Genetic and physical analysis of plasmid recombination in recB recC sbcB and recB recC sbcA Escherichia coli K-12 mutants

C Luisi-DeLuca, S T Lovett, R D Kolodner
1989 Genetics  
The effect of mutations in known recombination genes (recA, recB, recC, recE, recF, recJ, recN, recO, recQ and ruv) on intramolecular recombination of plasmids was studied in recB recC sbcB and recB recC sbcA Escherichia coli mutants. The rate of recombination of circular dimer plasmids was at least 1000-fold higher in recB recC sbcB or recB recC sbcA mutants as compared to wild-type cells. The rate was decreased by mutations in recA, recF, recJ, recO, ruv or mutS in recB recC sbcB mutants, and
more » ... C sbcB mutants, and by mutations in recE, recN, recO, recQ, ruv or mutS in recB recC sbcA mutants. In addition to measuring the recombination rate of circular dimer plasmids, the recombination-mediated transformation of linear dimer plasmids was also studied. Linear dimer plasmids transformed recB recC sbcB and recB recC sbcA mutants 20- to 40-fold more efficiently than wild-type cells. The transformation efficiency of linear dimer plasmids in recB recC sbcB mutants was decreased by mutations in recA, recF, recJ, recO, recQ or lexA (lexA3). In recB recC sbcA mutants the transformation efficiency of linear dimers was decreased only by a recE mutation. Physical analysis of linear dimer- or circular dimer-transformed recB recC sbcB mutants revealed that all transformants contained recombinant monomer genotypes. This suggests that recombination in recB recC sbcB cells is very efficient.
doi:10.1093/genetics/122.2.269 fatcat:rxhto2v3evedno6j65iuckcqzi