A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Minimization of Continuous Bethe Approximations: A Positive Variation
2012
Neural Information Processing Systems
We develop convergent minimization algorithms for Bethe variational approximations which explicitly constrain marginal estimates to families of valid distributions. While existing message passing algorithms define fixed point iterations corresponding to stationary points of the Bethe free energy, their greedy dynamics do not distinguish between local minima and maxima, and can fail to converge. For continuous estimation problems, this instability is linked to the creation of invalid marginal
dblp:conf/nips/PachecoS12
fatcat:x3eiovsnwjfnxi323dhkaozgom