluster: Focused program 

code testing and validation methods (5 unique open codes, assigned 181 times), and General 

program code testing and validation methods (2 unique codes, assigned 51 times). The sub-

category, Test and Validations, included open codes such as Targeted verification (assigned 58 

times) or Manual netlist inspection for script validation (assigned 38 times).  

The fourth and final sub-category, Code Adjustments, involved actions of restructuring 

or simplifying programming scripts of document solutions. Allover, three clusters were 

developed: Creating Clarity (6 unique open codes, assigned 268 times), Cut, Copy and Paste (5 

unique open codes, assigned 67 times), and Documentation (3 unique open codes, assigned 76 

times). Open codes of this sub-category were, for example, Improve clarity of console output 

(assigned 109 times); Reversion to previous code components (assigned 38 times), or 

Explanatory documentation (assigned 31 times).  
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Sub-Category: External Influences 

In addition to the sub-categories of the two main categories Reversing Actions and Code 

Development, our analysis revealed another sub-category, External Influences (4 unique open 

codes, assigned 74 times) that could not be classified under the two main categories. Open 

codes included in this sub-category were, for example, External interruption (assigned 35 

times) or Unintentional manual selection (assigned 16 times). Although the behavioral 

observations summarized in this sub-category were not exclusive to HRE and could also be 

found in other programming-related tasks, it was very likely that they also occurred in real-

world HRE scenarios and thus reasonably completed our HRE problem-solving model. 

 

4.3.2 Discussion RQ1a 

 

In order to systematically gather and analyze the behavioral log files of the nine participants, 

we applied an iterative open coding approach based upon the Grounded Theory method (Strauss 

& Corbin, 1998). Based on this analysis, we were able to develop a detailed and hierarchical 

model of HRE problem solving.  

Our HRE problem-solving model included two main categories and nine sub-categories 

that were developed based upon 103 assigned open codes. While we do not deny the possibility 

that our model may be expanded by new codes that emerge through the analysis of a different 

task, we believe that our model covers all of the essential actions related to an HRE task at 

hand. Based on the resulting HRE model, we were able to conceptualize the observed HRE 

processes. This conceptualization supported us in generating a language that we applied to 

describe problem-solving strategies during HRE.  

Summarized, we divided the above-presented model into four sub-categories that 

included reversing-specific actions with additional granularity at the cluster-level. Based on 

this, our model provided an in-depth perspective and enabled us to further explore fundamental 

expertise-related differences in participants’ problem solving in our analysis of RQ1b and RQ2. 

The sub-categories were central components of the model as they represented the variety of 

approaches that the participants applied to solve the HRE task. Furthermore, the sub-categories 

indicated obstacles encountered during the problem-solving process. In order to identify 

expertise-related differences in the time-efficiency of participants’ problem solving, we 

analyzed these sub-categories involving the time on task. Furthermore, we analyzed other 
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actions that caused specific Reversing Problems or Reversing strategy decisions. We delved 

deeper into these sub-categories by answering RQ2. 

 

4.3.3 Results RQ1b  

 

RQ1b: Are there differences in the HRE problem-solving process between participants with 

different levels of expertise? 

In the context of this RQ, we investigated whether there were differences in the problem-solving 

processes between the intermediates and the expert at the open-code level. Figure 6 shows the 

visualization of this comparison. The left side of the visualization included open codes that 

could only be observed in the expert's problem solving. All open codes of the expert came from 

the main category Reversing Actions. The right side of the figure showed the five most frequent 

open codes that could only be detected in the problem solving of the intermediates. Of these, 

three open codes came from the main category Reversing Actions and two from the sub-

category External Influences. The middle part of the visualization showed the five most 

common open codes observed in both the intermediates and the expert’s problem solving. All 

five came from the main category Code Development. In summary, 52 unique open codes were 

assigned to the problem solving of the intermediates. Of these 52 unique codes, only 10 open 

codes fell into the main category of Code Development and 39 fell into the main category of 

Reversing Actions.  

 

Figure 6. Comparison between intermediates and expert. Left: Most frequently observed codes 

of the expert. Middle: Most frequently observed codes shared by expert and intermediates. 

Right: Most frequently observed codes of the intermediates. 
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We found differences in the problem solving between the expert and the intermediates in the 

main category Code Development. Especially the distribution of the open codes Introduction 

of repeated semantic errors (assigned 11 times) and Introduction of redundant code (assigned 

6 times) indicated a lack of Python-programming experience of some intermediates. In this 

context, we observed that the intermediates frequently used problem- solving actions associated 

with the open code Anticipatory documentation (assigned 8 times), serving to help the 

intermediates better plan and control their work steps. Otherwise, no differences were found 

between the expert and the intermediates in the distribution of unique open codes in the main 

category Code Development.  

Differences in the main category Reversing Actions were mainly based on the open codes 

assigned to the intermediates. Unique approaches to problem solving by the intermediates were 

found in the Inspection and Information Gathering sub-category. These assigned open codes 

were mainly from the area of manual information gathering. On the other hand, two of the three 

open codes that could be assigned exclusively to the expert belonged to the area of script-based 

information gathering.  

In the sub-category Reversing Strategy Decisions, we found that intermediates applied 

several diverse and unique processes as 13 open codes of this sub-category were exclusively 

assigned to intermediates. Furthermore, in the sub-category Reversing problems, our findings 

revealed that seven out of eight unique open codes were assigned only to intermediates. In terms 

of processes in the sub-category Reversing Milestones and Sub-Goals, seven of the eleven open 

codes were assigned to both the expert and the intermediates. Four codes in this sub-category 

could only be found in the HRE processes of the intermediates.  

 

4.3.4 Discussion RQ1b 

 

In the previous section, we conducted a comparison of the observed HRE problem-solving 

processes between the expert and eight intermediates at the open-code level. We found major 

differences between both the expert and the intermediates within the main-category Reversing 

Actions, mainly located in the sub-categories Inspection and Information Gathering, Reversing 

Strategy Decisions, and Reversing Problems.   



80 

 

Based on our findings on expertise-related differences in HRE that seemed to be mainly 

concentrated in the three previously mentioned sub-categories, we were able to draw a first 

precise picture of the applied problem-solving strategies. Therefore, the following analysis on 

time-based efficiency of applied problem-solving strategies (in the context of RQ2) focused on 

these three sub-categories. In order to analyze efficiency, we expanded our analysis of the 

number of assigned open codes by including a fine-grained metric based on the participants’ 

time on task (see Methods).  

As shown by the analysis, we found that the number of External Interruptions was higher 

for Intermediates than for the expert. We argue that intermediates may have tended to re-enter 

and re-orient themselves after experiencing external interruptions more frequently. Thus, we 

suggest that the HRE expert may have been more able to focus on the HRE task than were the 

intermediates. Furthermore, our results showed that the problem-solving processes of the expert 

and the intermediates differed slightly. We assume that the expert had a broader prior 

knowledge of Python programming. However, the large number of assigned open codes to both 

the intermediates and the expert in terms of Code Development indicated a general similarity 

of process.  

Following the initial analysis of differences between the two groups in HRE Problem 

solving, two further questions derive, which are answered below: Was the expert able to solve 

the HRE task faster and more time-efficiently than the intermediates? Did the expert use 

different strategies than the intermediates?  

 

4.3.5 Results RQ2 

 

RQ2: Can differences in the time-efficiency of applied problem-solving strategies be identified? 

 

In terms of HRE, efficiency is defined as a function of time as an analyst will eventually succeed 

if enough resources (e.g., devices, money) are given. We could also see this in the results of our 

study. All participants successfully solved the HRE task – but with solution times that ranged 

between 163 and 528 minutes (see Figure 7).  

As described in the previous section answering RQ 1b, we found differences between the 

expert and intermediates mainly in the sub-categories, Inspection and Information Gathering, 

Reversing Strategy Decisions, and Reversing Problems. In order to answer RQ 2, we therefore 
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focused on open codes that were assigned to these sub-categories. These open codes formed the 

basis for evaluating the efficiency of the participants' problem-solving strategies. 

Describing problem-solving strategies based solely on the absolute number of open codes 

assigned was, in our view, not sufficient to derive conclusions about efficiency. Including the 

relative time (see Methods) that participants took to solve the HRE task allowed us to analyze 

participants' problem-solving processes in a fine-grained way.    

Figure 7 presents the most dominant steps for each participant in the three above listed sub-

categories. In addition, Table 8 shows how time-consuming each step was and at what point in 

each participant's timeline they were observed. Based on the tabulation of problem-solving 

processes, a case-by-case description of each participant's problem-solving strategies will 

follow in the next section. We structured the description based on the solution times and started 

with the description of the fastest participant. 
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Figure 7. Strategy steps and solution times of the participants. Boxes on the bottom left: Darker 

values represent stronger focus on the respective action. Boxes on the bottom right symbolize 

whether the step occurred in the beginning, middle or end of the HRE problem-solving process. 
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Expert: Preparation of Reversing Sub-Steps, Development of Test Cases 

The HRE expert solved the task in 163 minutes and was thus the fastest participant. In the sub-

category Reversing Strategy Decisions, the open code (Small-step) preparation of reversing 

sub-steps emerged as the most dominant open code during the expert’s HRE problem solving. 

We hypothesize that the expert divided the HRE task into smaller sub-tasks and prepared and 

processed these individually. This is also supported by the continuous occurrence of the open 

code Development of test cases that helped the HRE expert in continuously evaluating the 

solutions of subtasks. Furthermore, we found that the HRE expert applied both manual and 

script-based actions in the Inspection and Information Gathering sub-category. This showed 

that the expert was able to quickly transform the manual netlist analysis into scripts and thus, 

automated the information gathering process from the beginning. During the middle of the HRE 

problem solving, the expert faced a reversing problem as the expert lost track of the reversing 

approach that could be solved very quickly by manual analysis.  

