Seismic Performance of Bridge Piers Constructed with PP-ECC at Potential Plastic Hinge Regions

Yi Jia, Renda Zhao, Fuhai Li, Zhidong Zhou, Yongbao Wang, Yulin Zhan, Xianming Shi
2020 Materials  
This work presents an experimental investigation on the seismic performance of bridge piers constructed with polypropylene fiber reinforced engineered cementitious composite (PP-ECC) at potential plastic hinge regions. Eight solid square bridge piers are tested under a combination of reversed cyclic lateral loading and constant axial vertical loading. The test variables include the reinforcement stirrup ratio (0 vol.%, 0.46 vol.%, and 0.79 vol.%), axial compression ratio (0.1 and 0.3) and
more » ... of the PP-ECC regions (0, 250, and 500 mm). Seismic performance of eight specimens is presented and interpreted, including the failure mode, hysteretic curves, loading–resistance capacity, ductility, stiffness degradation, energy dissipation, and equivalent viscous damping ratio. The material test on the PP-ECC plate specimen suggests that the PP-ECC has obvious strain-hardening behavior and multiple fine-cracking characteristics, with the tensile strength and strain capacity greater than 3.2 MPa and 2.6%, respectively. The PP-ECC material applied at the potential plastic hinge regions notably improves the seismic performance and damage tolerance of bridge piers. The influence of the aforementioned crucial parameters has also been investigated in detail. The axial compression ratio and the height of PP-ECC region have a major influence on the seismic performance of PP-ECC piers. In comparison, the stirrup ratio has a limited effect on the seismic behavior of PP-ECC piers. The experimental findings shed light on the mechanism of the PP-ECC that contributes to the seismic performance of bridge piers and provide some valuable guidance in the seismic design of PP-ECC piers.
doi:10.3390/ma13081865 pmid:32316124 fatcat:ygayfjngxnfjtnyuuwbogq4fnu