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Abstract

Electricity demand management (DM) is a set of methods that encourage consumers
to change their usual consumption patterns, such as reducing the electricity consumption
at peak times or balancing preferred consumption times with energy costs. Better man-
agement of electricity demand will help to reduce the costs of satisfying peak demand and
better utilise the system infrastructure at off-peak usage times.

Demand response (DR) is an important DM method that encourages consumption
changes through financial incentives. Real-time pricing (RTP) is a widely considered
financial incentive that varies the electricity price with the demand in real time. Imple-
menting RTP is difficult without the aid of information and communication technologies
(ICTSs), consequently, researchers have been working on developing ICTs and algorithms
that automate the DR process for consumers under RTP. Despite positive progress, the
existing research requires extensions to consider scalability to enable such algorithms to
be applied to large numbers of households in real time. In addition, existing research often
sacrifices solution quality or scheduling flexibility for a shorter computation time.

This thesis brings efficiency, optimality, feasibility and scalability together in a DR
algorithm. We seek a DR algorithm that provides the best solutions for residential con-
sumers, allows more flexibility for consumption requirements and preferences, and ensures
high scalability of the algorithm. Specifically, this thesis tackles a demand scheduling
problem for multiple households where households are equipped with shiftable appliances

and batteries.

viii



This thesis proposes a fast and scalable algorithm that schedules the appliances and
batteries in an iterative and distributed manner. This algorithm uses the Frank-Wolfe
(FW) method, primal decomposition, a constraint programming (CP) optimisation model
and a linear programming (LP) optimisation model. We call this algorithm Frank-Wolfe-
based distributed demand scheduling method (FW-DDSM).

Our experimental results on up to 10000 households show that the number of iterations
required to converge to the optimal solution is independent of the number of households.
This solution assumes that the appliance and battery scheduling is performed by house-
holds in parallel, so the number of households would essentially have no impact on the
computation time per iteration. Our algorithm used about ten seconds on modern com-
puters to find the optimal solution for 10,000 households with batteries, making it suitable

for real-time applications.
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Chapter 1

Introduction

1.1 Background

Our electrical consumption varies over the day. Typically, the consumption is low at night
when household occupants are sleeping, and high in the morning and evening when house-
hold occupants are active. Traditionally, our power systems are designed and built to have
the capacity to satisfy our demand at anytime and anywhere in the systems (Nicholson,
2012). This demand includes short time periods each year, when the demand becomes
significantly higher than the average demand, such as in the afternoon of the hottest day

when most people use air-conditioners We call the demand at these times the peak demand.

Although the peak demand appears for a very short period of time during a year, some
power stations must be built to specifically satisfy the demand at these times. However,
these power stations are very expensive to operate, which make electricity significantly
more expensive to supply at these peak times. Moreover, these power stations remain idle
or operate with reduced capacities for a great deal of the time (Van Den Briel et al., 2013;

Mishra et al., 2013), resulting in low utilisation of these generation resources.

Currently, increasing numbers of power stations and the associated infrastructure are
due to retire. In the meantime, demands are expected to be more variable due to the
increasing use of batteries, electric vehicles and electronic devices (IEA, 2020). Decisions
can be made to either keep following traditional approaches of building more power stations
and associated infrastructure to satisfy our growing demands, which will be costly, or
to seek alternative solutions to reliably supply electricity in a more cost effective and

environment friendly way (Finkel et al., 2017b).

1
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Smart grids are such alternative solutions to address the increasing challenges faced by
the existing power systems. Smart grids integrate advanced information and communica-
tion infrastructure to the existing power systems that allow electricity network operators
to monitor and manage the electricity supply and demand in a more efficient way. One of

the important features that are enabled by smart grids is enable demand response (DR).

DR refers to demand management activities carried out by consumers to modify their
consumption patterns in response to financial incentives. The aims of DR is to reduce
the peak demand and the overall costs for both electricity suppliers and consumers. By
reducing the peak demand, we will improve the reliability, affordability and safety of the
electricity supply (U.S. Department of Energy, 2006, 2009; MITei, 2011; Balijepalli et al.,
2011; Deng, Yang, Chow and Chen, 2015; Vardakas et al., 2015; Finkel et al., 2017a).

A widely considered financial incentive for DR is the real-time pricing (RTP) scheme
which increases the price with demand in real time (Albadi and El-Saadany, 2007). Some
utility companies have developed programs that adopt this RTP or similar dynamic pricing
schemes to encourage changes in consumption behaviours. However, these programs are
difficult to implement in practice because: firstly, they can be challenging and confusing
for consumers to monitor and react to a dynamic price (Mohsenian-Rad et al., 2010;
Mohsenian-Rad and Leon-Garcia, 2010); and secondly, when reacting to the same pricing
information, multiple consumers may simultaneously move their demand from the same
expensive time periods to the same cheaper time periods, increasing the actual demand

at those cheap time periods instead (Ramchurn et al., 2011).

In addition, battery energy storage system (battery) have become popular for DR as
they can not only assist in flattening the peak demand but also compensate for variability
in typical renewable energy generators (REGs), making the integration of REGs more
viable and our electricity supply more environmental friendly in practice (Vytelingum
et al., 2010; Atzeni et al., 2013). However, realising the full benefits of batteries manually
is difficult in practice, as we need to consider not only our consumption requirements, but
also outputs from on-site generators such as solar panels or small wind turbines if there
are any, and the dynamic electricity price and other tariffs such as feed-in tariffs.

The challenges in implementing DR, programs in practice have motivated researchers
to develop computer algorithms that automatically suggest or determine DR activities for

consumers. These algorithms can collect pricing and demand information, learn about



1.2. MOTIVATION 3

consumers’ energy needs and preferences, decide the best time to use electricity and/or
control electric appliances and devices in response to changes in prices automatically for
consumers. One type of computer algorithm that has attracted significant interest from
the literature is optimisation, which finds the best times to use electric appliances or

devices in ways that maximise consumers’ benefits and minimise their costs.

This thesis combines the domains of optimisation and DR to investigate a novel algo-
rithm that automates DR activities for consumers under RTP. We aim to assist consumers
with adapting the smart grid technologies to better realise the full benefits of DR and keep

our energy use at lower prices.

1.2 Motivation

Managing the demand of multiple households at a regional level or even the national level
is essential for realising the full potential of DR. As an independent review into the future
security of the Australia Electricity Market points out, “[we need to] manage the load over
many consumers aggregating a total amount of load that can have a material impact on
the reliability of the national electricity market or a specific local distribution area” (Finkel
et al., 2017a). When the demand of large populations is better managed, it is possible to
better predict the behaviour of the power system with reasonable accuracy, leading to a

more efficient and stable power network. (Ramchurn et al., 2011).

However, managing the demand of multiple households is a complex task (Ramchurn
et al., 2011). Simply letting every household schedule appliances independently against
fixed prices without any form of coordination will lead to load synchronisation where
households schedule appliances to the same time with a low price, creating a demand peak
that is higher than normal. Load synchronisation is a serious threat to the power system
as it can lead to over-demand, causing blackouts and damage to the grid infrastructure,
jeopardising the reliability of the power system (Vytelingum et al., 2010). As our society
is becoming more reliant on electricity, peak demand is likely to increase significantly
over time, making load synchronisation more threatening to the power system (Ramchurn

et al., 2011; Van Den Briel et al., 2013).

