Technical note The application of selective principal components analysis (SPCA) to a Thematic Mapper (TM) image for the recognition of geomorphologic features configuration

P. A. Siljestrom, A. Moreno, K. Vikgren, L. M. Caceres
1997 International Journal of Remote Sensing  
Abstraer. Seleclive principal component s analysis (SPCA) has been appl ied lo highly-a nd/ or liltle-correlated subgroups of bands. It s usefulness \Vas demonst ra ted in t\Vo ways. First, lh e fin al result is a false co lour compositioll based 0 11 lhe first o rd er principa l component of each high ly correlated subgro up of bands, lhe resulting image contain ing more than 95 per cen l of lhe tota l variance of l be six TM ballds lI sed. Seco ndly, Ih e secon d order principal compone nt of
more » ... pairs of little-correla ted bands will show Ihe informalion Iha1 is unique for eac h bando 80th Iypes of analysis have been a pplied 10 characterizc Ihe geoJl1o rphological un ils al a si te in SW Spain. 80th mCl hodol ogies have demonsl rat ed lO be very useful in a difficult lo access area, wilh high vegela ti on diversily covering quite differenl geomorphic fealures.
doi:10.1080/014311697216658 fatcat:f7prcot5ozeofgy2ikmrkxze4i