Cell pelotons: a model of early evolutionary cell sorting, with application to slime mold D. discoideum

Hugh Trenchard
2019 Journal of Theoretical Biology  
A theoretical model is presented for early evolutionary cell sorting within cellular aggregates. The model involves an energy-saving mechanism and principles of collective self-organization analogous to those observed in bicycle pelotons (groups of cyclists). The theoretical framework is applied to slime-mold slugs (Dictyostelium discoideum) and incorporated into a computer simulation which demonstrates principally the sorting of cells between the anterior and posterior slug regions. The
more » ... ion relies on an existing simulation of bicycle peloton dynamics which is modified to incorporate a limited range of cell metabolic capacities among heterogeneous cells, along with a tunable energy-expenditure parameter, referred to as an "output-level" or "starvation-level" to reflect diminishing energetic supply. Proto-cellular dynamics are modeled for three output phases: "active", "suffering", and "dying or dead." Adjusting the starvation parameter causes cell differentiation and sorting into sub-groups within the cellular aggregate. Tuning of the starvation parameter demonstrates how weak or expired cells shuffle backward within the cellular aggregate.
doi:10.1016/j.jtbi.2019.02.011 pmid:30794840 fatcat:iql77dq3f5dxvp3shpijh426ku