The key to successfully avoiding load synchronisation is coordination. Loads need to

be coordinated or “orchestrated” in a way that stabilises the aggregate demand. One way
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to coordinate loads is through direct control where a demand response service provider
(DRSP), such as a utility company or a third-part service provider, directly controls or
advises the operations of appliances and devices. That means, appliances are managed
centrally. Let us call this direct control approach the centralised approach. Another way
to coordinate is through smart pricing, where consumers independently manage their own
appliances and devices, and a dynamic pricing scheme is used for guiding households to
schedule appliances and devices in the desired way. Let us call this smart pricing approach
the distributed approach. The distributed approach allows households to preserve a great

level of autonomy while being motivated by financial benefits to avoid load synchronisation.

A significant amount of research has investigated the application of these approaches
to various DR problems under RTP (Deng, Yang, Chow and Chen, 2015; Vardakas et al.,
2015; Scott, 2016; Bayram and Ustun, 2017) to address the need for managing the demand

of multiple households at a regional level . However, there are limitations in existing works.

Firstly, many works assume that the prices (Mohsenian-Rad and Leon-Garcia, 2010;
Goudarzi et al., 2011; Barbato et al., 2011; Sou et al., 2011; Zhang et al., 2013; Anvari-
Moghaddam et al., 2015; Yang et al., 2015; Ma et al., 2016; Manzoor et al., 2017; Hussain
et al., 2018; Couraud et al., 2020) or the demands (Vytelingum et al., 2010; Voice et al.,
2011; Atzeni et al., 2013; Worthmann et al., 2015) are known and fixed in advance, thus
missing the dynamic relationships between the prices and the demands under the RTP.
Some works only consider the aggregate demand profiles of households, ignoring the details
of appliances and devices (Samadi et al., 2010; Kou et al., 2020). Some studies consider
limited constraints for household appliances, preventing consumers from expressing more
complex consumption requirements (Mohsenian-Rad and Leon-Garcia, 2010; Lee et al.,
2012; Zhao et al., 2013; Van Den Briel et al., 2013; Anvari-Moghaddam et al., 2015; Ma
et al., 2016; Manzoor et al., 2017). Some other studies investigate DR problems with
batteries only (Vytelingum et al., 2010; Voice et al., 2011; Atzeni et al., 2013; Zhang
et al., 2013; Worthmann et al., 2015; Yang et al., 2015; Pelzer et al., 2016; Ghazvini et al.,
2017; He et al., 2019; Hossain et al., 2019; Couraud et al., 2020), missing the opportunities
of utilising both appliances and batteries to achieve more DR, benefits. In summary, most

studies focus on particular aspects of a DR problem without considering all aspects.

Secondly, many existing studies apply the centralised methods to solve DR prob-
lems (Adika and Wang, 2014; Longe et al., 2017; Pooranian et al., 2018). However,
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these methods do not scale well with the number of households (Van Den Briel et al.,
2013; Zhang et al., 2015; Kou et al., 2020), making them impractical for solving problems
for hundreds and/or thousands of consumers, such as the size of a major city suburb
in Australia. Some other works investigate distributed methods that distribute compu-
tation cost into each households and coordinate households to ensure the total demand
profile of all households is flattened as much as possible (Mhanna et al., 2016; He et al.,
2019). However, some of these works assume demands or prices are fixed and known in
advance (Vytelingum et al., 2010; Atzeni et al., 2013; Worthmann et al., 2015), limiting
the flexibility of their methods. Some other works incorporate a dynamic pricing scheme
and shiftable jobs in their problems, however, they either require households to broadcast
information to others sequentially and iteratively (Mohsenian-Rad et al., 2010; Pilz et al.,
2017), which imposes extra burdens on communication networks and limiting the scala-
bility of their methods; or require users to manually tuning some parameters to ensure
the best schedules can be found (Yang et al., 2015; He et al., 2019), which makes their
methods not general to all problem instances. Furthermore, some existing works increase
the efficiency and the scalability of their DR algorithms by ignoring consumer preferences
and requirements (Manzoor et al., 2017; Hussain et al., 2018) or finding good solutions
instead of the best solutions instead. In summary, none of these existing works can provide
flexibility, scalability, optimality and feasibility together with ease of use at the same time
in a scheduling algorithm for DR problems.

This thesis aims to address these limitations by proposing a novel algorithm for solving
demand scheduling problems for multiple households (DSP-MHs). This algorithm should
schedule both appliances and batteries, consider complex consumer requirements and ref-
erences, and use a dynamic pricing scheme. This algorithm aims to brings efficiency,

flexibility, optimality, feasibility and scalability together.

1.3 Research Question and Plan

In order to design the desired algorithm that addresses the limitations in existing works,

we ask the following questions:

(Q)1 Can a demand scheduling algorithm be formulated such that the number of iterations

required to converge to the best solution is independent of the number of households?
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(Q)2 Can this algorithm require minimum manual tuning of parameters and no informa-

tion broadcasting to achieve the best solutions?

(Q)3 Can it satisfy all of the following requirements:

(R)1 schedule both household appliances and batteries with complex constraints
(R)2 respond to RTP

(R)3 minimise the total consumption cost and the inconvenience of all households
(R)4 reduce the peak demand

(R)5 meet complex consumption requirements and preferences of consumers such as

dependency between appliances

In order to answer these questions, we have divided this thesis into four parts:

1. Literature review: We conduct our literature review of DR, problems and their solving

methods in the following two steps:

(a) Review of existing modelling methods: We investigate existing methods for mod-
elling DR problems for individual and multiple households including the exist-
ing mathematical models for appliances, batteries, pricing, costs, inconvenience

and consumer requirements and preferences.

(b) Review of existing demand scheduling methods: We study the optimisation
methods for scheduling appliances and batteries for individual households; and

investigate the algorithms for solving large-scale DR problems.

2. Problem model: We formulate the DR problems of this thesis.

3. Frank-Wolfe-based distributed demand scheduling method: We propose a novel de-
mand scheduling algorithm for solving the DR problem formulated in Step 2 that sat-
isfies the desired requirements listed in the research questions. We call this novel al-

gorithm the Frank- Wolfe-based distributed demand scheduling method (FW-DDSM).

4. Experiment: We evaluate the efficiency, scalability, optimality and feasibility of our

FW-DDSM.
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1.4 Thesis Overview

This section outlines the development of the research outcomes for each part of the thesis.

1.4.1 Literature Review

In the first part of the thesis, we compare and discuss the strengths and weakness of
existing methods for modelling and solving DR problems. From the review of modelling
methods, we identify various types of models for appliances, batteries, pricing, costs and
consumption requirements and preferences in the literature. The DR problems studied
by existing works can be divided into two types: problems for individual households and
problems for multiple households. Existing methods can be categorised into two types: the
centralised methods and the distributed methods. We then identify the limitations and
areas to expand in existing works, which constitutes the work of this thesis. the details

are presented in Chapter 2.

1.4.2 Problem Model

In the second part of this thesis, we formulate the DR problems of this thesis. First, we in-
troduce our models of household appliances, batteries, electricity pricing, costs, consumer
inconvenience, and consumption requirements and preferences. In particular, we develop
a new pricing function that is created based on bid stacks used by electricity wholesale
markets to determine the real cost of electricity, instead of using a generic quadratic func-
tion that is commonly considered in existing studies. Second, we identify the parameters,
variables, constraints and objective functions of our DR problems, and formulate the DR

problems using these models. The details are provided in Chapter 3.

