Measured and Modeled Snow Cover Properties across the Greenland Ice Sheet

Sascha Bellaire, Martin Proksch, Martin Schneebeli, Masashi Niwano, Konrad Steffen
2017 The Cryosphere Discussions  
The Greenland ice sheet (GrIS) is known to be contributing to sea level rise in a warming climate. The snow cover on the ice sheet is the direct link between a potentially warmer atmosphere and the ice itself. However, little is known about the microstructure and especially about the spatial and temporal variability of the snow cover, except from indirect evidence from remote sensing. The detailed snowpack stratigraphy is relevant for processes such as the albedo feedback, water infiltration
more » ... firn densification. During a field campaign in 2015, spatially distributed snow observations of the GrIS were gathered at stations belonging to the Greenland Climate Network (GC-Net). High-resolution snow profiles of density, specific surface area and hardness were measured. Hardness was measured with the SnowMicroPen, which was also used to assess the spatial variability of the snow density with depth. The snow cover model SNOWPACK was forced with reanalysis data from the model NHM-SMAP. The measured mean density of the upper snow cover was in good agreement with the simulations using constant densities for snow accumulation, i.e. new snow, depending on the geographical location on the GrIS. However, the observed stratigraphy in terms of density and SSA could not be reproduced. We found that for a one-dimensional snowpack model it is difficult to parameterize for snowpacks undergoing multiple erosion and redeposition events, as is typical for the GrIS and other perennial polar snowpacks. This limitation may be a drawback to understanding past and future changes of the snow, and the associated processes.
doi:10.5194/tc-2017-55 fatcat:66qbhldwpfadbcwdhuqy3hue4m