Application of Artificial Neural Networks for Predicting the Yield and GHG Emissions of Sugarcane Production

S Haroni, M. J Sheykhdavodi, M Kiani Deh Kiani
2018 Journal of Agricultural Machinery  
Introduction One of the most important sources of the sugar production is sugarcane.Sugar is one of the eight human food sources (wheat, rice, corn, sugar, cattle, sorghum, millet and cassava). Also sugarcane is mainly used for livestock feed, electricity generation, fiber and fertilizer and in many countries sugarcane is a renewable source for the biofuel. The efficient use of inputs in agriculture lead to the sustainable production and help to reduce the fossil fuel consumption and greenhouse
more » ... gases emission and save financial resources. Furthermore, detecting relationship between the energy consumption and the yield is necessary to approach the sustainable agriculture. It is generally accepted that many countries try to reduce their dependence to agricultural crop productions of other countries. The being Independent on agricultural productions lead to take more attention to modern methods and the objective of all these methods is increasing the performance with the efficient use of inputs or optimizing energy consumptions in agricultural systems. Energy modeling is a modern method for farm management that this model can predict yield with using the different amount of inputs. The objective of this study was to predict sugarcane production yield and (greenhouse gas) GHG emissions on the basis of energy inputs. Materials and Methods This study was carried out in Khouzestan province of Iran. Data were collected from 55 plant farms in Debel khazai Agro-Industry using face to face questionnaire method. In this study, the energy used in the sugarcane production has considered for the energy analysis without taking into account the environmental sources of the energy such as radiation, wind, rain, etc. Energy consumption in sugarcane production was calculated based on direct and indirect energy sources including human, diesel fuel, chemical fertilizers, pesticides, machinery, irrigation water, electricity and sugarcane stalk. Energy values were calculated by multiplying inputs and outputs per hectare by their coeffi [...]
doi:10.22067/jam.v8i2.52870 doaj:c0ce5b1191904131815b1a839f887e31 fatcat:3jwi7ixtyjd2pg2pctmbnwsxnm