CENTRIFUGE MODELING OF LARGE DIAMETER UNDERGROUND PIPES SUBJECTED TO HEAVY TRAFFIC LOADS

B Rakitin, Tsinghua University, Beijing 100084, China, X Ming
2016 Bulletin of South Ural State University series Construction Engineering and Architecture  
impose uncertainties on pipe design. This paper describes the procedure and results of a series of geotechnical centrifuge tests performed on a large 1400 mm-diameter reinforced concrete pipe with a footing subjected to heavy traffic loading. The influence of soil cover depth, as well as the positions and magnitude of traffic loads, on the bending moments of the pipe were investigated. A heavy truck with a maximum load of 850 kN was simulated in the majority of the tests, and a medium truck of
more » ... a medium truck of 252 kN was also simulated. The centrifuge test results were found to be in reasonable agreement with those from full-scale tests. The pipe would experience the most unfavorable conditions when the heaviest axis of the traffic vehicle was located directly above the pipe crown. A deeper soil cover would lead to higher initial stresses in the pipe, as well as reduced influence of traffic load. However, even for a soil cover depth of 4 m, there is significant bending moment induced by the heavy truck loading, which could not be ignored during the pipeline design. Comparison was made between the centrifuge test results and several widely adopted design methods, and unconservative calculation results were noticed for large diameter rigid pipes lying at a shallow soil cover depth subjected to heavy traffic loading.
doi:10.14529/build160305 fatcat:ttzmltky7naadovh2lp5g4vr4y