Bio-inspired design of ice-retardant devices based on benthic marine invertebrates: the effect of surface texture [article]

Homayun Mehrabani, Neil Ray, Kyle Tse, Dennis Evangelista
2014 bioRxiv   pre-print
Growth of ice on surfaces poses a challenge for both organisms and for devices that come into contact with liquids below the freezing point. Resistance of some organisms to ice formation and growth, either in subtidal environments (e.g. Antarctic anchor ice), or in environments with moisture and cold air (e.g.vplants, intertidal) begs examination of how this is accomplished. Several factors may be important in promoting or mitigating ice formation. As a start, here we examine the effect of
more » ... ce texture alone. We tested four candidate surfaces, inspired by hard-shelled marine invertebrates and constructed using a three-dimensional printing process. We screened biological and artifical samples for ice formation and accretion in submerged conditions using previous methods, and developed a new test to examine ice formation from surface droplets as might be encountered in environments with moist, cold air. It appears surface texture plays only a small role in delaying the onset of ice formation: a stripe feature (corresponding to patterning found on valves of blue mussels,Crassostrea gigas, or on the spines of the Antarctic sea urchinSterechinus neumayeri) slowed ice formation an average of 25% compared to a grid feature (corresponding to patterning found on sub-polar butterclams,Saxidomas nuttali). The geometric dimensions of the features have only a small (~6%) effect on ice formation. Surface texture affects ice formation, but does not explain by itself the large variation in ice formation and species-specific ice resistance observed in other work. This suggests future examination of other factors, such as material elastic properties and coatings, and their interaction with surface pattern.
doi:10.1101/005470 fatcat:ueq4at6aqzgy3maf3anircp2iq