1.4.3 Frank-Wolfe-based Distributed Demand Scheduling Method

In the third part of this thesis, we introduce our novel algorithm that addresses the
limitations found in the literature review and satisfies all our research goals. We call this
method FW-DDSM. This algorithm consists of the primal decomposition, the Frank-Wolfe
(FW) algorithm, a job scheduling module and a battery scheduling module.

The FW-DDSM decomposes a demand scheduling problem for multiple households with

batteries (DSP-MB) using the primal decomposition into a household subproblem and a
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pricing master problem. The method for solving the household subproblem includes a job
scheduling module and a battery scheduling module. We have proposed three types of so-
lutions for the job scheduling module: a mixed-integer programming optimisation model, a
constraint programming optimisation model and the Optimistic Greedy Search Algorithm.
Each optimisation model has two versions: one with a data preprocessing algorithm and
one without. The battery scheduling model is a linear programming optimisation model
that includes the Charnes-Cooper transformation. The method for solving the pricing
master problem is based on the Frank-Wolfe (FW) algorithm. The subproblem and the
master problem are solved in an iterative manner until the objective value calculated by
the pricing master problem does not reduce any more (or reduce no more than 0.01) in

any two consecutive iterations.

After the iterations converge to the optimal solution, the best step size calculated
by the pricing master problem at each iteration is then used to construct a probability
distribution for choosing the actual schedules for households. We call this method the

probability-based scheduling method. The details are presented in Chapter 4.

1.4.4 Experiments

In the fourth part of the thesis, we demonstrate the effectiveness of our FW-DDSM pro-
posed in Chapter 4 for solving DSP-MBs. In particular, first we compare the three types
of methods proposed for solving the household subproblem; second we demonstrate the
optimality and scalability of our FW-DDSM; and third we investigate the impacts of some
problem parameters, such as the objective weight, the number of sequential jobs, and the
battery efficiency and capacity, on the solutions and the scalability of our FW-DDSM.
The results show that our FW-DDSM is highly scalable, as the number of iterations for
convergence are independent of the number of households, and the scheduling time per
household per iteration is minimally affected by the number of households. In particular,
the actual solutions produced by our probability-based scheduling method highly approx-
imate, if not match, the optimal solutions of FW-DDSM. Moreover, including batteries
in households has limited impacts on and scalability of the FW-DDSM, and yields lower

total inconvenience values and more supply cost reductions.
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1.5 Contribution

To summarise, the main focus of this thesis is to investigate what method can rapidly
schedule appliances and batteries of a large number of households under a dynamic pricing
scheme (such as real-time pricing) in a scalable manner, such that complex constraints
such as dependency between appliances are enforced, the consumer requirements and
preferences are included, the peak demand is reduced, and the total consumption cost and
the inconvenience are minimised. Moreover, the computation time should be minimally
affected by the number of households and minimum manual tuning of parameters or

information broadcasting should be required to achieve the best solutions.

This thesis contributes to the domain of DR by introducing a highly scalable algo-
rithm that achieves the above research goals, called FW-DDSM. The implementation of
this algorithm can be found at https://github.com/dorahee/FW-DDSM. The experiment
results have shown that our FW-DDSM is optimised for speed so that it can be used in
real-time, making it easy for consumers to take up DR programs under a dynamic pricing

scheme. This is a result that has set a new standard in scheduling algorithms for DR.

There are several benefits of our FW-DDSM: 1) the primal decomposition method de-
composes a DSP-MB in a straightforward way without the additional transformation steps
as in the dual decomposition; 2) enabling households to schedule demands independently
in parallel and eliminating the needs for iteratively broadcasting information to households
one by one; 3) the achievement of high efficiency and scalability with minimum manual
parameter tuning; 4) the achievement of a distributed and iterative algorithm whose con-
vergence speed is minimally affected by the number of households, jobs and batteries;
and 5) enabling households to choose from multiple feasible schedules using a probability

distribution while causing very limited impacts on the optimality of the results.

We also contribute to the domain of optimisation by demonstrating that a distributed
and iterative algorithm that uses primal decomposition, the FW algorithm, a data prepro-
cessing algorithm and optimisation models can solve a mixed-integer convex optimisation

problem with linear constraints efficiently with high scalability.

A further contribution of this thesis is that the FW-DDSM can be implemented as part
of the software used by both utility companies and consumers to jointly manage demand,

in order to reduce peak demand and costs. Electricity is essential in our everyday life.
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Meeting the new challenges of power systems while keeping the cost down is crucial for
supplying reliable and affordable electricity to consumers. Our research provides a solution
for consumers to participate in overcoming the challenges of power systems and reducing
the costs of providing electricity, which will in turn improve the benefits for consumers.

The outcomes of this research will benefit both electricity suppliers and consumers.

1.6 Thesis Outline
The remainder of this thesis is outlined as follows:

e Chapter 2 Background: presents the background information of DR and the

literature review DR problem models and solving methods.

e Chapter 3 Problem Model: introduces the demand scheduling problems (DSPs)

of this thesis.

e Chapter 4 Frank-Wolfe-based Distributed Demand Scheduling Method:

presents the details of our novel FW-DDSM.

e Chapter 5 Experimental Results: demonstrates the efficiency, optimality and

scalability of our FW-DDSM.

e Chapter 6 Conclusion: concludes the findings and outcomes of this thesis and

discusses future work.

e Appendix 2 Power System Now and Then: provides a non-technical back-

ground on power systems.

e Appendix 3 Optimisation: introduces an overview of optimisation techniques

that support the algorithm development in this thesis.

e Appendix 3 Additional Data, Code and Figures: contains additional infor-

mation for each chapter.



Chapter 2

Background

2.1 Introduction

This chapter provides the context of this thesis, including the background information
of demand response (DR) in Section 2.2 and the literature review of demand scheduling

problem (DSP) models and the solving methods in Section 2.3.

2.2 Demand Response

Historically, electricity is produced when it is needed and must be consumed when it is
produced. Power stations and electricity networks are designed and built to have the
capacity to satisfy electrical demand at any time and any where in the network. It is vital
to have a reliable and stable electricity supply at all times, however, there is a trade-off

between the reliability and the cost.

Meeting the demand at any time requires extra power stations specially built for peak
demand periods. However, these power stations are expensive to operate. Moreover, the
peak demand is significantly higher than the average demand and it only occurs for a very
short time of a year. It follows that the majority of capacity is idle for a great deal of the
time (Van Den Briel et al., 2013; Mishra et al., 2013). This means, the current way to

satisfy the peak demand is costly and cause low utilisation of system infrastructure.

Furthermore, current power systems worldwide were built decades ago. The current

power stations and associated infrastructure are nearing their optimum working life and

11
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require retirement. However, the increasing uses of battery energy storage systems (bat-
teries), electric vehicles (EVs) and electronic devices are introducing more variability in
our electrical demands, putting more pressure on these ageing components.

Decisions can be made to either keep building new power stations and associated
infrastructure to satisfy our growing demands as the traditional approach, which will be
costly, or seek alternative solutions to provide reliable electricity supply in a more economic
and environment friendly way (Finkel et al., 2017b). Smart grids are the next-generation
power systems that integrate modern information and communication technologies (ICT's)
to enable the development of more economic and environment friendly solutions to the
above challenges. One of the important goals of smart grid is to realise DR that encourages
consumers to better manage their electricity consumption through financial incentives.