 

Participant 8: External Resources, Reversion to Proven Approach, Duplication of Partial 

Solutions 

Participant 8 (P8) solved the HRE task in 176 minutes, what was very close the expert's solution 

time. Dominant in the approach of P8 were problem solving steps that could be described by 

the following open codes: Using external resources, Reversion to a proven approach, and the 

Duplication of partial solutions of the sub-category Reversing Strategy Decisions. Especially 

at the beginning and in the middle, we observed that P8 applied knowledge and skills that P8 

had acquired from the previous HRE training tasks of the HRE training (Reversion to proven 

approaches: e.g., reversing methods to identify netlist components of interest). P8 continuously 

used external resources, such as the provided coding guide, pen and paper analyses, or online 

resources to solve the HRE task. Furthermore, we observed that P8 divided the HRE task into 

several similar sub-tasks, and applied the solution of the sub-tasks to solve other open sub-tasks 

(as reflected by the open code Duplication of partial solutions). In the context of problem-

solving steps within the sub-category Inspection and Information Gathering, we observed that 

P8 performed only manual actions. While P8 conducted most of those manual information 

gathering processes during the beginning of HRE, we identified that P8 conducted further in-

depth manual inspection of watermark candidates throughout the HRE task (reflected by the 

occurrence of the open code In-depth manual inspection of watermark candidates). In terms of 
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problem-solving steps in the sub-category Reversing Problems, we found that P8 had to solve 

a very short-lasting phase of confusion (represented by the occurred open code Lost track of the 

reversing approach) that lasted 7 minutes, and was mainly caused by several simultaneous 

actions of code development. 

 

Participant 3: External Resources, Preparation of Reversing Sub-Steps 

Participant 3 solved the HRE task in 187 minutes and was very close to the expert's solution 

time. In terms of problem-solving steps in the sub-category Reversing Strategy Decisions, we 

observed that P3 often engaged in the preparation of reversing sub-steps (reflected by the open 

code (Small-step) preparation of reversing sub-steps). The preparation steps occurred during 

the first half of the HRE problem-solving process, and indicated that P2 divided the HRE task 

into smaller sub-tasks. In the beginning of P3’ HRE problem solving, P3 used external resources 

(reflects by open code Using external resources), and script-based methods in terms of the sub-

category Inspection and Information Gathering. By analyzing the netlist at the beginning, P3 

laid the foundation of their problem-solving process and was not forced to gather more 

information as the process progressed. In addition to the stringent HRE problem-solving 

performance, we also noticed longer phases in that P3 faced reversing-specific problems and 

difficulties. The phase in that P3 was engaged in solving the reversing problem lasted 75 

minutes, and included difficulties mainly from the cluster Lack of Understanding.  

 

Participant 5: Development of Generic Approach, Development of Test Cases, 

Preparation of Reversing Sub-Steps 

Participant 5 (P5) solved the HRE task in 221 minutes - about an hour longer than the HRE 

expert. In the beginning of the HRE problem solving, P5 used external resources (represented 

by occurred open code External resources), and script-based netlist analysis method from the 

sub-category Inspection and Information Gathering. Dominant in P5’s actions observed in the 

sub-category Reversing Strategy Decisions was the development of a generic solution (reflected 

by the open code Generic approach). In general, a generic approach is characterized by its 

applicability to solve similar HRE tasks on other netlists. We detected the development of a 

generic approach in this extent only in P5’ problem solving. Furthermore, we observed that P5 

developed test cases (reflected by the open code Development of test cases) and selected test 

candidates (reflected by the open code Selection of test candidates) to solve the HRE task. 
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Additionally, we observed that P5 also engaged in the preparation of reversing sub-steps 

(reflected by the open code (Small-step) preparation of reversing sub-steps).  In P5’s problem-

solving process, we also detected a relatively short time (12 minutes) when P5 faced two 

reversing-specific problems (reflected by open code Dead end) and also changed their strategy 

for script-based analyses (reflected by open code Strategy changes for script-based analyses).  

 

Participant 2: Preparation of Reversing Sub-Steps, External Resources 

Participant 2 (P2) needed 221 minutes to solve the HRE task. Dominant in P2’ problem-solving 

process were the preparation of reversing sub-steps (reflected by the open code (Small-step) 

preparation of reversing sub-steps), and the application of external resources (reflected by the 

open code External resources). In the beginning of the HRE problem solving, we observed that 

P2 conducted a series of manual and script-based to explore the netlist and were assigned to the 

sub-category Inspection and Information Gathering. In the second half of P2’ problem solving, 

we identified that P2 had to solve reversing-specific problems (reflected by the cluster Lack of 

Understanding) that lasted for 35 minutes of the total solution time.  

 

Participant 4: External Resources 

Participant 4 (P4) was able to solve the HRE task in 233 minutes, and used external resources 

(reflected by the open code External resources) most frequently during the HRE problem-

solving process. However, as the problem-solving process progressed, we identified that P4 

also applied problem-solving steps such as the development of test cases (reflected by the open 

code Development of test cases), the reversion to a proven approach (reflected by the open code 

Reversion to a proven approach), or the preparation of sub-steps (reflected by the open code 

(Small-step) preparation of reversing sub-steps). We observed that P4 solely used manual 

netlist exploration and analysis steps (sub-category Inspection and Information Gathering). 

Furthermore, P4 had to solve several reversing-specific problems that lasted a total of 65 

minutes. Our analysis showed that these reversing-specific problems occurred mainly during 

the beginning and the middle of the HRE problem-solving process and included actions from 

the cluster Failed Attempts and assigned open codes such as Unsuccessful transfer of an already 

known approach to a current problem or actions from the cluster Confusion with assigned open 

codes such as Lost track of the reversing approach.  
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Participant 6: External Resources and Preparation of Reversing Sub-Steps 

Participant 6 (P6) solved the HRE task in 261 minutes. Dominant in P6’ problem solving were 

actions from the sub-category Reversing Strategy Decisions with the assigned open codes 

Using external resources, and (Small-step) preparation of reversing sub-steps. In addition to 

these strategies, we observed the open codes Reversion to a proven approach and the 

development of a Generic approach towards the end of P6’ problem solving. In the context of 

the sub-category Inspection and Information Gathering, our analysis showed that P6 applied 

several manual and script-based techniques at the beginning and during the middle of HRE. 

Furthermore, we observed that P6 faced and attempted to solve reversing-specific problems for 

78 minutes. For example, P6 made several attempts to solve a Lack of Understanding.  

 

Participant 7: External Resources, Fully Manual and Hardcoding Approach 

Participant 7 (P7) was one of the slowest hardware reverse engineers and spent 351minutes to 

solve the HRE task. We observed that P7 developed the problem-solving strategy with external 

resources (reflected by open code Using external resources) in the beginning. As the problem 

solving progressed, we observed some unique approaches that we could not find in this form in 

any other analyst’s problem solving. P7 changed the problem-solving strategy from script-

based to manual (reflected by the open code Strategy change from script-based to manual 

analysis). Furthermore, P7 decided to develop a fully manual solution (reflected by the open 

codes Fully manual, and Hardcoding approach) in the middle of the HRE problem solving. We 

assigned the open codes Fully manual and Hardcoding approach to problem-solving steps that 

included the encoding of fixed values into the solution that had been read out through manual 

netlist analysis. Additionally, in the context of Inspection and Information Gathering, we 

observed that P7 conducted solely manual netlist analysis (reflected by the open code In-depth 

manual inspection of watermark candidates). During the HRE problem solving, P7 encountered 

a relatively small number of reversing-specific problems, such as a Lack of Understanding} 

and Failed Attempts that could be solved by P7 in 35 minutes.  
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Participant 1: External Resources and Reversing Problem Shooting 

Participant 1 (P1) was the slowest hardware reverse engineer and needed 528 minutes to solve 

the HRE task. Dominant in P1’ problem solving was the inclusion of External resources and 

Reversion to a proven approach. During the second half of P1’ problem solving, P1 failed to 

recognize that a correct solution of a sub-problem had been already reached. Due to this error, 

P1 inappropriately changed the reversing strategies. P1's approach in terms of Inspection and 

Information Gathering was based on manual analysis steps. P1 spent the longest overall time 

of all participants (167 minutes) to solve reversing-specific problems. These included assigned 

open codes such as Correct solution is not recognized, Dead end, Introduction of a reversing-

specific misconception, and Inappropriate change of the reversing strategy.  

 

4.3.6 Discussion RQ2 

 

Our results did not indicate that a single optimal (“one and only” or “end all, be all”) problem-

solving strategy for most efficiently solving the HRE task existed. Rather, our analysis showed 

that several participants achieved efficient solutions through the application of different and 

individualized strategies. For example, we observed that the time-efficient problem-solving 

strategy of the HRE expert was based on test cases and small-step approaches that could not be 

observed to this extent in the problem solving of the intermediates. Furthermore, our results 

showed that the use of external resources was dominant in several problem-solving strategies 

of the intermediates. Using external resources, such as the provided coding guide, pen and paper 

analyses, or online resources may have supported the intermediates compensate for a lack of 

skills and knowledge in for example Python programming or reversing-specific concepts. 

Drawing upon external resources to solve the HRE task and obtain reassurance seemed to be 

an efficient approach for most intermediates. 

In addition, we also found that the intermediates P5 and P7 applied unique HRE 

approaches, the former leading to a more and the latter to a less efficient solution.  P5’s problem 

solving was mainly characterized by the development of a generic approach that would have 

been useful to completing a similar reversing tasks on a different netlist. Nevertheless, it was 

relatively inefficient to solve the HRE task at hand. In contrast, P7’s unique fully-manual 

approach caused an inefficient long solution time, but also included a relatively small number 

of reversing-specific problems. Based on this result, it is assumable that a step-by-step manual 
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analyses and subsequent encoding of manually-identified netlist components was accurate, but 

also very time-consuming. In terms of Inspection and Information Gathering, we found that 

approaches that included both script-based and manual analysis steps, appeared to be more 

time-efficient than approaches that were solely based on manual analysis. Nevertheless, manual 

analysis also supported the hardware reverse engineers to solve reversing-specific problems.  

