A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Informations segmentales pour la caractérisation phonétique du locuteur : variabilité inter- et intra-locuteurs (An automatic classification task involving 44 speakers was performed using convolutional neural networks (CNN) on broadband spectrograms extracted from 2-second sequences of a spontaneous speech corpus (NCCFr))
2020
Traitement Automatique des Langues Naturelles & Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues
Nous avons effectué une classification automatique de 44 locuteurs à partir de réseaux de neurones convolutifs (CNN) sur la base de spectrogrammes à bandes larges calculés sur des séquences de 2 secondes extraites d'un corpus de parole spontanée (NCCFr). Après obtention d'un taux de classification moyen de 93,7 %, les différentes classes phonémiques composant chaque séquence ont été masquées afin de tester leur impact sur le modèle. Les résultats montrent que les voyelles orales influent avant
dblp:conf/taln/GendrotFP20
fatcat:5wqpczgfenaibiolxmim4g7lhy