Stochastic approximation of dynamical exponent at quantum critical point
Shinya Yasuda, Hidemaro Suwa, Synge Todo
2015
Physical Review B
We have developed a unified finite-size scaling method for quantum phase transitions that requires no prior knowledge of the dynamical exponent z. During a quantum Monte Carlo simulation, the temperature is automatically tuned by the Robbins-Monro stochastic approximation method, being proportional to the lowest gap of the finite-size system. The dynamical exponent is estimated in a straightforward way from the system-size dependence of the temperature. As a demonstration of our novel method,
more »
... e two-dimensional S=1/2 quantum XY model in uniform and staggered magnetic fields is investigated in the combination of the world-line quantum Monte Carlo worm algorithm. In the absence of the uniform magnetic field, we obtain the fully consistent result with the Lorentz invariance at the quantum critical point, z=1, i.e., the three-dimensional classical XY universality class. Under a finite uniform magnetic field, on the other hand, the dynamical exponent becomes two, and the mean-field universality with effective dimension (2+2) governs the quantum phase transition.
doi:10.1103/physrevb.92.104411
fatcat:rhiw64rti5dzfdc5jve24e7haq