The impact of resource provisioning on the epidemiological responses of different parasites [article]

Diana Erazo, Amy B Pedersen, Andy Fenton
2021 bioRxiv   pre-print
Events such as anthropogenic activities and periodic tree masting can alter resource provisioning in the environment, directly affecting animals, and potentially impacting the spread of infectious diseases in wildlife. The effect of these supplemental resources on infectious diseases can manifest through different pathways, affecting host susceptibility, transmission and host demography. To date however, empirical research has tended to examine these different pathways in isolation, for example
more » ... by quantifying the effects of provisioning on host behaviour in the wild or changes in immune responses in controlled laboratory studies. Further, while theory has investigated the interactions between these pathways, thus far this work has focussed on a narrow subset of pathogen types, typically directly-transmitted microparasites. Given the diverse ways that provisioning can affect host susceptibility, contact patterns or host demography, we may expect the epidemiological consequences of provisioning to depend on key aspects of parasite life-history, such as the duration of infection and transmission mode. We developed a suite of generic epidemiological models to compare how resource provisioning alters responses for different parasites that vary in their biology (micro- and macro-parasite), transmission mode (direct, environmental, and vector transmitted) and duration of infection (acute, latent, and chronic). Next, we parameterised these different parasite types using data from the diverse parasite community of wild wood mice as a case study. We show there are common epidemiological responses to host resource provisioning across all parasite types examined. In particular, the response to provisioning could be driven in opposite directions, depending on which host pathways (contact rate, susceptibility or host demography) are most altered by the addition of resources to the environment. Broadly, these responses were qualitatively consistent across all parasite types, emphasising the importance of identifying general trade-offs between provisioning-altered parameters. Despite the qualitative consistency in responses to provisioning across parasite types, we found notable quantitative differences between parasites, suggesting specific epidemiological outcomes could strongly depend on parasite type, infection duration and permanency of recovery, and whether the parasite is directly, environmentally, or vector transmitted. These analyses therefore highlight the importance of knowing key specific aspects of host-parasite biology, such as host contact behaviours, parasite interactions with the host immune system, and how resource availability shapes host demographics, in order to understand and predict epidemiological responses to provisioning for any specific host-parasite system.
doi:10.1101/2021.05.22.445253 fatcat:f5mgasjornh2vocpckgmza2wii