An Exact 2.9416^n Algorithm for the Three Domatic Number Problem [article]

Tobias Riege, Jörg Rothe
2005 arXiv   pre-print
The three domatic number problem asks whether a given undirected graph can be partitioned into at least three dominating sets, i.e., sets whose closed neighborhood equals the vertex set of the graph. Since this problem is NP-complete, no polynomial-time algorithm is known for it. The naive deterministic algorithm for this problem runs in time 3^n, up to polynomial factors. In this paper, we design an exact deterministic algorithm for this problem running in time 2.9416^n. Thus, our algorithm
more » ... handle problem instances of larger size than the naive algorithm in the same amount of time. We also present another deterministic and a randomized algorithm for this problem that both have an even better performance for graphs with small maximum degree.
arXiv:cs/0506090v1 fatcat:ssopzsvkdrhllfxyz7s6syfugu