DR refers to activities carried out by consumers that actively modify their consumption
patterns in response to financial incentives, in order to induce lower electricity use at times
of high wholesale market prices or when system reliability is jeopardized (Albadi and El-
Saadany, 2007; Good et al., 2017). A main goal of DR is to reduce the peak demand, and
allow our demands to be more predictable and economic to satisfy (Finkel et al., 2017a).
The detailed explanations of power systems, smart grids and DR technologies are provided

in Appendix A.

2.2.1 Financial Program

Two types of financial programs for DR have been considered in practice: incentive-
based or price-based programs. Incentive-based programs reward consumers for reducing
consumption at high demand times or when power systems are under emergency condi-
tions (Albadi and El-Saadany, 2007). These programs are usually only used on a small
number of hours per year (Siano, 2014), otherwise they will cause “demand fatigue” where
participants decrease their responsiveness or exit from the programs if they are called too
frequently. For example, interrupting air-conditioners on the hottest days too frequently
can frustrate consumers to the point that they will withdraw from a direct load control
program during an emergency condition when their services are needed the most (Callaway
and Hiskens, 2011).

Price-based programs offer a dynamic pricing scheme that encourages consumers to

reduce the consumption at peak times. Consumers can receive lower electricity prices
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by using energy outside the peak times. These pricing schemes include (Albadi and El-

Saadany, 2007; Siano, 2014):

o time-of-use (TOU) : TOU scheme sets a different rate for different periods of time.
For example, the simplest TOU has two rates: a higher rate for the peak period (e.g.
7am — 11pm from Monday to Friday), and a lower rate for the off-peak period (e.g.
all the other times). These rates reflect the average costs of electricity at different

periods, however, they change infrequently in a year.

e critical peak pricing (CPP): CPP is similar to TOU, except that the peak rate is
raised to several times higher than usual on days when the demand is expected to
be exceptionally high relative to available supply. This critical peak rate is usually
called during contingencies or high wholesale electricity prices for a limited number

of days or hours per year (U.S. Department of Energy, 2006).

e real-time pricing (RTP): RTP is a fully dynamic scheme where the rate varies hourly
(or more often) to reflect the actual variations in the system’s marginal electricity
cost in the wholesale market. Participants are informed about the prices on a day-

head, hour-ahead or on a more frequent basis.

These programs allow consumers to reduce their electricity bills by better determining
when they use electricity, making the demand more responsive to changes in system con-

ditions and reducing the costs of satisfying the peak demand.

2.2.2 Challenge

These programs are, however, difficult to implement in practice because: firstly, they can
be challenging and confusing for consumers to monitor and react to a price that changes
during the day (Mohsenian-Rad et al., 2010; Mohsenian-Rad and Leon-Garcia, 2010); and
secondly, when reacting to the same pricing information, multiple consumers may simul-
taneously move their demand from the same expensive time periods to the same cheaper
time periods, increasing the demand at those cheap time periods instead (Ramchurn et al.,
2011).

These challenges in implementing DR, programs have motivated researchers to develop
computer algorithms that automatically suggest or determine DR activities for consumers.

These algorithms can collect pricing and demand information, decide the best time to use
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electricity and/or control electric appliances and devices in response to changes in prices
automatically for consumers based on their needs and objectives. One type of computer
algorithm that has attracted significant interest from the literature is optimisation, which
finds the best times to use appliances in ways that maximise consumers’ benefits and
minimise their costs. This thesis investigates such algorithms for automating the DR

activities under RTP for consumers.

2.3 Literature Review

A significant amount of research has investigated the application of optimisation algo-
rithms to various DR problems under RTP (Deng, Yang, Chow and Chen, 2015; Vardakas
et al., 2015; Scott, 2016; Bayram and Ustun, 2017). Generally, the existing works study
a DR problem where devices, such as household appliances or batteries, are scheduled
against a pricing scheme to minimise costs or maximise benefits of consumers. A solution
to a DR problem includes the best start time and/or the best operation mode for each
appliance, and the best charge/discharge decisions for each battery if applicable.

This thesis calls these DR problems as DSPs and the algorithms for solving these
problems as demand scheduling methods/algorithms. This section presents the state-of-
the-arts in modelling and solving DSPs. First, we introduce a fundamental glossary of
terms that are commonly used for modelling a DSP in Section 2.3.1. Second, we discuss
the common DSPs in Section 2.3.2. Third, we analyse the existing demand scheduling
methods in Section 2.3.3. The detailed explanations of optimisation algorithms involved

in existing works are provided in Appendix B.

2.3.1 Preliminary

We broadly categorise the terms commonly used in the literature into time slots, house-
hold appliances, batteries, pricing schemes and cost functions. We clarify the definitions

provided in the literature in terms of our project.

Time Slot

When determining the time horizon for scheduling devices or appliances, a day is divided

into a finite number of time slots. In the literature, time slots are generally used for pricing
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and scheduling, however the frequency can be different for these purposes. For example, a
time slot for pricing can be 30 minutes or 60 minutes long and a time slot for scheduling
can vary from 15 minutes, 20 minutes, 30 minutes to 60 minutes long. Let us define the

time slots for pricing and scheduling as Definition 2.1 and Definition 2.2.

Definition 2.1. A scheduling interval (or interval for short) is a time period when a

device can be scheduled to start at the beginning of it or finished at the end of it.

Definition 2.2. A pricing period (or period for short) is a time period for which a price

is calculated.

Table 2.1: Existing works on timeslot models

Length References

60m  (Conejo et al., 2010; Samadi et al., 2010; Mohsenian-Rad et al., 2010; Yu et al.,
2011; Fan, 2011; Joe-Wong et al., 2012; Chavali et al., 2014; Shi et al., 2015;

Interval Ogwumike et al., 2015; Mhanna et al., 2016; Ma et al., 2016)
30m  (Voice et al., 2011)
20m  (Lee et al., 2012)
15m  (Barbato et al., 2011; Agnetis et al., 2013; Kuschel et al., 2015)
Period 60m  (Conejo et al., 2010; Samadi et al., 2010; Mohsenian-Rad et al., 2010; Fan, 2011;

Yu et al., 2011; Chavali et al., 2014; Shi et al., 2015; Ogwumike et al., 2015;
Mhanna et al., 2016; Ma et al., 2016)

30m (Yu et al., 2011; Voice et al., 2011)

Household Appliance

Household appliances are commonly categorised into the following types (Yu et al., 2011;
Adika and Wang, 2012; Joe-Wong et al., 2012; Lee et al., 2012; Van Den Briel et al., 2013;
Agnetis et al., 2013; Sheikhi et al., 2015; Zhang et al., 2015; Anvari-Moghaddam et al.,
2015; Mhanna et al., 2016; Ma et al., 2016; Bharathi et al., 2017):

e non-shiftable (NS): appliances that cannot be scheduled to other times and must be

turned on when needed, such as lighting, cooking and entertaining appliances.

e shiftable: appliances that can be used at a different time of the day without unpleas-

antly affecting a consumer’s lifestyle much.

e power flexible (PF): appliances whose demand can be adjusted without damaging or

affecting the functionality of the appliances, such as heating and cooling.
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While NS appliances are essential in households, researchers in DR often exclude them
in the model because they are inflexible and therefore have no impact on the algorithm
design. However, their total demands are often estimated and included in the experiments
to better evaluate the impacts of demand scheduling on the costs of households and the
peak demand of the power networks.