Furthermore, our results indicated that more reversing-specific problems led to longer 

solution times. For instance, the two fastest participants (expert and P8) faced a single 

reversing-specific problem and were able to solve it within seven minutes. In contrast, P1 

experienced a larger number of reversing-specific problems resulting in a longer time spent on 

task. However, our data revealed one exception: We observed a relatively large number of 

reversing-specific problems in P3’ problem solving, who was one of the fastest participants. 

Although P3 faced longer periods of difficulties related to the cluster of Lack of understanding, 

P3 was able to achieve important reversing milestones and did not lose the golden threat.  

Based on our previous assumptions and the results of RQ1, it would have been plausible 

to assume that the HRE expert would have been the most efficient participant. In contrast to 

these expectations, our in-depth analysis of applied problem-solving strategies and their time-

efficiency showed that beside the HRE expert, two intermediates also achieved very time-

efficient solutions. We discuss this finding in greater detail in the General Discussion (see 

Chapter 5). 

 

4.3.7 Results RQ3 

 

RQ3: Do cognitive abilities play a role in HRE problem solving? 

Due to the small size of our sample, statistical analysis of the influence of cognitive factors on 

HRE performance was not feasible. However, we found one interesting descriptive result on 

the role of working memory in the time-efficiency of HRE problem solving. The descriptive 

data suggested a potential negative correlation between working-memory scores and the overall 

time on task in the HRE task (see Figure 8). The result leaded to the assumption that participants 

with higher working-memory scores tended to solve the HRE task quicker than participants 

with lower working-memory scores. Participant 8 (P8) with a high score in working memory 

(126) achieved a short solution time of 176 minutes. Contrary, P1 with a lower score in working 

memory (108) had a longer solution time with 528 minutes. Please note, that in the paper 
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(Becker et al. 2020) the solution time of P1 was calculated with 398 minutes. Based on our 

detailed analysis with the iterative open coding (Strauss & Corbin, 1998), we detected that P1 

developed an algorithm during an idle-phase. This idle phase was not involved in the calculation 

of P1’s solution time within our publication (Becker et al., 2020), since we assumed at this point 

that no HRE-specific actions happened in the corresponding idle phase. P6 seemed to be an 

outlier that is discussed in the following section. Table 7 summarizes the descriptive data of 

cognitive factors and solution time in the HRE task. 

 

 

Figure 8. Scatter plot of solution time (x-axis) and working-memory scores (y-axis). Note: P3 

and expert did not participate in the cognitive tests. 
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Table 7. Time spent on the HRE task (minutes) and scores of the cognitive factors working 

memory (WM), processing speed (PS), and perceptual reasoning (PR). 

Variable 
 Participants 

 
 P1 P2 P3 P4 P5 P6 P7 P8 Expert 

Time 
 528 221 187 233 221 261 351 176 163 

WM 
 108 126 - 115 118 92 112 126 - 

PS 
 106 146 - 146 119 109 119 117 - 

PR 
 104 129 - 100 115 100 104 106 - 

Note. P3 and the HRE expert did not participate in the WAIS-IV 

 

 

4.3.8 Discussion RQ3 

 

The descriptive results of RQ3 suggested a potential negative correlation between working-

memory scores and solution time in solving the HRE task. Due to small sample sizes we 

conducted a descriptive analysis and hypothesized that participants with higher working-

memory scores tended to solve the HRE task faster than participants with lower working-

memory scores. In the following, I describe our assumptions in more detail.  

The term working memory is defined as a cognitive system that explains how information 

are stored and processed simultaneously (Baddeley, 1992). In more detail, working memory is 

responsible for the storage of sensory input (e.g., visual information) in immediate awareness 

and the manipulation of that sensory input to solve complex task such as problem solving 

(Baddeley, 1992). Baddeley and Hitch (1974) proposed the model of working memory that 

originally consisted of three main parts: visuospatial sketchpad; phonological loop, and the 

central executive (Baddeley, 2002). The visuospatial sketchpad is responsible to temporarily 

store and process visuospatial information and is essential for solving visual problems (e.g., 

visual analysis of complex netlist during HRE) (e.g., Baddeley 2002). The phonological loop 

is the counterpart to the visuospatial sketchpad and is important for the temporary storage and 

processing of acoustic information (e.g., Baddeley 2002).  An individual’s attention it directed 

to relevant information and to coordinate cognitive processes due to the central executive of the 

working memory (e.g., Baddeley 2002). Prior research showed that individual differences in 

working-memory tests were commonly determined by the individuals’ executive processes 



91 

 

(Daneman & Carpenter, 1980; Baddeley, 2003). In 2000, a fourth component the episodic 

buffer was added to the working memory model (Baddeley, 2000). The episodic buffer is 

hypothesized to build an interface between the sub-systems (i.e., visual sketchpad) and the long-

term-memory (LTM) (Baddeley, 2000). According to Baddeley (2012), it can be described as 

a buffer store through that working memory is connected to perception and LTM. It is assumed 

to have limited capacity (Baddeley, 2012) with four chunks (Cowan, 2005).  

According to Diamond (2013), working memory is central for sense-making processes 

and to solve complex cognitive tasks. The functionalities of the working memory extend to for 

example, i) inclusion of new information in currently existing thought and action processes; ii) 

development of alternatives; iii) mental connection of information to establish general 

principles or to identify connections between individual aspects (Diamond, 2013). Furthermore, 

working memory is supposed to support inhibitory control in goal-directed actions (Diamond, 

2013), and to cognitive abilities of inhibiting specific information (Hasher & Zacks, 1988; 

Zacks & Hasher, 2006). By keeping the goal in mind and by inhibiting irrelevant information, 

an individual increases the efficiency of their actions (Diamond, 2013).   

We hypothesize that several functionalities of the working memory may have contributed 

to achieve time-efficient solutions in HRE and describe our assumptions in the following. First, 

the time-efficient solution of participants with higher scores in working memory may be based 

on the inhibitory functionalities of the working memory (e.g., Diamond, 2013). Especially 

during the visual netlist exploration and analysis phases, hardware reverse engineers had to 

handle a wealth of visual information and have to distinguish between relevant and irrelevant 

visual stimuli. We suggest that participants with stronger working memories were more able to 

inhibit irrelevant stimuli (e.g., irrelevant netlist components) and in storing and manipulating 

visual information within the visuospatial sketchpad than participants with lower working-

memory scores. The efficient cognitive inhibition of those participants with higher working-

memory scores enabled them to delete irrelevant information from the limited working 

memory’s capacity, and to still focus on the reversing goal (Hasher & Zacks 1988, Zacks & 

Hasher 2006; Diamond, 2013). 

Second, we assume that the working memory functionality of efficiently holding and 

manipulating information (e.g., Baddeley, 2002) may have played a role in solving the HRE 

task efficiently. The analysis of specific netlist components and interconnections is very 

complex due to a variety of different information. It is plausible to hypothesize that a stronger 

working memory enabled participant to identify connections between single components and 
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to develop goal-directed action plans without losing the golden threat (i.e., the reversing goal 

of identifying and extracting watermark candidates).   

Third, we assume that the functionality of working memory of activating and retrieving 

information from LTM (e.g., Baddeley, 2012) to solve the present task, may have been 

supportive during HRE problem solving. Although both the fastest and the slowest participants 

acquired the same amount of HRE knowledge and HRE skills (e.g., methods to read out data 

from the identified candidates) during the training phase of the HRE course, P8 was quicker in 

solving the HRE problem. As previously outlined, working memory activates and retrieves 

already stored information from LTM (e.g., Baddeley, 2012). Thus, we assume that the stronger 

working memory supported P8 to efficiently activate and retrieve stored information from the 

LTM in order to analyze and work with inputs P8 stored in immediate awareness in the working 

memory.   

Finally, the results revealed an outlier (P6) with the lowest working-memory score. It 

may be plausible to assume that measurements of working memory abilities of P6 could have 

been influenced by uncontrolled variables. Prior research has revealed that several variables 

can impar performance in working memory tasks, for example, chronic psychological stress, 

chronic psychological stress (Mizoguchi et al., 2000), acute psychological stress (Qin, 

Hermans, van Marle, Luo, & Fernández, 2009), negative emotions like anxiety (Moran, 2016), 

or neural disorders (Willcutt, Doyle, Nigg, Faraone, & Pennington, 2005). This could mean that 

the measurement of working memory of P6 may have been negatively influenced, resulting in 

a worse value than actually exists.    
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5 General Discussion  
 

Disclaimer: Parts of this chapter were adapted from the submitted paper “The Anatomy of a 

Hardware Reverse Engineering Attack: Insights into Cognitive Processes during Problem 

Solving” that is currently under review at the journal ACM TOCHI in 2020 (Wiesen, Becker, 

Walendy, Paar, & Rummel, 2020). This paper was written together with my co-authors Steffen 

Becker, René Walendy, Christof Paar, and Nikol Rummel.  
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General Discussion – HRE as a Function of both Expertise and Cognitive Abilities? 

The results of my dissertation point to the role of expertise and cognitive abilities for time-

efficient problem solving during HRE. In this chapter, I discuss the two main contributions of 

my thesis based on our results and the literature. First, findings of this doctoral thesis contribute 

to the ongoing debate in psychology about the role of expertise and cognitive abilities in 

problem-solving performance. In this context, I make a theoretical contribution by concluding 

that HRE problems may involve aspects of both simple and complex problems. Second, my 

discussion follows the considerations of Lee and Johnson-Laird (2013), who outlined that 

reverse engineering of Boolean systems may be a specific type of human problem solving.  

