Transfer RNA fragments replace microRNA regulators of the cholinergic post-stroke immune blockade [article]

Katarzyna Winek, Sebastian Lobentanzer, Bettina Nadorp, Serafima Dubnov, Claudia Dames, Gilli Moshitzky, Benjamin Hotter, Christian Meisel, David S Greenberg, Sagiv Shifman, Jochen Klein, Shani Shenhar-Tsarfaty (+2 others)
2020 medRxiv   pre-print
Stroke is a leading cause of death and disability. Recovery depends on balance between inflammatory response and immune suppression, which can be CNS-protective but may worsen prognosis by increasing patients' susceptibility to infections. Peripheral cholinergic blockade of immune reactions fine-tunes this immune response, but its molecular regulators are unknown. Therefore, we sought small RNA balancers of the cholinergic anti-inflammatory pathway in peripheral blood from ischemic stroke
more » ... ts. Using RNA-sequencing and RT-qPCR, we discovered in patients' blood on day 2 after stroke a 'change of guards' reflected in massive decreases in microRNAs (miRs) and increases in transfer RNA fragments (tRFs) targeting cholinergic transcripts. Electrophoresis-based size-selection followed by RT-qPCR validated the top 6 upregulated tRFs in a separate cohort of stroke patients, and independent small RNA-sequencing datasets presented post-stroke enriched tRFs as originating from lymphocytes and monocytes. In these immune compartments, we found CD14+ monocytes to express the highest amounts of cholinergic transcripts. In-depth analysis of CD14+ regulatory circuits revealed minimally overlapping subsets of transcription factors carrying complementary motifs to miRs or tRFs, indicating different roles for the stroke-perturbed members of these small RNA species. Furthermore, LPS-stimulated murine RAW264.7 cells presented dexamethasone-suppressible upregulation of the top 6 tRFs identified in human patients, indicating an evolutionarily conserved and pharmaceutically treatable tRF response to inflammatory cues. Our findings identify tRF/miR subgroups which may co-modulate the homeostatic response to stroke in patients' blood and open novel venues for establishing RNA-targeted concepts for post-stroke diagnosis and therapeutics.
doi:10.1101/2020.07.02.20144212 fatcat:nzo763i27bgkzfm4hy3k5peeme