Shiftable appliances are often further divided into two types: interruptible and non-
interruptible. Shiftable and interruptible (SI) appliances can be safely paused and re-
sumed later to finish the desired jobs, such as swimming pool pumps. Shiftable and
non-interruptible (SNI) appliances must continue running until the full operation cycles
are finished, such as washing machines and dryers.

Some works do not allow PF appliances to be shiftable but can vary their demand rates
over time. Some other works allow PF appliances to alter their operation times in addition
to demand rates. Few works consider PF appliances to have multiple operation modes
and their operation modes can be altered to reduce the peak demand instead. In practice,
a power flexible appliance is often a thermal appliance that controls the temperature of

water or the air in a household.

Appliance Attribute All appliances are modelled by one common attribute, which
is the duration (Mohsenian-Rad and Leon-Garcia, 2010; Barbato et al., 2011; Tsui and
Chan, 2012; Lee et al., 2012; Zhao et al., 2013; Anvari-Moghaddam et al., 2015; Ogwumike

et al., 2015; Ma et al., 2016), explained as follows:

e Duration: The duration is the amount of time required by an appliance to finish
a job. For example, a washing machine may need 45 minutes to finish a wash.
Note that the duration is often a whole number of some time intervals, meaning an
appliance must last for at least one interval and cannot stop before an interval ends.
This assumption may not always be true in practice, however, it approximates the

reality and it is easier for modelling.

Shiftable and NS appliances share one common attribute, which is the demand rate (Ag-
netis et al., 2013; Mohsenian-Rad and Leon-Garcia, 2010; Zhao et al., 2013; Anvari-
Moghaddam et al., 2015; Ogwumike et al., 2015; Mhanna et al., 2016; Ma et al., 2016; Nan
et al., 2018) or demand profile (Lee et al., 2012; Van Den Briel et al., 2013; Agnetis et al.,

2013; Ogwumike et al., 2015). PF appliances do not have fixed demand rates or profiles.
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Instead, they have allowed minimum and mazimum demand limits (Mohsenian-Rad and
Leon-Garcia, 2010; Li et al., 2011; Nguyen et al., 2012; Tsui and Chan, 2012; Agnetis
et al., 2013; Shi et al., 2015; Mhanna et al., 2016; Ma et al., 2016; Hussain et al., 2018;

Nan et al., 2018). These attributes are explained as follows:

e Demand Rate/Profile: A demand rate is the amount of power required by an appli-
ance to safely operate per hour. Some appliances require a fixed demand rate such
as lighting. A demand profile is for appliances whose demand rates vary over time

with the operation cycles, such as washing machines.

o Allowed Demand Limits: The allowed demand limit is the maximum or minimum

power rate at which a PF appliance is allowed to operate.

Shiftable and PF appliances share several common attributes, such as the operation
time window (Barbato et al., 2011; Goudarzi et al., 2011; Li et al., 2011; Nguyen et al.,
2012; Lee et al., 2012; Ma et al., 2016; Nan et al., 2018; Mohsenian-Rad and Leon-Garcia,
2010; Barbato et al., 2011; Sou et al., 2011; Tsui and Chan, 2012; Anvari-Moghaddam
et al., 2015; Ma et al., 2016), the preferred start time (PST) (Goudarzi et al., 2011;
Ramchurn et al., 2011; Tsui and Chan, 2012; Van Den Briel et al., 2013; Chavali et al.,
2014; Ogwumike et al., 2015; Anvari-Moghaddam et al., 2015; Mhanna et al., 2016; Nan
et al., 2018), the operation mode and the ideal operation mode (Hatami and Pedram,
2010; Chavali et al., 2014; Mhanna et al., 2016) , and the operation phase (Sou et al.,

2011; Ogwumike et al., 2015), which are explained as follows:

e Operation Time Window: A shiftable appliance typically has an operation time
window that includes an earliest start time (EST) and a latest finish time (LFT).
An EST is the earliest time an appliance can be shifted to and a LFT is the latest

finished an appliance can be delayed to and finished by.

o Preferred Start Time: Some works include a PST for each shiftable appliance to
specify the preferences of a consumer. A consumer may prefer an appliance to be
scheduled at the PSTs and he/she will be dissatisfied if the appliance is scheduled
further away from that time. Few work uses a preference rating for each time slot
to specify the level of satisfaction when an appliance is scheduled at that time slot

instead. For example, a time slot can have a rating from 1 — 5 for an appliance and
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a higher rating means the consumer is happier when the appliance is scheduled at

that time slot.

e Operation Mode: When a demand profile is used, an appliance may also have mul-
tiple operation modes. Each operation mode has a different demand rate and yields
a different output of the appliance. For example, a fridge can have multiple modes
such as the stand-by mode, the de-froze mode, the normal mode and the eco-friendly
mode. Often, an appliance can switch between modes safely, therefore when man-
aging the demand of a household, the consumer can switch the operation mode of

such appliances to reduce the total demand.

e [deal Operation Mode: A consumer may specify the ideal operation mode for an

appliance at any time interval.

e Operation Phase: When a demand profile is used, an appliance may have multi-
ple operation phases instead of multiple operation modes. Similar to the operation
modes, each operation phase require a different demand rate, however, an operation
phase is an essential part of the operation cycle that an appliance requires to finish
the desired task. For example, a washing machine can have multiple phases such as
the pre-wash phase, the wash phase, the rinse phase and the drain phase. Often, an
appliance must go through its phases in order to complete the desired task. However,
some appliances allow interruptions between phases, therefore when managing the
demand of a household, each phase can be rescheduled at various times to distribute

the consumption over a longer period of time.

Some works see interrupting a SI appliance as running the same appliance multiple
times and each run is followed by a time gap. They model a SI appliance as a set of
SNI “appliance” and each SNI “appliance” is a segment of the SI appliance’s operation,
simplifying the modelling. For example, a swimming pool pump may need to run for three
hours. For demand reduction, it has to be paused twice. Using this pool pump can be
seen as running it three times in a three-hour period and each time is non-interruptible.

SI appliances have some unique attributes, such as the mazimum amount of time
a SI appliance can be paused in total (Adika and Wang, 2012; Agnetis et al., 2013) ,
the mazimum amount of time this appliance can paused continuously at a time (Agnetis

et al., 2013), the minimum amount of time this appliance must stay on in total (Agnetis



2.3. LITERATURE REVIEW 19

et al., 2013), the minimum amount of time this appliance must stay on continuously at a
time (Agnetis et al., 2013), and a time window that an appliance is allowed to be off (Ag-
netis et al., 2013). When considering a SI appliance with multiple interruptible phases, a
between-phase delay (Sou et al., 2011; Ogwumike et al., 2015), may be introduced to limit

the time gap between each phase. Each phase may also has its own EST and LFT.

Appliance Constraint Household appliances are often constrained by a set of rules.

We define these rules or constraints as follows:

Definition 2.3. Scheduling time constraints: a constraint that requires an appliance to

start after an EST, last for a given amount of time and finish before a LFT.

Definition 2.4. Sequential constraint: a constraint that requires the operation phases to

execute in a given order if an appliance has multiple operation phases.

Definition 2.5. Between-phase delay constraint: a constraint that limits the maximum
time allowed between (any) two operation phrases if an appliance has multiple operation

phases and an interruption is allowed between phases.

Definition 2.6. Precedence constraint: a constraint that requires an appliance to start

only after a preceding appliance is finished.

Definition 2.7. Preceding delay constraint: a constraint that limits the maximum time

allowed between (any) two dependent appliances.