Our study showed that the HRE expert was able to achieve the quickest and most time-

efficient solution in the HRE task by applying a unique set of problem-solving strategies not 

used in this form by any other analyst. This aligned with findings from the domains of solving 

physics problems (Larkin, McDermott, Simon, & Simon, 1980) and medicine (Patel & 

Kaufman, 1995), showing that experts were more successful in selecting and using an 

appropriate strategy than non-experts (Chi, 2006). Lemaire and Siegler (1995) found that 

experts often used strategies that have proven to be effective in previous problem-solving 

situations. Ericsson and colleagues (1993) suggested that the superior performance of experts 

was based on experts’ wealth of domain-specific knowledge and prior experience in solving 

domain-specific problems that they had accumulated throughout several years of deliberate 

practice. Additionally, experts’ well-structured and domain-specific knowledge significantly 

influenced the perception and categorization of problems, which in turn, led to efficient 

problem-solving performance (Nokes et al., 2010; Chi, Feltovich, & Glaser, 1981a). The 

categorization and representation of problems supported experts in selecting the most suitable 

problem-solving strategies and, thereby, they generated time-efficient solutions (Chi et al., 

1981; De Groot, 1978; Patel & Groen, 1986). Against this background, it is reasonable to 

assume that the HRE expert in the present study selected problem-solving strategies based on 

a wealth of HRE-specific knowledge. In turn, this domain-specific knowledge may have 

supported the HRE expert in their highly efficient problem categorization and representation, 

that enabled the expert to achieve a time-efficient solution. Ericsson and Kintsch (1995) 

explained the efficient problem solving of experts by the hypothesis that experts developed an 

effective long-term working memory that enabled experts to efficiently activate prior 

knowledge (e.g., in form of stored procedures or chunks) from the LTM and thus, may 

supported them in circumventing limited capacities of the working memory. Thus, the HRE 
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expert’s problem solving may have been based on an efficient activation and retrieval of prior 

knowledge from the LTM.  

In addition, our results indicated that besides the HRE expert, two intermediates (P8, P3) 

achieved time-efficient solutions even though they had less domain-specific knowledge and 

less problem-solving experience than the HRE expert. Furthermore, we found that both 

intermediates (P8, P3) had above-average scores in the intelligence-subfactor working memory. 

We assumed that the highly efficient solutions of these two intermediates were based on their 

cognitive abilities (e.g., working memory) that supported them to compensate for gaps in 

domain-specific knowledge. Our assumption aligned with the expert-performance framework 

that explained how novices and intermediates cope with gaps in domain-specific prior 

knowledge and problem-solving experience (Ericsson et al., 1993). Ericsson (2014) 

hypothesized that a correlation between domain-specific performance and performance on tests 

of general cognitive ability may exist for non-experts, as shown by prior research of Ackermann 

(1987), or Schmidt and Hunter (2004). Consequently, HRE problem solving of novices and 

intermediates may be correlated with general cognitive ability and may explain that 

intermediates P8 and P3 achieved time-efficient solutions in HRE due to their above-average 

levels of working memory. In contrast to both intermediates, the HRE expert may have acquired 

specific knowledge structures throughout years of deliberate practice that may have mediated 

their superior performance in the HRE task. As the expert did not participate in the intelligence 

test WAIS-IV (Wechsler, 2008), we cannot draw any conclusion about the correlation between 

the HRE expert’s level of cognitive ability and their problem-solving performance.  

In this context, we assumed that both intermediates may have been supported by their 

working memory in solving the HRE task. Our descriptive data showed that intermediates who 

achieved higher working-memory scores tended to solve the HRE task faster than intermediates 

with lower working-memory scores. Against this result, we suggested that specific sub-systems 

(such as the working memory; e.g., Baddeley & Hitch, 1974) of the intermediates’ cognitive 

information processing system supported the high-performing intermediates in the current 

study to temporarily keep information in mind and to work on it. The inclusion of novel 

information in currently existing thoughts or action processes to solve complex cognitive tasks, 

is one of the central functionalities of the working memory (e.g., Diamond, 2013). Including 

novel information in existing problem-solving plans, may have been supportive in the HRE 

problem solving of both intermediates P3 and P8. We assumed that their above-average 

working memory may have helped them to efficiently integrate novel information about 
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specific netlist components and their interconnections in their existing problem-solving plans. 

Furthermore, our analysis of the fast intermediates’ strategies revealed that the intermediates 

used procedures that they had acquired in previous HRE training tasks. As shown by prior 

research working memory supported the activation and retrieval of stored information from 

LTM to solve the task at hand (e.g., Baddeley, 2012). Thus, we assumed that the working 

memory supported P8 and P3 to efficiently activate and retrieve stored information from the 

LTM to analyze and work with inputs that the participants stored in immediate awareness in 

the working memory (see detailed discussion in Section 4.3.8).  

The influence of prior knowledge and cognitive abilities on problem-solving performance 

lies also at the heart of taxonomies that define human problem solving. Prior psychological 

research established a broad range of taxonomies to define problems, and typically 

distinguished between simple and complex problems (e.g., Dörner & Funke, 2017). Solving 

simple and solving complex problems relies on different cognitive processes (Schraw, Dunkle, 

& Bendixen, 1995; Dörner & Funke, 2017). Complex problems are usually described as 

knowledge-rich systems that activate large semantic networks of prior knowledge and 

potentially successful problem-solving strategies (Dörner & Funke, 2017). Simple problems 

are typically described as knowledge-free systems because solving simple problems, opposed 

to solving complex problems, is less based on domain-specific knowledge (Chi, Glaser, & Rees, 

1981b) and more on cognitive abilities (e.g., Sternberg, 1982). It remained an open question to 

which problem type HRE belongs (see Background).   

We hypothesize, that HRE tasks seem to involve aspects of both simple and complex 

problems. In the beginning of an HRE problem-solving process, the reverse engineer obtains a 

gate-level netlist that can be defined as the initial state of the HRE problem. By selecting 

suitable operators (e.g., information gathering based on manual netlist analysis) the analyst tries 

to achieve a desired goal state (e.g., removal of watermark from a protected circuit) or sub-

goals derived from the main goal. An unambiguous initial state and the goal state as well as a 

clear set of operators that allow to move in the problem space are common characteristics of 

simple problems (Dörner & Funke, 2017). Since HRE tasks neither change independently nor 

because of inputs from the problem solver, they can be described as time stable, which is a 

common characteristic of simple problems (Funke, 2003). In contrast to simple problems that 

can be solved without domain-specific knowledge, a realistic HRE task may be impossible to 

solve for a person with insufficient domain-specific knowledge and skills (e.g., on hardware 

circuits, chip design, etc.). Another characteristic of HRE tasks is the amount of information in 
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the netlist that must be analyzed and processed. Within the scope of netlist analysis, a hardware 

reverse engineer analyzes from thousands up to millions of components and their 

interconnections. The complexity of such an HRE task increases with netlist size (i.e., the 

number of components) that requires reduction and abstraction. Such characteristics of 

complexity and connectivity found in HRE tasks are commonly assigned to complex problems 

(e.g., Funke et al., 2018). Additionally, especially at the beginning of the HRE process, not all 

the necessary information is apparent to the analyst from the start. Thus, an analyst needs to 

perform a series of operations that lead to obtaining the needed information. Consequently, the 

hardware reverse engineer tries to remove a lack of transparency at the beginning of HRE, 

which is commonly considered as a characteristic of CPS (e.g., Funke, 2012). While these three 

aspects (i.e., complexity, connectivity, and non-transparency) of complex problems can be 

found in HRE problem solving, the additional two characteristics of complex problems – 

dynamics and polytelic situations – are absent from HRE problems. In contrast to complex 

problems that usually change dynamically, HRE problems are stable. Furthermore, a reverse 

engineer analyzes the netlist components to achieve (sub-)goals and a goal state that are clearly 

defined, non-competitive and not mutually exclusive. The embedding of HRE problem solving 

in existing problem-solving taxonomies leads to assume that HRE tasks may combine aspects 

of both simple and complex problems. Although HRE and simple problems have several core 

aspects in common (e.g., unambiguous initial state; the goal state), the huge amount of 

information pertaining to non-transparent, highly interconnected components that must be 

processed and analyzed, creates a challenge that places HRE squarely outside of the realm of 

simple problems as typically defined and constructed. These characteristics add another layer 

to HRE problems and thus places them between simple problems and complex problems.  

Our results relate also to the findings on problem solving in reverse engineering of 

Boolean systems by Lee and Johnson-Laird (2013), who suggested that reverse engineering of 

Boolean systems may be a specific type of human problem solving. As previously outlined (see 

Background), it was unclear to what extent the results of Lee and Johnson-Laird (2013) 

concerning applied problem-solving strategies and difficulties in reverse engineering of 

Boolean systems were applicable to the domain of HRE problem solving. Lee and Johnson-

Laird (2013) showed that participants applied one of two main problem-solving strategies in 

drawing circuits that would control an electrical light or a water flow system: Either the 

participants focused on single outputs at a time, or on a single component at a time. In contrast 

to Lee and Johnson-Laird (2013) we did not identify those two main categories during HRE 

problem solving, and found that none of the applied problem-solving strategies could be 
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described as the single “best” or as the main strategy for solving the realistic HRE task. While 

there was some overlap in applied sub-strategies (e.g., using external resources), it is important 

to note that most participants used a unique strategy. Furthermore, our results showed that some 

participants (e.g., generic approach of P5; manual approach P7) developed problem-solving 

strategies that were almost incomparable to other approaches. Accordingly, it is unclear whether 

we could and should divide HRE strategies into strategy categories. It might be the case that 

hardware reverse engineers solve HRE tasks in their own way or set different emphases that 

lead to only a few overlapping strategy characteristics.  

