A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Bayesian Learning Using Gaussian Process for Gas Identification
2006
IEEE Transactions on Instrumentation and Measurement
In this paper, a novel gas identification approach based on Gaussian process (GP) combined with principal components analysis is proposed. The effectiveness of this approach has been successfully demonstrated on an experimentally obtained dataset. Our aim is the identification of different gases with an array of commercial Taguchi gas sensors (TGS) as well as microelectronic gas sensors. The proposed approach is shown to outperform both K nearest neighbor (KNN) and multilayer perceptron (MLP) classifiers.
doi:10.1109/tim.2006.873804
fatcat:vi2zsgaw4zcpbhyv3taux5y5ne