Definition 2.8. Min-max demand constraint: a constraint that allows an appliance to

vary its energy demand between a minimum level and a maximum level.

Definition 2.9. Min consecutive ON constraint: a constraint that requires an appliance
to run for a minimum number of consecutive time periods before it can be paused or

interrupted if this appliance is interruptible.

Definition 2.10. Maz consecutive OFF constraint: a constraint that limits the total
number of consecutive time periods that an appliance is allowed to be paused if this

appliance is interruptible.

Definition 2.11. Max OFF constraint: a constraint that limits the total number of time

periods that an appliance is allowed to be paused if this appliance is interruptible.
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Definition 2.12. Coupling constraint: a constraint that involves more than one appli-
ances such as the precedence constraint, the sequential constraint, the between-phase delay

constraint and the household demand limit constraint.

Job Since an appliance can be used multiple times per day, e.g. a consumer can wash
clothes twice a day. Many studies have defined a task or a job as Definition 2.13. A job

inherits all attributes and constraints of the associated appliance.

Definition 2.13. A job is a single use of any appliance.

Demand Limit

Some works adopt a limit for the maxzimum demand of all running appliances or jobs in
a household or all households in an area at any time of the day (Samadi et al., 2010;
Goudarzi et al., 2011; Li et al., 2012; Muralitharan et al., 2016; Swalehe and Marungsri,
2018; Nan et al., 2018; Mohsenian-Rad and Leon-Garcia, 2010; Ahmed et al., 2017). This

limit is also defined as the following constraints:

Definition 2.14. Household demand limit constraint: a constraint that limits the total

demand of all running appliances in a household at any time.

Definition 2.15. Area demand limit constraint: a constraint that limits the total demand

of all households served by the same utility company in a given area.

Battery Energy Storage Systems

Models of batteries have been developed to predict the battery output (energy or power)
under specific load conditions over the required time. Many battery models have been
proposed in the literature on battery modelling and dispatches. Generally they can be
divided into two types: empirical models and mechanical models (Beard, 2019a).
Empirical models are early models that use curve-fitting to find general equations
from measured data to describe the empirical relationships between measured parameters
(e.g. voltage and operating temperature) and the remaining battery capacities under
various operating conditions (Muenzel et al., 2015; Beard, 2019a). Mechanical models
are physical-based models that employ universal laws to describe the physical processes

(e.g. the chemical and electrochemical reactions) of individual components in a battery as



2.3. LITERATURE REVIEW 21

functions of their material properties (Ramadass et al., 2004; Beard, 2019a). Mechanical
models are the most accurate for predicting the battery output, however, developing such
models is complicated and time-consuming due to the vast number of parameters involved
in the electrochemical battery process (Muenzel et al., 2015). Empirical models are widely
used instead in the demand scheduling literature to reduce the model complexity and the
amount of data involved in the optimisation problem.

The level of detail in an empirical model varies with the intended use. For problems
that evaluate the economic impacts of using batteries on energy costs, a fixed model
that includes only fixed battery parameters is often used. For problems that evaluate the
battery lifetime and the impacts of battery health on costs, a variable model that considers

some battery parameters as functions of others is used instead.

Battery Attribute A fixed battery model may includes some or all of the following

parameters:

e Capacity: The amount of energy a battery can store, commonly measured in kWh
however, sometimes in Ah (amp per hour). The capacity of any battery has a

maximum limit and a minimum limit.

e Charge or discharge rate: The amount of energy charge or discharge during a time
interval, commonly measured in kW and sometimes in A. This rate has a maximum

and minimum limit for any battery.

e state-of-charge (SOC) or depth-of-discharge (DOD): The charge or discharge of a
battery (or the percentage of the capacity remaining in the battery). In a fixed
model, the SOC or DOD of a battery at any time step is described as a linear
function of the charge and discharge rates of all times leading to this time step. To
prolong the battery life, a maximum limit and a minimum limit are often imposed

on the SOC or DOD at any time to avoid emptying or overcharging a battery.

e Fnergy level: The energy remaining in a battery at any give time. Similar to SOC,
a maximum limit and a minimum limit are often imposed to maintain the battery
health. Sometimes, an additional minimum limit is imposed at the beginning and/or

the end of the day to ensure sufficient energy is left to meet the needs of consumers.
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e The charge and discharge efficiencies: The percentage of energy that is actually
absorbed by the battery during charging or the energy that is actually delivered by

the battery during discharging. These efficiencies are assumed to be fixed.

e round-trip efficiency (RTE): Sometimes the charge and discharge efficiencies are not
considered separately but together as a RTE. This efficiency is also fixed in a fixed
model and is generally chosen between 80% and 90%. For example, Pilz et al. (2017)
used 0.918, Pandzi¢ and Bobanac (2019) used 0.81 and 0.866, and Pelzer et al. (2016)
used 0.8.

The references for these parameters are listed in Table 2.2.

Table 2.2: Existing works on fixed battery models

Attribute Citation

Capacity (Barbato et al., 2011; Li et al., 2011; Barbato et al., 2011; Voice et al., 2011;
Nguyen et al., 2012; Tsui and Chan, 2012; Kim and Giannakis, 2013; Agnetis
et al., 2013; Shi et al., 2014, 2015; Kuschel et al., 2015; Anvari-Moghaddam
et al., 2015; Marzband et al., 2017; Nan et al., 2018; Zhou et al., 2018; Li
et al., 2019)

Max charge

or discharge rate (Barbato et al., 2011; Li et al., 2011; Voice et al., 2011; Barbato et al., 2011;

Tsui and Chan, 2012; Nguyen et al., 2012; Kim and Giannakis, 2013; Shi
et al., 2014, 2015; Kuschel et al., 2015; Anvari-Moghaddam et al., 2015;
Marzband et al., 2017; Zhou et al., 2018; Sperstad and Korpas, 2019)

Min charge

or discharge rate (Barbato et al., 2011; Tsui and Chan, 2012; Anvari-Moghaddam et al., 2015;

Nguyen et al., 2012; Kim and Giannakis, 2013; Shi et al., 2014, 2015; Zhou
et al., 2018; Li et al., 2019)

Min energy

lovel (Nguyen et al., 2012; Shi et al., 2014; Barbato et al., 2011; Shi et al., 2015;

Marzband et al., 2017; Li et al., 2019)

Start/End-day

(Nguyen et al., 2012; Atzeni et al., 2013; Marzband et al., 2017; Nan et al.,
energy level

2018; Sperstad and Korpas, 2019; Li et al., 2019)

Charge/discharge

. (Vytelingum et al., 2010; Voice et al., 2011; Kim and Giannakis, 2013; Atzeni
efficiency

et al., 2013; Zhang et al., 2013; Shi et al., 2015; Kuschel et al., 2015;
Marzband et al., 2017; Sperstad and Korpas, 2019; Li et al., 2019)

While fixed battery models are widely used in the demand scheduling literature, some
works argue that using linear models can leads to infeasible results for battery management
and an overestimate of the battery’s economic performance, due to the dynamic and non-
linear nature of the electrochemical battery process (Azuatalam et al., 2019). Therefore,
they are interested in investigating the impacts of including non-linearity in the battery

model on the economic performance of a battery in both the short-term and the long-term.
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A variable battery model may include a variable charge rate, a variable charge/discharge

efficiency and or a battery degradation cost function.