Furthermore, Lee and Johnson-Laird (2013) suggested that difficulties in reverse 

engineering of Boolean systems depended on three factors: a) number of components, b) 

number of components influencing an output, and c) dependencies of components that influence 

an output. It is plausible to assume that those three factors may have also influenced the level 

of difficulty of solving the HRE task. Especially the dependence of single netlist components 

to other netlist components may have influenced the perceived difficulty of the HRE task. 

Accordingly, the more components there are and the more they are interconnected, the more 

difficult and non-transparent it could be for a hardware reverse engineer to analyze a netlist. 

Based on our in-depth analysis of realistic HRE problem solving, we extended the 

understanding of reversing-specific difficulties that occurred during HRE problem solving. For 

example, we found difficulties, such as dead-ends that were caused by misleading strategies 

that may have led to longer solution times in some cases (e.g., P1; P6).  

Taken together, our results suggested that both the HRE expert and two intermediates 

with above-average scores in working memory achieved superior performance. This result let 

me assume that HRE problem solving may be a function of both cognitive abilities and 

expertise. This was in line with the assumptions of the expert-performance approach (Ericsson 

et al., 1993), proposing that domain-specific problem solving was correlated with cognitive 

abilities in non-experts and with prior domain-specific knowledge in experts. In this context, I 

discussed that the fast and efficient solution of the HRE expert was based on well-structured 

domain-specific knowledge. Furthermore, we proposed that the superior HRE performance of 

both intermediates was based on their above-average working memory that may have supported 

them in solving the cognitively complex HRE task at hand. In this context, I made a theoretical 

contribution by concluding that HRE problems may involve aspects of both simple and complex 

problems. Furthermore, our results were also aligned with a debate initiated by Lee and 

Johnson-Laird (2013) who suggested that reverse engineering of simplified Boolean systems 
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may be a specific type of human problem solving, which remained so far poorly understood. I 

discussed to what extent the results by Lee and Johnson-Laird (2013) were applicable to the 

domain of HRE problem solving. My main contributions provide stimuli for future research 

(see Section 7) and for further considerations for cognitive obfuscation impeding HRE (see 

Chapter 6). 
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6 Initial Ideas for Cognitive Obfuscation 
 

In general, countermeasures such as obfuscation techniques never completely protect against 

HRE (Barak et al., 2001). The underlying principle of obfuscation is to transform the ICs of a 

microchip so that high-level information is obstructed and functionalities of the ICs do not 

change (Wiesen et al., 2019a). As HRE includes both technical and cognitive processes, we 

suggested that countermeasures that aim to impede HRE should also focus to impede the 

cognitive processes in HRE – suggested by us as cognitive obfuscation (Wiesen et al., 2019a; 

Becker et al., 2020).  

In this section, I develop initial ideas for future studies to pave the way for the 

development of cognitive obfuscation techniques. Based on our results, I will focus on the 

cognitive aspects of HRE and hope to provide impulses for future studies on the development 

of cognitive obfuscation prototypes. In particular, based on one of my main contributions (i.e., 

HRE may be a function of both cognitive abilities and expertise), I develop initial ideas for 

cognitive obfuscation that may impede HRE problem-solving processes that are based on 

cognitive abilities and on expertise.  

 

6.1 Overloading the Capacity of the Working Memory 

 

The results of this doctoral thesis suggested that the working memory of hardware reverse 

engineers may play an important role in efficiently solving HRE tasks. Descriptive data 

suggested that participants with higher working-memory scores solved the HRE task with 

shorter solution times than participants with lower working-memory scores. In general, working 

memory is responsible for storing, retrieving and processing information to enable goal-

directed behavior, for example, in cognitively challenging tasks, such as problem solving (e.g., 

Baddeley, 2012). Thus, it is plausible to assume that working memory supported hardware 

reverse engineers in processing the wealth of information about netlist components and their 

interconnections during HRE. This leads to ask, whether cognitive obfuscation may be able to 

overload the capacity of analysts’ working memories.  

Prior research has shown, that the support of working memory in solving cognitively 

demanding tasks is restricted by the generally limited capacity of the working memory. As the 

number of information determines how many chunks (i.e., group of meaningful information 

cues) can be stored and processed in the episodic buffer of the working memory, it is difficult 
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to define the capacity of working memory by a concrete number of chunks. Nevertheless, prior 

research suggested that the capacity of the episodic buffer of the working memory may be 

limited to four chunks (Cowan, 2005; Baddeley, 2012). In addition, Miller (1956) suggested 

that the capacity of individuals to process information is limited to seven (plus or minus two) 

objects. Against this background, the limited capacity of working memory may be a first 

starting point for cognitive obfuscation. Specifically, if cognitive obfuscation can achieve that 

the working memory of hardware reverse engineers is overloaded, it may be possible that HRE 

performance degrades.  

In this context, prior research showed that participants’ performance in a visuospatial task 

was impeded by a concurrent visuospatial task or by a task that asked to generate random digits 

(Baddeley, Emslie, Kolodny, & Duncan, 1998; Baddeley, 2002). Those concurrent tasks 

heavily overloaded the capacity of the central executive of the working memory (Baddeley et 

al., 1998; Baddeley, 2002). In terms of HRE, I suggest that cognitive obfuscation may act as a 

concurrent task that may lead to interrupt the solving of the main HRE task. Thus, the analysts 

may be forced to divide their attention to solve the main and the concurrent tasks that may lead 

to an overload of the working memory capacity. I will present my idea in the following.  

An interruption is defined as a secondary activity or task that draws an individual’s 

attention away from the primary task (Li, Magrabi, & Coiera, 2012). Concurrent interrupting 

tasks are typically associated with costs in the form of additional time spent on task (e.g., time 

to return to the main task after completing the secondary task; Trafton, Altmann, Brock, & 

Mintz, 2003; Li et al., 2012) and reduced solution accuracy (e.g., probability of errors 

increases). The memory of goals framework describes how interruptions influence task 

performance and how performance is impeded by goal decay (Altmann & Trafton, 2002). More 

precisely, the goals of the primary tasks immediately start to suffer from activation decay when 

a concurrent interrupting task occurred (Monk, Trafton, & Boehm-Davis, 2008; Altmann & 

Trafton, 2002). In addition, prior research suggests factors that may aggravate the disruptive 

effects of interruptions (Monk et al., 2008): i) high similarity (e.g., Cellier & Eyrolle, 1992; 

Edwards & Gronlund, 1998; Oulasvirta & Saariluoma, 2004) and relatedness (Cutrell, 

Czerwinski, & Horvitz, 2001; Zijlstra, Roe, Leonora, & Krediet, 1999) of the main and the 

interruption tasks; and ii) complexity (i.e., cognitive demand) of the interruption (e.g., Cades, 

Boehm-Davis, Trafton, & Monk, 2007; Gillie & Broadbent, 1989).  
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In their meta-review, Li and colleagues (2012) summarized that an interruption with strong 

similarities to the main task is more likely to interrupt the completion of the main task than an 

interruption with lower similarity. For instance, Li and colleagues (2012) drew on an example 

from everyday medical work. They suggested that if a nurse who is filling out a medical record 

for patient A is interrupted to do the same documentation for patient B, it could be that patient 

A's documentation suffers. In turn, they suggested that if the nurse is interrupted with a non-

similar task (e.g., inquiry about health insurance), this may have fewer negative effects on the 

main task. Furthermore, interruptions with higher similarities to the main task may be more 

likely to activate the same cognitive mechanism that are needed to solve the main task (Li et 

al., 2012). Consequently, an interrupting task with strong similarities to the main task may 

demand similar cognitive structures and may increase the goal decay and the time on task to 

solve the primary task.  

Initial idea for cognitive obfuscation. In summary, our results suggest that working 

memory may play an important role in HRE problem solving. Thus, it may be a valuable 

approach to develop cognitive obfuscation that overwhelms specific cognitive structures and 

causes disruptive effects on HRE performance. Cognitive obfuscation that aims to overload the 

capacity of the working memory could include concurrent tasks that are very complex and 

characterized by a high similarity to the primary HRE task. Complexity and similarity have 

been shown to disrupt the problem solver and lead to decay of primary goals (e.g., Monk et al., 

2008). I hypothesize that cognitive obfuscation tasks that include a high complexity and task 

structures that place similar cognitive demands as the primary tasks may cause an overload of 

the working memory. Ideally, obfuscation tasks cause long periods of time spent on the 

obfuscation task before an analyst can return to the primary task, that is, reverse engineering 

the chip. In turn, this may disrupt the problem-solving process for the primary HRE task, cause 

additional time on task, and potentially increase the likelihood of errors in the primary HRE 

task. Ideas for future research on this obfuscation task that aims to overload the capacity of the 

working memory are presented in the following chapter 7. 

Nevertheless, prior research has also investigated how individuals can mitigate the 

disruptive effect of interrupting concurrent tasks. In this context, practice and prior experience 

were shown to counter disruption by interruptions (Li et al., 2012). In the following, I explain 

why it may not be sufficient to solely overwhelm the working memory and why it seems to be 

necessary to include other aspects in the development of cognitive obfuscation methods. 

Although, the capacity of the working memory may be not expandable by practice, memory 
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training and knowledge structures (e.g. chunks) may expand the capacity to transfer and retrieve 

information from the long-term working memory (Ericsson & Kintsch, 1995). Especially 

experts with well-structured knowledge and large chunks may circumvent the limited capacities 

of working memory by retrieving and including relevant domain-specific knowledge and 

procedures with minimal cognitive effort (Alexander, 2003; Chi, 2006). Furthermore, experts 

also face lower cognitive effort due to automated problem-solving procedures (Schneider, 

1985; Chi, 2006).  

