A Comparative Study of Fuzzy Relationship and ANN for Landslide Susceptibility in Pohang Area
퍼지관계 기법과 인공신경망 기법을 이용한 포항지역의 산사태 취약성 예측 기법 비교 연구

Jin Yeob Kim, Hyuck Jin Park
2013 Economic and Environmental Geology  
Landslides are caused by complex interaction among a large number of interrelated factors such as topography, geology, forest and soils. In this study, a comparative study was carried out using fuzzy relationship method and artificial neural network to evaluate landslide susceptibility. For landslide susceptibility mapping, maps of the landslide occurrence locations, slope angle, aspect, curvature, lithology, soil drainage, soil depth, soil texture, forest type, forest age, forest diameter and
more » ... orest diameter and forest density were constructed from the spatial data sets. In fuzzy relation analysis, the membership values for each category of thematic layers have been determined using the cosine amplitude method. Then the integration of different thematic layers to produce landslide susceptibility map was performed by Cartesian product operation. In artificial neural network analysis, the relative weight values for causative factors were determined by back propagation algorithm. Landslide susceptibility maps prepared by two approaches were validated by ROC(Receiver Operating Characteristic) curve and AUC(Area Under the Curve). Based on the validation results, both approaches show excellent performance to predict the landslide susceptibility but the performance of the artificial neural network was superior in this study area. Key words : fuzzy relationship, artificial neural network, landslide susceptibility, fuzzy membership value, Pohang 산사태는 지형, 지질, 임상, 토양 등과 같은 다양한 요인들이 복합적으로 작용하여 발생한다. 따라서 산사태 발생 위치와 산사태 유발 요인 사이의 상관관계를 파악할 수 있는 다양한 분석 기법이 사용되고 있으며 본 연구에서는 산 사태 위험지역을 정량적으로 예측할 수 있는 효과적인 기법을 제안하고자 퍼지관계 기법과 인공신경망 기법을 이용 하여 포항지역의 산사태 취약성을 분석하였다. 취약성 분석을 위해 먼저 산사태 위치를 파악하여 현황도를 작성하였 으며, 산사태 발생과 관련 있는 11개의 요인들에 대한 공간 데이터베이스를 구축하였다. 퍼지관계 기법에서는 cosine amplitude method를 이용해 각 요인 별 퍼지 소속 함수 값을 획득하고 퍼지관계 함수 연산을 이용하여 취약성도를 작성하였다. 인공신경망 기법에서는 오류 역전파 알고리즘을 이용하여 산사태와 관련 요인들 간의 상대적 가중치를 결정하고 취약성도를 작성하였다. 두 기법으로 도출된 산사태 취약성도의 ROC(Receiver Operating Characteristic)와 AUC(Area Under the Curve)를 통한 검증 결과는 82.18%와
doi:10.9719/eeg.2013.46.4.301 fatcat:3vtbtye7tfaxtdvgroeypvgtbi