A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is `application/pdf`

.

##
###
Making the components of a graph k-connected

2007
*
Discrete Applied Mathematics
*

For every integer k 2 and graph G, consider the following natural procedure: if G has a component G that is not k-connected, remove G if |G | k, otherwise remove a cutset U ⊂ V (G ) with |U | < k; do the same with the remaining graph until only k-connected components are left or all vertices are removed. We are interested when this procedure stops after removing o(|G|) vertices. Surprisingly, for every graph G of order n with minimum degree (G) √ 2(k − 1)n, the procedure always stops after

doi:10.1016/j.dam.2006.07.007
fatcat:ow6lukeq4rdmjavlrohr4tnu4m