 

6.2 Developing Misleading HRE Challenges 

 

As suggested by our results, cognitive abilities and expertise may support analysts in conducting 

HRE. The central question is how to impede hardware reverse engineers (e.g., HRE experts or 

more experienced analysts) who also rely on their well-structured prior knowledge. I suggest 

that two approaches could be pursued in this context: experts’ mental fixations on applying 

standard strategies and experts’ missing flexibility to develop non-routine solutions.  

Besides several findings on how expertise supported problem solving (e.g., Larkin, 

McDermott, Simon, & Simon, 1980; Patel & Kaufman, 1995), prior research on expertise has 

also identified drawbacks that stem from increasing expertise (e.g., summary in Chi, 2006). 

Especially i) mental fixations through domain-specific knowledge that impede the development 

of creative and novel solutions and ii) experts’ inflexibility to changing problem-solving 

routines and inability to adapt their strategies accordingly may be valuable to consider in terms 

of cognitive obfuscation. 

One challenge that can impede the performance of high-knowledge participants are 

mental fixations on specific problem-solving procedures that do not necessarily provide the best 

solution for the task at hand. For example, Wiley (1998) showed in three experiments that 

individuals with higher levels of domain-specific knowledge were worse in solving a creative 

task than individuals with lower levels of domain-specific knowledge. Those creative tasks 

were characterized by misleading items in the domain of baseball. Therefore, Wiley (1998) 

adapted the Remote Associates Test (RAT) (Mednick, 1962) and asked participants to logically 

complete a series of three baseball words by a fourth. The adapted RAT-test included 

misleading tasks, in which the solution was not a baseball-related word (Wiley, 1998). The 

three experiments showed a clear effect that participants with higher levels in domain-specific 



104 

 

baseball knowledge were less successful in solving the problems correctly as their prior 

knowledge caused a mental fixation on an inappropriate solution. Wiley (1998) argued that the 

high-knowledge participants did not conduct a broad search in the search space of the problem 

that may have influenced the fact that experts did not choose an appropriate solution. Since the 

low-knowledge participants achieved better solutions, Wiley (1998) suggested that participants 

with lower domain-specific knowledge were able to solve the misleading tasks more flexible 

than the high-knowledge subjects.  

Furthermore, experts are outperformed by non-experts when a task included new contexts 

and demanded to develop and apply non-routine solutions. Prior research showed that experts 

were less flexible than novices in solving a domain-specific task for that new information or 

new contexts had to be considered (Chi, 2006). For example, Marchant, Robinson, Anderson 

and Schadewald (1991) showed that accountants with higher levels of domain-specific 

knowledge were less successful in applying new information (about a tax law) that impeded the 

application of standard deductions. In addition, Frensch and Sternberg (1989) presented that 

expert bridge players were less able to apply a new version of the game than novice players. 

Wiley (1998) concluded that these studies showed that highly proceduralized domain-specific 

knowledge may be responsible that experts were less flexible to new contexts and information.   

Initial idea for cognitive obfuscation. Prior research has shown that domain-specific 

knowledge can enhance problem-solving processes on the one hand (e.g., Patel & Kaufman, 

1995), but can also inhibit effective of problem-solving processes on the other hand (e.g., 

Wiley, 1998). There is no doubt that domain-specific knowledge is essential to solving 

problems. Nevertheless, there exists some empirical evidence that experts also tend to fail due 

to i) domain-specific knowledge that acts as a mental fixation impeding creative and novel 

solutions (Wiley, 1998) or ii) an inflexibility to adapt their strategies accordingly to new 

information or contexts (e.g., Marchant et al., 1991). Against this background, I suggest that 

cognitive obfuscation that aims at posing challenges for HRE experts should include tasks and 

problem settings that are unusual for the HRE domain. These non-routine obfuscation tasks 

may include misleading aspects that may force HRE experts to develop non-routine problem-

solving strategies. I hypothesize that HRE experts may be less flexible in adapting their HRE 

problem-solving strategies in an appropriate way and may be more focused on applying their 

standard strategies. This may cause less efficient HRE problem-solving performance of HRE 

experts. Ideas for future research on this obfuscation task are briefly presented in the chapter 7. 
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In summary, I suggest that cognitive obfuscation tasks should include cognitively challenging 

tasks that impede both problem-solving processes determined by expertise and cognitive 

abilities. In particular, I suggest that analysts whose superior HRE performance is based on 

their highly-efficient working memory, could be disturbed by complex interrupting tasks with 

high similarities to the primary HRE task that may lead to inefficient problem solving. These 

concurrent and interrupting obfuscation tasks could activate similar cognitive structures that 

were already needed to solve the primary HRE task and could overload the capacity of the 

analysts’ working memory. As shown by prior research with a visuospatial task (Baddeley et 

al., 1998; Baddeley, 2002), those concurrent obfuscation tasks could heavily overload the 

capacity of the central executive of the working that may lead to an inefficient HRE problem-

solving performance.  

Nevertheless, prior research has shown that more experienced individuals may mitigate 

the disruptive effects of concurrent interrupting tasks (e.g., Li et al., 2012) by training and 

experience. Thus, overloading the capacity of working memory may not be enough to impede 

HRE problem solving by analysts with a profound level of domain-specific knowledge and 

prior problem-solving experience. In a second step, I developed an initial idea how high-

knowledge individual may fail in achieving an efficient HRE solution. Prior research has shown 

that when a problem asked for non-standard solution paths that lay outside their standard 

problem-solving procedures, experts were less efficient in adapting and changing their 

problem-solving strategies (e.g., overview in Chi, 2006). Thus, it may be assumable, that 

cognitive obfuscation tasks that include sub-tasks that are unusual or new to the HRE domain 

and cannot be solved by standard strategies, might force analysts to develop new strategies that 

may raise the time spent on task and lead to inefficient HRE problem solving.  
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7 Limitations and Future Studies 
 

While this thesis provides valuable insights into HRE problem-solving processes and relevant 

cognitive factors such as working memory or expertise, it is not without certain limitations. 

Based on these limitations, I will derive ideas for future research below. 

The main study was limited by a small sample size of eight intermediates and one HRE 

expert. The qualitative nature of this work and the application of an iterative open coding 

scheme based on Grounded Theory (Strauss & Corbin, 1998) enabled the analysis of problem-

solving processes and strategies exhibited by the participants in greater detail. Nevertheless, 

HRE problem-solving processes and correlations with cognitive factors could only be described 

in a qualitative manner, and we could not draw any conclusions about whether working memory 

or level of expertise had a significant influence on problem-solving performance in HRE. Thus, 

I propose that future studies should quantify HRE problem-solving processes and the influences 

of cognitive factors with larger sample sizes. Furthermore, a promising future investigation 

would be to analyze the frequencies of reversing-specific problems and difficulties during 

several HRE tasks, and whether these could be avoided by hardware reverse engineers as their 

experience grows.  

Furthermore, we circumvented the methodological problem that HRE experts were 

unavailable for research, by the development of an HRE course that promoted HRE skill 

acquisition in students with relevant backgrounds. Although our methodological approach 

enabled us to investigate HRE problem solving, it also comes with some limitations. Although, 

we successfully conducted our main study, we were only able to recruit a small number of 

participants. In addition, all students came from the same university and also completed the 

same HRE training. Although we aimed to avoid biases as much as possible (e.g., by not making 

concrete solution scenarios or solution strategies for the HRE task available to students), it is 

important that future studies recruit a more heterogeneous sample for analyzing human problem 

solving in HRE. One idea, we are currently pursuing, is the development of an HRE simulation. 

This simulates realistic sub-processes of HRE in a knowledge-free environment and thus may 

enable the recruitment of a broader and larger sample (i.e., different scientific backgrounds; 

different levels of cognitive abilities; different levels of HRE expertise). Our HRE simulation 

will also enable us to quantify influences of cognitive abilities and expertise on HRE problem-

solving performance.  
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Furthermore, the HRE problem-solving model and qualitative analysis were based on a single 

realistic HRE task. While, we believe that our model captures the most significant HRE 

processes, it is still necessary to further explore reverse engineers’ problem-solving processes 

in further HRE tasks, and to examine whether our model is valid for other HRE tasks (e.g., 

identification of an FSM in a netlist). 

In addition, I developed initial ideas for cognitive obfuscation, which in turn should be 

understood more as a first impulse and less as concrete suggestions. One idea describes how it 

would be theoretically possible to confuse experts or persons with a high level of domain-

specific prior knowledge and to negatively influence their HRE problem-solving performance. 

In this context, it would be valuable if future studies could recruit more HRE experts in order 

to analyze their problem-solving processes and to investigate, which problem-solving strategies 

experts typically apply. Furthermore, it would be valuable to explore, if HRE experts would be 

able to adjust their strategies to uncommon or changing obfuscation tasks. A second idea was 

to develop obfuscation tasks that may overload the capacity of the working memory of analysts. 

Prior research suggested that concurrent tasks with high similarity to the primary task, may 

demand the same cognitive structures and, thus, raise the cognitive effort (e.g., Li et al., 2012; 

Baddeley et al., 1998). Accordingly, it would be interesting to conduct future studies that 

quantify such a disruptive effect of a concurrent task on the analysts’ working memory and to 

compare the effectiveness of such interruptive obfuscation tasks. Furthermore, the development 

of obfuscation tasks that could both overload working memory and confuse experts would be 

an interesting task of future research.   
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8 Conclusion 
 

Prior to our research, little prior work existed that investigated the underlying human factors in 

HRE. To address this research gap and generate new insights in this field, I pursued an 

overarching research goal in my dissertation: exploring problem-solving processes in HRE. 

