A Short Proof of a Theorem Concerning Degree Sums and Connectivity on Hamiltonian Graphs

Bing Wei
<span title="">1999</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/g6u5fful5vcr3a7gppc6y47el4" style="color: black;">Journal of combinatorial theory. Series B (Print)</a> </i> &nbsp;
proved that if G is a 2-connected graph with n vertices such that d(u)+d(v)+d(w) n+} holds for any triple of independent vertices u, v, and w, then G is hamiltonian, where } is the vertex connectivity of G. In this note, we will give a short proof of the above result. Academic Press
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1006/jctb.1998.1867">doi:10.1006/jctb.1998.1867</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/6473xlvr5jfbhje7tvz34hw6dm">fatcat:6473xlvr5jfbhje7tvz34hw6dm</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190226065905/https://core.ac.uk/download/pdf/82061628.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/19/12/1912c7730387a4a608213cf80b44db45d8f1f635.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1006/jctb.1998.1867"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / doi.org </button> </a>