Time as an observable in nonrelativistic quantum mechanics

G E Hahne
2003 Journal of Physics A: Mathematical and General  
The nonrelativistic Schroedinger equation for motion of a structureless particle in four-dimensional space-time entails a well-known expression for the conserved four-vector field of local probability density and current that are associated with a quantum state solution to the equation. Under the physical assumption that each spatial, as well as the temporal, component of this current is observable, the position in time becomes an operator and an observable in that the weighted average value of
more » ... the time of the particle's crossing of a complete hyperplane can be simply defined: ... When the space-time coordinates are (t,x,y,z), the paper analyzes in detail the case that the hyperplane is of the type z=constant. Particles can cross such a hyperplane in either direction, so it proves convenient to introduce an indefinite metric, and correspondingly a sesquilinear inner product with non-Hilbert space structure, for the space of quantum states on such a surface. >... A detailed formalism for computing average crossing times on a z=constant hyperplane, and average dwell times and delay times for a zone of interaction between a pair of z=constant hyperplanes, is presented.
doi:10.1088/0305-4470/36/25/316 fatcat:tuvl4jsq2veqxirazluam26jcm