Two sub-goals for my dissertation were derived from existing psychological literature on 

human problem solving. First, I aimed to investigate a potential correlation between HRE 

problem solving and the level of expertise. Second, I also focused on whether there was a 

correlation between cognitive abilities (e.g., intelligence or subfactors of intelligence) and HRE 

problem solving. In conclusion, our research contributed to both the unexplored problem-

solving processes in HRE and the correlation of HRE problem solving to cognitive abilities and 

expertise. In the following, I will summarize our main findings and outline my conclusions.  

In order to conduct our main study on HRE problem solving, we first had to circumvent 

a methodological problem. The methodological problem was that HRE experts were not 

available for research. As a necessary step, we had to develop an HRE course that promoted 

the acquisition of HRE skills in students with relevant backgrounds in cyber security. In order 

to achieve this, we first derived guidelines from existing psychological literature that served as 

the basis for course development. In an evaluation, we were able to show that the HRE course 

appeared to promote the acquisition of HRE skills and, consequently, qualified students as 

participants in our main study.   

In order to accomplish the overarching research goal, we conducted an empirical study 

with eight intermediates and one HRE expert who were asked to solve a realistic HRE task. In 

order to analyze HRE problem-solving processes, we used an iterative open coding scheme 

based on Grounded Theory (Strauss & Corbin, 1998) that is known as a well-established 

methodological approach from the social sciences. Our analysis included 103 unique open 

codes that were assigned to the problem solving of each participant. Based on the iterative open 

coding procedure, we developed a detailed hierarchical HRE problem-solving model that 

comprised the participants’ problem-solving processes during HRE. In order to generate in-

depth insights into applied problem-solving strategies and their efficiency, we included solution 

times in our analysis. Our results suggested that two intermediates solved the HRE task by 

applying different problem-solving strategies than the HRE expert (and each other), but with 

comparable quickness. Furthermore, we found that some problem-solving strategies were more 

efficient and others less, and that none of the observed strategies could be described as the 
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single best for the HRE task. Additionally, we found that participants with higher scores in the 

intelligence sub-factor working memory tended to achieve faster solutions than participants 

with lower working-memory scores.  

Based on our findings, I drew two main conclusions. First, I assumed that HRE problem 

solving may be a function of both expertise and cognitive abilities. Our findings were in line 

with prior research on expertise and problem solving. The HRE expert’s superior performance 

was based on efficient problem categorization and representation that influenced the selection 

of suitable problem-solving strategies. Furthermore, our findings were in line with the expert-

performance approach (Ericsson & Kintsch, 1995), suggesting that non-experts can compensate 

a lack of domain-specific knowledge and problem-solving experience with their cognitive 

abilities. Against this background, I assumed that both high-performing HRE intermediates (P8, 

P3) achieved time-efficient solutions due to efficient information processing systems and 

working memory. I outlined explanations on how an efficient working memory may have 

supported the analysts in achieving efficient solutions (e.g., simultaneously storing and 

manipulating netlist information without losing the golden threat of HRE; inhibition of 

irrelevant netlist components). In this context, I concluded that HRE problems may involve 

aspects of both simple and complex problems. Although HRE and simple problems have several 

core aspects in common (e.g., unambiguous initial state; the goal state; no dynamics), the huge 

amount of information pertaining to non-transparent, highly interconnected components that 

must be processed and analyzed, creates a challenge that places HRE squarely outside of the 

realm of simple problems as typically defined and constructed. These characteristics add 

another layer to HRE problems and thus places them between simple problems and complex 

problems.  

Second, our results were aligned with the considerations by Lee and Johnson-Laird 

(2013) who suggested that reverse engineering of Boolean systems may be a specific but so far 

poorly understood type of human problem solving. In this context, I discussed similarities and 

differences between our findings on HRE problem solving and the results by Lee and Johnson-

Laird (2013) on strategies and difficulties during reverse engineering of Boolean systems. For 

example, we did not find any main strategies in solving the HRE task, but rather individual 

approaches. However, we agree with Lee's assumption that the difficulty in HRE, like the 

difficulty in reverse engineering of Boolean systems, could be determined by the number of 

netlist components and their dependencies. 
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As the focus of my dissertation lay on the negative and malicious consequences of HRE (i.e., 

IP theft), I developed initial ideas for cognitive obfuscation that were based on one of my main 

conclusions that HRE may be a function of both cognitive abilities and expertise. Based on this 

conclusion, I suggested that cognitive obfuscation tasks should combine cognitively 

challenging tasks that impede problem-solving processes based on both the cognitive abilities 

and on expertise. For example, I presented initial considerations on how to impede the support 

by cognitive abilities, such as the working memory, during HRE. Therefore, I referred to 

existing psychological and HCI literature on disruptive effects of similar tasks and interruptions 

(e.g., Li et al., 2012) that could lead to an overload of hardware reverse engineers’ working 

memory. Furthermore, I also developed ideas on how to impede analysts’ HRE problem solving 

that was based on their well-structured domain-specific knowledge and thus, may enable them 

to circumvent “normal” limits of the working memory (based on long-term working memory 

as suggested by Ericsson and Kintsch, 1995). Therefore, I referred to prior findings that 

suggested circumstances and task characteristics through which experts and high-knowledge 

individuals may be negatively affected in solving the HRE problem efficiently (e.g., Chi, 2006). 

My presented ideas on cognitive obfuscation should be understood as an impulse for further 

research. First, it is essential to investigate whether cognitive abilities and expertise influence 

problem-solving performance in HRE. If future research can successfully quantify this 

influence, further consideration can be made on how obfuscation tasks might be designed in 

order to impede problem-solving processes determined by both cognitive abilities and 

expertise.  

Overall, the presented research built a bridge between two disciplines – cognitive 

psychology and hardware security. By merging both worlds and overcoming disciplinary 

boundaries, it was possible to achieve the established research goals and generate a deeper 

understanding of problem-solving processes in HRE. Besides this point, the research also 

presented an interesting change of perspective in HCI research. In contrast to the common goal 

of HCI research that is to improve the application and work with certain technologies for 

specific user groups, we aim to apply our knowledge of problem-solving processes in HRE to 

impede the analysis of a gate-level netlist.  
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9.2 Example Script 

 

Appendix 1 

 

Figure 9. Example script executed by Participant 8 while working on the HRE problem-solving 

task. 

 

 

 

9.3 Detailed Code Book 

 

Appendix 2 

Here, we list the final codebook used to annotate the content of each log file. The codebook is 

divided into nine parts that reflect the nine sub-categories of our HRE problem-solving model 

(see Figure 2). All 103 open codes are assigned to one corresponding sub-category. In the 

following, we provide a short description for each open code. 
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Error Introduction.  

• introduction of syntactical errors: Analyst introduced one or several syntactical errors 

in the solution script (as indicated by a “SyntaxError” of the interpreter).  

• introduction of repeated syntactical errors: Analyst repeatedly introduced the very 

same syntactical error in the solution script. 

• choice of inappropriate technical approaches: Analyst chose an inappropriate 

programming approach to solve the problem at hand (e.g., wrong function). 

• introduction of repeated semantic errors: Analyst repeatedly introduced the very same 

semantic error in the solution script. 

Troubleshooting. 

• attempt to correct syntactical errors: Analyst unsuccessfully tried to correct one or 

several existing syntactical errors in the solution script. 

• successful correction of syntactical errors: Analyst successfully corrected one or 

several existing syntactical errors in the solution script. 

• attempt to correct semantic errors: Analyst unsuccessfully tried to correct one or several 

existing semantic errors in the solution script. 

• successful correction of semantic errors: Analyst successfully corrected one or several 

existing semantic errors in the solution script. 

• general debugging: Analyst attempted to locate a flaw in the solution script. 

• attempt to fix persistent problems: Analyst located and attempted to correct parts of a 

persistent error in the solution script. 

• successful correction of persistent problems: Analyst understood and fully resolved a 

persistent error in the solution script. 

• workaround: Analyst located an issue and bypassed it to be able to continue working. 

• attempt to correct a non-existent semantic error: Analyst assumed a semantic error and 

attempted to correct it while no such error is in fact present in the solution script. 

• hackfix: Analyst resolved a syntactical or semantic error by the use of an inefficient or 

inappropriate but generally functional technique. 

Test and Validation. 

• targeted verification: Analyst checked a small, specific part of the algorithm for some 

well-defined expected behavior or output. 
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• targeted evaluation: Analyst checked a small, specific part of the algorithm for basic 

plausibility of its behavior or output. 

• general evaluation: Analyst tested the behavior of a large section of the algorithm or of 

the entire algorithm. 

• manual netlist inspection for script validation: Analyst compared an insight gained from 

the solution script against information obtained by inspecting parts of the netlist through 

the graphical user interface. 

• reliability test: Analyst verified that the algorithm repeatedly and consistently produces 

the expected result (e. g., after restarting HAL and thus resetting any saved state). 

• testing python constructs: Analyst tested functionality of the programming language. 

• testing the hal api: Analyst tested functionality of the HAL scripting system (e. g., 

functions to access the netlist). 

Code Adjustments. 

• improve clarity of console output: Analyst made the console output more readable and 

understandable (e. g., by using better formatting or removing unnecessary output). 

• improve clarity of the code: Analyst made the solution script more readable (e. g., by 

adding comments or including white spaces). 

• cleaning up within the code: Analyst removed obsolete parts of the solution script (e. 

g., temporary testing code). 

• code simplification: Analyst removed not strictly needed parts from the solution script. 

• code restructuring: Analyst reorganized or rewrote parts of the solution script to 

improve its functional structure. 

• code optimization for error avoidance: Analyst recognized and redesigned an error-

prone programming solution, or added error prevention or reporting mechanisms to the 

solution script. 

• restoration of a functional code state: Analyst rolled back one or several problematic 

code changes to restore the last known-working version. 

• reversion to previous code components: Analyst copied code from a previous version 

of the solution script into the current version. 

