Hit-to-lead and lead optimization binding free energy calculations for G protein-coupled receptors

Shunzhou Wan, Andrew Potterton, Fouad S. Husseini, David W. Wright, Alexander Heifetz, Maciej Malawski, Andrea Townsend-Nicholson, Peter V. Coveney
2020 Interface Focus  
We apply the hit-to-lead ESMACS (enhanced sampling of molecular dynamics with approximation of continuum solvent) and lead-optimization TIES (thermodynamic integration with enhanced sampling) methods to compute the binding free energies of a series of ligands at the A 1 and A 2A adenosine receptors, members of a subclass of the GPCR (G protein-coupled receptor) superfamily. Our predicted binding free energies, calculated using ESMACS, show a good correlation with previously reported
more » ... values of the ligands studied. Relative binding free energies, calculated using TIES, accurately predict experimentally determined values within a mean absolute error of approximately 1 kcal mol −1 . Our methodology may be applied widely within the GPCR superfamily and to other small molecule–receptor protein systems.
doi:10.1098/rsfs.2019.0128 pmid:33178414 pmcid:PMC7653344 fatcat:aqsnmrxsujcutfmec26k7w53ai