A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit <a rel="external noopener" href="https://arxiv.org/pdf/1911.06626v1.pdf">the original URL</a>. The file type is <code>application/pdf</code>.
Non-linear Fokker-Planck equations from conformal metrics and scalar curvature
[article]
<span title="2019-11-15">2019</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
We present an argument which intends to explore a potential geometric origin of a class of non-linear Fokker-Planck equations related to the mesoscopic behavior of systems conjecturally described by the q-entropy. We argue that the appearance of the non-linear term(s) in such equations can be ascribed to the fact that the effective mesoscopic metric describing the behavior of the underlying system may not be the originally chosen one, but a conformal deformation of it. Motivated by Liouville's
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1911.06626v1">arXiv:1911.06626v1</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/wqlnzda4zzdy7iyfkmmljhywve">fatcat:wqlnzda4zzdy7iyfkmmljhywve</a>
</span>
more »
... heorem, we highlight the role played by the scalar curvature of conformally related metrics in establishing such a non-linear Fokker-Planck equation.
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200907045446/https://arxiv.org/pdf/1911.06626v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/d0/8b/d08bd8701475fe7b3ef9e950f44dd94397048738.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1911.06626v1" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>