Distribution Calibration for Regression [article]

Hao Song, Tom Diethe, Meelis Kull, Peter Flach
<span title="2019-05-15">2019</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
We are concerned with obtaining well-calibrated output distributions from regression models. Such distributions allow us to quantify the uncertainty that the model has regarding the predicted target value. We introduce the novel concept of distribution calibration, and demonstrate its advantages over the existing definition of quantile calibration. We further propose a post-hoc approach to improving the predictions from previously trained regression models, using multi-output Gaussian Processes
more &raquo; ... with a novel Beta link function. The proposed method is experimentally verified on a set of common regression models and shows improvements for both distribution-level and quantile-level calibration.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1905.06023v1">arXiv:1905.06023v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/u3kqvmyinngf5dpbosqp3f7y3y">fatcat:u3kqvmyinngf5dpbosqp3f7y3y</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200825105604/https://arxiv.org/pdf/1905.06023v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/e8/cf/e8cf790983ed92875b4d57f0d142aafd951dec4c.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1905.06023v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>