e Variable charge rate: In practice, the charge rate of a battery does not remain
constant in practice and it changes through stages. The charge stages of a lithium-
ion battery and a lead-acid battery are illustrated in Figure 2.1 and Figure 2.2.
A two-stage charging model, called the constant current-constant voltage model, is
commonly used. This model describes the charging current to be fixed when the
voltage is still low and increasing and to drop exponentially when the voltage reaches
a certain level and becomes fixed until the battery is fully charged (Vagropoulos and
Bakirtzis, 2013; Beard, 2019b). Pandzi¢ and Bobanac (2019) took a step further
to consider the non-linearity in the battery’s actual charging ability as a piece-wise

linear function.

e Variable charge/discharge efficiency: In practice, the efficiency of a battery increases
with SOC and decreases with the charge/discharge current (Safoutin et al., 2015;
Azuatalam et al., 2019). Moreover, it is affected by the operating environment of
the battery such as the temperature and the humidity. One way to model a variable
efficiency is to use a lookup table created through observation in a lab environment,

such as the one shown in Table 2.3.

e Battery degradation cost: In practice, a battery loses its capacity over time due to
the charge-discharge cycles and ageing. This process is called battery degradation.
While ageing degradation is inevitable, cycling degradation can be slowed down by
better managing the battery profiles, such as avoiding frequent and large fluctuations
in the charge and discharge activities and keeping the DOD in a health range (above
20% or 50%).

Maintaining the battery health has an affect on cost savings for battery owners. In
the short term, discharging batteries more often can reduce more peak demand and
energy usages, leading to more daily cost savings. However, in the long term, it will
shorten the lifetime of the battery, leading to less accumulated cost savings. Pelzer
et al. (2016) showed a case study where a newly purchased battery of 20 kWh would
lost 21% — 34% of its capacity after one year when the battery degradation was

neglected during the scheduling process but only 1% — 2% when the degradation
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was considered. Abdulla et al. (2018) showed another case study where a battery
of 5 kWh would last 3.8 years (160%) longer when the battery degradation was

considered.

The simplest way to model the degradation cost is to consider it as a linear function
of the charge rate and assume the charge rate to be fixed (Abdulla et al., 2018). Some
studies also include other battery parameters, such as the investment costs, the end-
of-life capacity and the state-of-charge in the degradation cost function (Muenzel
et al., 2015; Pelzer et al., 2016; Wankmiiller et al., 2017; Abdulla et al., 2018; Hossain
et al., 2019).

Table 2.3: The average charge efficiencies sampled in (Safoutin et al., 2015)

Charging Current

SOC

12A 30A 60A 90A 120A
90% 0.993 0.986 0.977 0.968 0.961
70% 0.993 0.986 0.976 0.968 0.960
50% 0.993 0.986 0.976 0.968 0.960
30% 0.993 0.986 0.976 0.967 0.960
10% 0.993 0.985 0.976 0.967 0.960

Battery Constraint A battery’s charge and discharge behaviours are governed by a

set of rules, defined as follows:

Definition 2.16. Battery charge and discharge constraints: constraints that limit a bat-

tery to either charge or discharge under the maximum power rate at any time.

Definition 2.17. Battery capacity constraint: a constraint that limits the energy level
of a battery to be below the maximum allowed capacity and above the minimum allowed

capacity at any time.

Definition 2.18. Battery SOC constraints: constraints that depict the change of energy
level over time between any two consecutive time periods.

Electricity Pricing

Commonly used pricing schemes in the demand scheduling literature include TOU, CPP

and real-time RTP. All of these pricing schemes are time varying, however, TOU is the
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most stable, CPP is semi-dynamic and RTP is the most dynamic. The references of these

pricing schemes are listed in Table 2.4.

o Time-of-Use: The TOU pricing scheme divides a day into a few time-blocks and

sets a fixed price for each of these time blocks.

e Critical Peak Pricing: The CPP pricing scheme can be considered as a TOU scheme
with an additional dynamic price. On a day with usual demand, the CPP prices are
the same as the TOU prices. On a day with higher than usual demand, the CPP
scheme replaces the price at the peak period with a dynamic price that reflects the
new peak demand. This dynamic price may be set a day head or in real ti me based

on the expected or actual demand.

e Real-time Pricing: The RTP pricing scheme is the most dynamic as it offers a price
that varies with the demand every (half an) hour. These prices may be set a day
ahead based on the expected demand or in real time based on the actual demand.
RTP has been widely recognised as the most effective at incentivising consumers
to participate in DR (Ramchurn et al., 2011; Hongbo Zhu, 2018). Consequently,
RTP has been adopted by many works to develop demand scheduling algorithms for
reducing the costs for consumers and/or suppliers. Commonly, the RTP scheme is
modelled as day-ahead prices for the next 24 hours or a pricing function for any time
period. When scheduling the demand of a single household, the day-ahead prices are
used for scheduling appliances or devices for the next 24 hours. When considering
the demand of a wider community, the pricing function is used to decide the price for
all households based on the actual demand at every time slot. The pricing function

is typically a quadratic function or a step-wise function that is strictly increasing.

Cost

The goal of solving a DSP is to minimise some costs. The most popular costs considered
in the literature are the monetary cost and the inconvenience cost. Some other cost-like
measurements have also been considered such as the peak demand, peak-to-average ratio
(PAR), the load difference and power loss. The references for theses costs or cost-like

measurements are provided in Table 2.5.
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Table 2.4: Existing works on pricing schemes

Pricing Citation
TOU (Hatami and Pedram, 2010; Barbato et al., 2011; Swalehe and Marungsri, 2018;
Nan et al., 2018)
CPP (Hussain et al., 2018; Nan et al., 2018)
Day-ahead

(Barbato et al., 2011; Goudarzi et al., 2011; Voice et al., 2011; Atzeni et al., 2012;

RTP Ogwumike et al., 2015; Ma et al., 2016,?; Hussain et al., 2018; Nan et al., 2018)
RTP . . .o

. (Samadi et al., 2010; Mohsenian-Rad et al., 2010; Caron and Kesidis, 2010;
function

Goudarzi et al., 2011; Li et al., 2011; Ramchurn et al., 2011; Nguyen et al., 2012;
Kim and Giannakis, 2013; Chavali et al., 2014; Veit et al., 2014; Zhang et al., 2015;
Shi et al., 2015; Vardakas et al., 2015; Kuschel et al., 2015; Mhanna et al., 2016)

o Monetary Cost: The monetary cost is paid by consumers or the utility companies to
consume or produce electricity. For clarity, we call the cost paid by consumers the
consumption cost and the cost paid by utility companies the supply cost. Commonly,
the consumption cost is calculated as a product of demands and prices while the
supply cost is modelled by a function that is strictly increasing and convex, such as

a quadratic function or a piece-wise linear function (Atzeni et al., 2013).

e Inconvenience Cost: The inconvenience cost, also known as the discomfort or dis-
satisfaction in the literature, is a penalty that occurs when changing the demand
patterns of consumers to reduce the peak demand. Two types of inconvenience costs

have been widely considered in the literature:

— Start-time related: a start-time related inconvenience cost is a penalty cost for
moving appliances away from their usual consumption times. When calculating
such costs, the PSTs are often involved — this cost may increase linearly or
exponentially with the distance between the actual start times and the PSTs

of appliances.

