Optimal Control of Spatially Distributed Systems

Nader Motee, Ali Jadbabaie
2007 American Control Conference (ACC)  
In this paper, we study the structural properties of optimal control of spatially distributed systems. Such systems consist of an infinite collection of possibly heterogeneous linear control systems that are spatially interconnected via certain distant-dependent coupling functions over arbitrary graphs. We study the structural properties of optimal control problems with infinite-horizon linear quadratic criteria, by analyzing the spatial structure of the solution to the corresponding operator
more » ... apunov and Riccati equations. The key idea of the paper is the introduction of a special class of operators called spatially decaying (SD). These operators are a generalization of translation invariant operators used in the study of spatially invariant systems. We prove that given a control system with a state-space representation consisting of SD operators, the solution of operator Lyapunov and Riccati equations are SD. Furthermore, we show that the kernel of the optimal state feedback for each subsystem decays in the spatial domain, with the type of decay (e.g., exponential, polynomial or logarithmic) depending on the type of coupling between subsystems.
doi:10.1109/acc.2007.4282897 dblp:conf/acc/MoteeJ07 fatcat:gcwhctgdejchdlmyn4agmh6ufq