Microencapsulation of Probiotic Lactobacillus casei based on Alginate and Chitosan Materials

Djaenudin, Endang Saepudin, Muhamad Nasir
2021 Asian Journal of Applied Sciences  
Probiotics are microorganisms that live in the stomach related plot which can give health advantages to the body. Probiotics must be able to survive in an acidic environment (pH = 2) during transit in the gastric to arrive the large intestine in adequate amounts (106 - 107 CFU/g) to allow for colonization and reproducing. However, most of these probiotics cannot survive in adequate amountsin acidic conditions. One way to protect probiotic cells under these conditions is through a
more » ... ion system. Microencapsulation is done to protect probiotic cells from low pH, bile salts, etc. Lactobacillus casei includes probiotics that are very sensitive to pH 2-2.5. The non-encapsulated Survivability of L. casei is only 40.14% in liquid pH 2 from 8.75log CFU/g to 3.53log CFU/g while L. casei carried out microencapsulation can achieve survivability of 63.47% to 95.3%. Alginate is a microencapsulation material that is inexpensive and sensitive to changes in pH so that it is suitable as a microencapsulation of probiotics. The surface of porous alginate needs other ingredients that can be requested by the pores. Alginate is resistant to pH 2-2.5 and expands at neutral pH to alkaline, which results in increased alginate pores. Chitosan can be used as an alginate mixture in probiotic microencapsulation materials. Chitosan can bind by crosslinking with alginate, which is between the NH2 group of chitosan and COO- group of alginate.
doi:10.24203/ajas.v9i2.6564 fatcat:znxdzrwm5vcjboqmyxtaiitijq