Estudo anatômico do tronco encefálico por imagens de ressonância magnética de 3 Teslas e correlação com cortes histológicos [thesis]

Lincoln da Silva Freitas
Freitas,L.S. Anatomical study of brainstem magnetic resonance images of 3 Teslas and correlation with histological sections 2016,124 pages. Thesis (MS). The Brainstem is a unique structure of the central nervous system, because in it pass ascending sensory tracts of the spinal cord, sensory tracts of head and neck, descending tracts originated in the forebrain, the pathways linked to eye movement centers, contains nuclei of cranial nerves, and is also involved in regulating the level of
more » ... he level of consciousness through projections to the forebrain that arise from the reticular formation. All these estructures are packed into a very small space which makes the brainstem a particularly sensitive place to pathological changes, that bring up a large amount of neurological signs due to very close packing of the aforementioned structures.Understanding the internal anatomy of the brainstem is essential for the neurological diagnosis and the clinical medicine practice. Thus, the brainstem is fertile ground for the study through diagnostic imaging, especially when performed by new technologies such as high-field (3 tesla) MRI machines. However, little is known about the correlation between the microscopy and magnetic resonance imaging of the brainstem. The aim of this study was to analyze and correlate the various structures found in the brainstem, viewed in microscopic slides of human brains post mortem, with the magnetic resonance imaging thereof, prior to dissection, mapping them and defining them, thus contributing to more accurate diagnoses and surveying of pathologies that affect the brainstem. Human brains (n = 3) were submerged in a container containing water, and then sealed so that the ambient air does not enter the container. MRI images were acquired in gradient echo sequence (FFE) 2D 3T field equipment (PHILIPS ACHIEVA) with coil 8channel brain. It was used TE = 9.0 ms, TR = 1000 ms and flip angle 90°; number of averages equal to 10 and BW per pixel equal to 72 Hz/pixel. Factor PPE used was equal to one and the spatial resolution of FOV with 0,219x0,219x2,0 mm 3 210x210x90mm 3 . The total acquisition time was 3 hours, 01 minute and 96 seconds. Histological images used in this study are from the pathology department of State University of Campinas (UNICAMP) database and compared to images obtained in MRI. We demonstrated that it was possible to identify histologically visible structures in images acquired with sufficient resolution and definition to generate an magnetic resonance imaging atlas of the brainstem sections.
doi:10.11606/d.17.2017.tde-27072016-155314 fatcat:miohhzdzdvf3rnub45he7pl5r4