• introduction of redundant code: Analyst duplicated code with minimal changes, 

unnecessarily enlarging the solution script. 

• code artifact remains: Analyst left obsolete pieces of code in the solution script. 
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• deletion of actually needed code: Analyst removed code that other parts of the solution 

script were dependent on. 

• anticipatory documentation: Analyst added comments to the solution script as a means 

of planning their next steps. 

• explanatory documentation: Analyst added comments documenting the code. 

• documentation of results: Analyst gathered information required to document their 

findings (e. g., by printing specific results of the algorithm). 

Inspection and Information Gathering. 

• manual netlist exploration: Analyst navigated through parts of the netlist using the 

graphical user interface of HAL. 

• script-based netlist exploration: Analyst used the scripting functionality of HAL to 

generate statistics or locate interesting parts of the netlist at hand. 

• script-based search for gnd and vcc nets2: Analyst used the scripting functionality of 

HAL to search for the Ground (gnd) and Voltage common collector (vcc) nets. 

• script-based identification of the gnd gate: Analyst successfully located the GND gate 

using the scripting functionality. 

• script-based identification of the vcc gate: Analyst successfully located the VCC gate 

using the scripting functionality. 

• script-based inspection of the gnd and vcc gates: Analyst used the scripting 

functionality to access information about the GND and VCC gates. 

• script-based inspection of the input pin types: Analyst used the scripting functionality 

to access information about the input pins of a gate. 

• script-based inspection of input nets: Analyst used the scripting functionality to access 

information about the nets feeding into the input pins of a gate. 

• script-based inspection of global inout nets: Analyst used the scripting functionality to 

access information about the global in-/output nets. 

• script-based inspection of watermark candidates: Analyst used the scripting 

functionality to access information about the watermark candidates identified by their 

algorithm. 

• general script-based netlist inspection: Analyst used the scripting functionality to 

access information about interesting parts of the netlist at hand. 

• first manual identification of the gnd net: Analyst successfully located the GND net by 

browsing the netlist via the graphical user interface. 
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• first manual identification of the vcc net: Analyst successfully located the VCC net by 

browsing the netlist via the graphical user interface. 

• first manual identification of the gnd gate: Analyst successfully located the GND gate 

by browsing the netlist via the graphical user interface. 

• first manual identification of the vcc gate: Analyst successfully located the VCC gate 

by browsing the netlist via the graphical user interface. 

• manual selection of a subsequent gate from gnd or vcc: Analyst selected one or several 

gates connected to VCC or GND (i. e., gates possibly relevant for the watermarking) 

via the graphical user interface. 

• manual selection of irrelevant gates: The analyst selected one or more gates that were 

not helpful for watermark recognition via the graphical user interface. 

• manual inspection of irrelevant gates: Analyst checked details of one or several gates 

that were not helpful for watermark recognition via the graphical user interface. 

• manual selection of irrelevant nets: Analyst selected one or several nets that were not 

helpful for the detection of the watermarking via the graphical user interface. 

• manual selection of watermark candidates: Analyst selected one or several gates that 

may contain watermarking via the graphical user interface. 

• manual inspection of the gnd net: Analyst checked details of the GND net via the 

graphical user interface. 

• manual inspection of the vcc net: Analyst checked details of the VCC net via the 

graphical user interface. 

• manual inspection of the gnd gate: Analyst checked details of the GND gate via the 

graphical user interface. 

• manual inspection of the vcc gate: Analyst checked details of the VCC gate via the 

graphical user interface. 

• in-depth manual inspection of watermark candidates: Analyst spent significant time 

checking details of one or several gates that may contain watermarking via the graphical 

user interface. 

Reversing Strategy Decisions. 

• small-step preparation of a reversing sub-step: Analyst introduced small local code 

change or tested functionality to support the next step in the reversing process. 

• preparation of a reversing sub-step: Analyst introduced significant code change or 

design decision to support the next step in the reversing process. 
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• using external resources: Analyst used external (online) documentation or performed 

manual analysis on paper or otherwise outside the HAL environment. 

• generic approach: Analyst implemented (part of) an algorithm able to work on a 

multitude of input conditions (i. e., in opposition to writing highly redundant code). 

• recourse to proven approach: Analyst reused or adapted a known-working strategy. 

• combining individual approaches: Analyst merges two separately developed parts of 

the solution script into one algorithm. 

• duplication of partial solutions from gnd to vcc (and vice versa): Analyst duplicated 

parts of the algorithm targeted to GND respective VCC to solve the other case. 

• duplication of partial solutions for watermarking candidates: Analyst duplicated parts 

of the algorithm targeted specifically to a subset of candidate gates to solve another 

subset. 

• fully manual approach: Analyst refrains from using the scripting functionality to solve 

the current problem and rather performs the analysis by hand. 

• local approach without considering the overall problem: Analyst attempted to solve an 

issue without aligning with the overall goal or checking for negative consequences of 

their local fix. 

• brute force approach: Analyst tried to solve a problem by enumerating and testing the 

entire solution space, rather than using a more efficient approach. 

• hardcoding approach: Analyst entered information about the netlist at hand (e. g., 

names of specific gates) manually into the code, restricting its applicability to the current 

netlist. 

• development of test cases: Analyst developed a piece of code specifically to test a 

solution idea separated from the final solution script. 

• selection of test candidates: Analyst hardcoded (new) candidate gate(s) to execute the 

test code snippet on them. 

• generalisation of a specific approach: Analyst modified parts of the algorithm 

previously targeted to a specific input candidate or subset of candidates to work on a 

broader input range. 

• renewed solution attempt without change of strategy: Analyst re-attempted 

implementation of some functionality that he or she had given up on before. 

• strategy change for script-based analysis: Analyst chose a new, alternative approach to 

solve the problem at hand while using the scripting functionality. 
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• strategy change from script-based to manual analysis: Analyst switched to solving the 

problem at hand manually, rather than pursuing a working automated solution. 

• strategy change for manual analysis: Analyst chose a new, alternative approach to solve 

the problem at hand while solely using the graphical user interface. 

Reversing Milestones and Sub-Goals. 

• achieving a milestone: identification of watermarking candidates: Analyst successfully 

identified the relevant gates for the subsequent watermarking extraction and removal. 

• achieving a milestone: removal of the watermarking: Analyst successfully patched the 

watermarking out of the identified candidate gates. 

• achieving a milestone: extraction of the watermarking: Analyst successfully read out 

the watermarking from the identified candidate gates. 

• achieving a milestone: Analyst completed a key step of their personal solution strategy. 

• successfully completed sub-step for the removal of the watermarking: Analyst solved a 

key step in patching the watermarking. 

• successfully completed sub-step for the extraction of the watermarking: Analyst solved 

a key step in reading out the watermarking. 

• successfully completed sub-step for the identification of watermarking candidates: 

Analyst solved a key step in identifying the candidates relevant for the watermarking. 

• systematic approach with regard to the removal of the watermarking: Analyst devised 

a clear, suitable strategy to patch the watermarking and started working towards it. 

• systematic approach with regard to extraction of the watermarking: Analyst devised a 

clear, suitable strategy to read out the watermarking and started working towards it. 

• systematic approach with regard to the identification of watermarking candidates: 

Analyst devised a clear, suitable strategy to identify the watermarking candidates and 

started working towards it. 

• successful application of a reversing-specific concept: Analyst examined and 

understood a reversing concept and began using it for their solution. 

Reversing Problems. 

• reversing-specific lack of understanding: Analyst misunderstood or missed a central 

reversing concept and thus, implemented an unsuitable solution for the problem at hand. 

• attempt to correct the reversing-specific misconception: Analyst located a 

misconception in the solution script and unsuccessfully attempted to correct it. 
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• correction of the reversing-specific misconception: Analyst understood a reversing 

concept and subsequently corrected a misconception in the solution script. 

• unsuccessful transfer of an already known approach to a current problem: Analyst 

made a mistake while attempting to apply a previously known solution to the current 

problem. 

• lost track of the reversing approach: Analyst had lost the overview of their solution 

approach and was stuck on a local problem. 

• inappropriate change of the reversing strategy: Analyst switched to another solution 

strategy while their current approach was already well-suited. 

• correct solution is not recognized: Analyst solved the problem at hand but did not realize 

that they did so. 

• dead end: Analyst gave up after applying a strategy that was inappropriate to the current 

problem. 

External Influences. 

• software bug: Analyst‘s progress was hindered by a software error in the HAL 

environment.  

• unintentional manual selection: Analyst unintentionally selected an element in the 

graphical user interface. 

• external interruption: Analyst‘s work was interrupted by an external influence (e. g., 

breaks). 

• reinsurance and re-entry after interruption: Analyst verified the current state of their 

work after being interrupted by an external influence. 
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9.4 Full HRE Taxonomy 

 

Appendix 3 

Table 8. Hierarchy of the sub-category Error Introduction and absolute number of assigned 

open codes per participant. 

 

 

Table 9. Hierarchy of the sub-category Troubleshooting and absolute number of assigned open 

codes per participant. 
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Table 10. Hierarchy of the sub-category Test and Validation and absolute number of assigned 

open codes per participant. 

 

 

 

Table 11. Hierarchy of the sub-category Code Adjustments and absolute number of assigned 

open codes per participant. 
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Table 12. Hierarchy of the sub-category Reversing Strategy Decisions and absolute number of 

assigned open codes per participant. 
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Table 13. Hierarchy of the sub-category Inspection and Information Gathering and absolute 

number of assigned open codes per participant. 
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Table 14. Hierarchy of the sub-category Reversing Milestones and Sub-Goals and absolute 

number of assigned open codes per participant. 

 

 

Table 15. Hierarchy of the sub-category Reversing Problems and absolute number of assigned 

open codes per participant. 

 

 

Table 16. Hierarchy of the sub-category External Influences and absolute number of assigned 

open codes per participant. 
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