Origin of the Resistivity Anisotropy in the Nematic Phase of FeSe

M. A. Tanatar, A. E. Böhmer, E. I. Timmons, M. Schütt, G. Drachuck, V. Taufour, K. Kothapalli, A. Kreyssig, S. L. Bud'ko, P. C. Canfield, R. M. Fernandes, R. Prozorov
2016 Physical Review Letters  
The in-plane resistivity anisotropy is studied in strain-detwinned single crystals of FeSe. In contrast to other iron-based superconductors, FeSe does not develop long-range magnetic order below the nematic/structural transition at $T_{s}\approx$90~K. This allows for the disentanglement of the contributions to the resistivity anisotropy due to nematic and magnetic orders. Comparing direct transport and elastoresistivity measurements, we extract the intrinsic resistivity anisotropy of
more » ... tropy of strain-free samples. The anisotropy peaks slightly below $T_{s}$ and decreases to nearly zero on cooling down to the superconducting transition. This behavior is consistent with a scenario in which the in-plane resistivity anisotropy in FeSe is dominated by inelastic scattering by anisotropic spin fluctuations.
doi:10.1103/physrevlett.117.127001 pmid:27689292 fatcat:zdmrkf2ucrhh3ljtodv3fqk5i4