Multiscale Fluctuation-based Dispersion Entropy and its Applications to Neurological Diseases

Hamed Azami, Steven E. Arnold, Saeid Sanei, Zhuoqing Chang, Guillermo Sapiro, Javier Escudero, Anoopum S. Gupta
2019 IEEE Access  
Fluctuation-based dispersion entropy (FDispEn) is a new approach to estimate the dynamical variability of the fluctuations of signals. It is based on Shannon entropy and fluctuation-based dispersion patterns. To quantify the physiological dynamics over multiple time scales, multiscale FDispEn (MFDE) is developed in this paper. MFDE is robust to the presence of baseline wanders or trends in the data. We evaluate MFDE, compared with popular multiscale sample entropy (MSE), multiscale fuzzy
more » ... (MFE), and the recently introduced multiscale dispersion entropy (MDE), on selected synthetic data and five neurological diseases' datasets: 1) focal and non-focal electroencephalograms (EEGs); 2) walking stride interval signals for young, elderly, and Parkinson's subjects; 3) stride interval fluctuations for Huntington's disease and amyotrophic lateral sclerosis; 4) EEGs for controls and Alzheimer's disease patients; and 5) eye movement data for Parkinson's disease and ataxia. The MFDE avoids the problem of the undefined MSE values and, compared with the MFE and MSE, leads to more stable entropy values over the scale factors for white and pink noises. Overall, the MFDE is the fastest and most consistent method for the discrimination of different states of neurological data, especially where the mean value of a time series considerably changes along with the signal (e.g., eye movement data). This paper shows that MFDE is a relevant new metric to gain further insights into the dynamics of neurological diseases' recordings. The MATLAB codes for the MFDE and its refined composite form are available in Xplore. INDEX TERMS Complexity, multiscale fluctuation-based dispersion entropy, biomedical signals, electroencephalogram, stride interval fluctuations, eye movements. 68718 2169-3536
doi:10.1109/access.2019.2918560 fatcat:iax47si72vga3erel7qvq76nau