Human-Health-Analysis Semantic Computing & 5D World Map System [chapter]

Yasushi Kiyoki, Koji Murakami, Shiori Sasaki, Asako Uraki
2022 Frontiers in Artificial Intelligence and Applications  
Semantic space creation and computing are essentially significant to realize semantic interpretations of situations and symptoms in human-health. We have presented a semantic space creation and computing method for domain-specific research areas. This method realizes semantic space creation with domain-oriented knowledge and databases. This paper presents a semantic space creation and computing method for "Human-Health Database" with the implementation process for "Human-Health-Analytical
more » ... ic Computing". This paper also presents a new knowledge base creation method for personal health data for preventive care and potential risk inspection with global and geographical mapping and visualization in 5-Dimensional World Map System. This method focuses on the analysis of personal health and potential-risk inspection and realizes a set of semantic computing functions for semantic interpretations of situations and symptoms in human-health. This method is applied to "Human-Health-Analytical Semantic Computing" to realize world-wide evaluation for (1) multi-parameterized personal health data, such as various biomarkers, clinical physical parameters, lifestyle parameters, other clinical/physiological or human health factors, etc., for health monitoring, and (2) time-series multi-parameterized health data in the national/regional level for global analysis of potential cause of disease. This Human-Health-Analytical Semantic Computing method realizes a new multidimensional data analysis and knowledge sharing for a global-level health monitoring and disease analysis. The computational results are able to be visualized in the time-series difference of the values in each place, the difference between the values of multiple places in a focused area, and the time-series differences between the values of multiple places to detect and predict a potential-risk of diseases.
doi:10.3233/faia210482 fatcat:eucgw4b5mzbsxhg3qtpzie6vbm