Deep neural rejection against adversarial examples

Angelo Sotgiu, Ambra Demontis, Marco Melis, Battista Biggio, Giorgio Fumera, Xiaoyi Feng, Fabio Roli
2020 EURASIP Journal on Information Security  
Despite the impressive performances reported by deep neural networks in different application domains, they remain largely vulnerable to adversarial examples, i.e., input samples that are carefully perturbed to cause misclassification at test time. In this work, we propose a deep neural rejection mechanism to detect adversarial examples, based on the idea of rejecting samples that exhibit anomalous feature representations at different network layers. With respect to competing approaches, our
more » ... hod does not require generating adversarial examples at training time, and it is less computationally demanding. To properly evaluate our method, we define an adaptive white-box attack that is aware of the defense mechanism and aims to bypass it. Under this worst-case setting, we empirically show that our approach outperforms previously proposed methods that detect adversarial examples by only analyzing the feature representation provided by the output network layer.
doi:10.1186/s13635-020-00105-y fatcat:grtxarwetnesbkvd57kuncypou