Reactive Synthesis with Maximum Realizability of Linear Temporal Logic Specifications [article]

Rayna Dimitrova, Mahsa Ghasemi, Ufuk Topcu
2019 arXiv   pre-print
A challenging problem for autonomous systems is to synthesize a reactive controller that conforms to a set of given correctness properties. Linear temporal logic (LTL) provides a formal language to specify the desired behavioral properties of systems. In applications in which the specifications originate from various aspects of the system design, or consist of a large set of formulas, the overall system specification may be unrealizable. Driven by this fact, we develop an optimization variant
more » ... synthesis from LTL formulas, where the goal is to design a controller that satisfies a set of hard specifications and minimally violates a set of soft specifications. To that end, we introduce a value function that, by exploiting the LTL semantics, quantifies the level of violation of properties. Inspired by the idea of bounded synthesis, we fix a bound on the implementation size and search for an implementation that is optimal with respect to the said value function. We propose a novel maximum satisfiability encoding of the search for an optimal implementation (within the given bound on the implementation size). We iteratively increase the bound on the implementation size until a termination criterion, such as a threshold over the value function, is met.
arXiv:1910.02561v1 fatcat:f37z6jrfwne4tfqcd2mbuxjhba