— Consumption related: a consumption related inconvenience cost is the penalty
for varying the total consumption of an appliance or a household. When cal-
culating such costs, a measurement called utility is used to evaluate the satis-
faction received by the consumers from consuming a good or service. In the
context of electricity consumption, the less access and inconvenience to elec-

tricity, the less satisfied he/she is. Another way to calculate the convenience
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Table 2.5: Existing works on costs

Cost

Citation

Monetary cost

(Conegjo et al., 2010; Hatami and Pedram, 2010; Samadi et al.,
2010; Mohsenian-Rad et al., 2010; Chen et al., 2011; Goudarzi
et al., 2011; Ramchurn et al., 2011; Voice et al., 2011;
Mohsenian-Rad and Leon-Garcia, 2010; Barbato et al., 2011;
Ren et al., 2011; Tsui and Chan, 2012; Li et al., 2012; Atzeni
et al., 2012; Maharjan et al., 2013; Agnetis et al., 2013; Zhao
et al., 2013; Chavali et al., 2014; Song et al., 2014; Veit et al.,
2014; Sheikhi et al., 2015; Zhang et al., 2015; Kuschel et al.,
2015; Ogwumike et al., 2015; Anvari-Moghaddam et al., 2015;
Ma et al., 2016; Mhanna et al., 2016; Muralitharan et al., 2016;
Rasheed et al., 2016; Jovanovic et al., 2016; Ma et al., 2016;
Fioretto et al., 2017; Bharathi et al., 2017; Hussain et al., 2018;
Swalehe and Marungsri, 2018)

Inconvenience f;i zte(‘glme (Mohsenian-Rad and Leon-Garcia, 2010; Chen et al., 2011;
cost, Goudarzi et al., 2011; Ramchurn et al., 2011; Adika and Wang,
2012; Tsui and Chan, 2012; Agnetis et al., 2013; Zhao et al.,
2013; Chavali et al., 2014; Shi et al., 2015; Anvari-Moghaddam
et al., 2015; Ma et al., 2016; Muralitharan et al., 2016; Mhanna
et al., 2016; Jovanovic et al., 2016; Longe et al., 2017; Bharathi
et al., 2017; Hussain et al., 2018)
Se(l);lts;lmptlon (Conejo et al., 2010; Samadi et al., 2010; Fan, 2011; Kim and
Giannakis, 2013; Maharjan et al., 2013; Rahbari-Asr et al., 2014;
Zhang et al., 2015; Longe et al., 2017)
Device (l?oztttery (Vytelingum et al., 2010; Li et al., 2011; Zhang et al., 2013; Shi
cost et al., 2014, 2015; Yang et al., 2015; Zhou et al., 2018)
On—srue. (Atzeni et al., 2013; Chaouachi et al., 2013; Shi et al., 2014)
generation
PAR (Mohsenian-Rad et al., 2010; Nguyen et al., 2012; Ren et al.,
2011)
Others Peak
(Barbato et al., 2011; Nguyen et al., 2012; Lee et al., 2012)
demand
Load . .
) (Logenthiran et al., 2012,7; Van Den Briel et al., 2013)
difference
Power loss (Shi et al., 2014)

cost is through comparing the actual operation modes of appliances and their

ideal operation modes.

e Operation Cost: Device costs refer to the costs occur for installing, maintaining

and operating devices, including household appliances, distributed on-site generators

(e.g. diesel generators, combined heat and power systems and fuel cells) and energy

storage systems. While they do assist in peak demand reductions and monetary cost

reductions, it is important to consider their capital and maintenance costs.
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o (Other Costs: Cost-like measurements refer to measurement that reflects the costs
required for operating and maintaining the power systems, such as the PAR, the
peak demand, the load difference and power loss. PAR is the ratio of the peak
demand and the average demand over a period of time. The peak demand is the
maximum demand of all households across a region over a period of time (e.g. a
day). The load difference refers to the difference between the actual load profile of
consumers and the ideal load profile expected from the utility companies. The power
loss is the loss of energy due to (over)heated power lines. A high value for any of
these measurements indicates a higher cost for operating and maintaining the power

systems.

o Combined Cost: Various types of costs are often considered at the same time to
balance the needs of consumers for different purposes. For example, consumers may
want to reduce their consumption cost but not increase their inconvenience/dis-
comfort too much, thus they may want to find a balance between reducing the
consumption cost the inconvenience cost instead of just minimising one or maximis-
ing the other. A popular way of finding such balances is through multi-objective
optimisation (Mohsenian-Rad and Leon-Garcia, 2010; Ramchurn et al., 2011; Chen
et al., 2011; Li et al., 2011; Yu et al., 2011; Kim and Giannakis, 2013; Rahbari-Asr
et al., 2014; Barbato and Capone, 2014; Deng, Yang, Hou, Chow and Chen, 2015;
Anvari-Moghaddam et al., 2015; Vardakas et al., 2015).

Multi-objective optimisation is a discipline in optimisation that deals with optimising
multiple conflicting objectives at the same time. The most common way to optimise
multiple conflicting objectives is by combing them in a new objective using the weighted
sum (WS) method and optimise the new objective instead. In the context of demand
scheduling, all considered costs can be summed up together into a new cost function and
each original cost can be multiplied by a weight that indicates the importance of this cost
among all costs. This new cost function is then used for evaluating the best consumption
times or levels for appliances. Note that finding the suitable weight for each original cost
is important for achieving the desired balance between multiple needs. However, this

thesis does not carry out extended experiments on evaluating the impacts of varying the
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choices of weights on the problem solutions, as our focus in on the algorithm design and

development and the choices of weights do not affect our algorithm choice.

2.3.2 Demand Scheduling Problem

The existing DSPs can be categorised based on the number of users involved in the prob-
lem, such as demand scheduling problems for a single household (DSP-SHs) and demand
scheduling problems for multiple households (DSP-MHs). First, we introduce the elements

of a typical DSP-SH. Then, we present the elements of a typical DSP-MH.

Demand Scheduling Problem for a Single Household

A typical DSP-SH includes three essential elements: a household demand model, a pricing

model and objectives. The models of these elements vary across different research works.

Household Demand Model A household demand model can include a job model, a

battery model and/or other device model such as an on-site generator model.

Job Model A household job has been modelled:

1. using a forecast demand profile that does not change over time (Vytelingum et al.,
2010; Voice et al., 2011; Atzeni et al., 2013; Worthmann et al., 2015) when batteries

are considered,

2. using a minimum and a maximum demand limit of the household for any time

interval with no job details (Samadi et al., 2010; Kou et al., 2020), or

3. using a set of jobs that have their attributes and constraints (Chavali et al., 2014;
Mhanna et al., 2016).

A job can be NS, shiftable or PF as discussed in Section 2.3.1. A job model consists

of attributes and constraints, which is described as follows:

o Attributes: The widely considered attributes of a job include a fixed demand rate,
a duration, an EST and a LFT (Mohsenian-Rad and Leon-Garcia, 2010; Lee et al.,
2012; Zhao et al., 2013; Van Den Briel et al., 2013; Anvari-Moghaddam et al., 2015;
Ma et al., 2016; Manzoor et al., 2017). Some works have expanded the job to include

multiple operation phases and each phase has a different demand rate (Barbato et al.,
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2011; Sou et al., 2011; Ogwumike et al., 2015). Some other works have added a PST
for each job, so consumers can specify their ideal times to run those jobs (Goudarzi
et al., 2011; Agnetis et al., 2013; Anvari-Moghaddam et al., 2015). A few works have
allowed the demand rate to be adjustable and a maximum and a minimum demand
limits are set for any time of the scheduling horizon (Sou et al., 2011; Agnetis et al.,

2013; Ma et al., 2016; Manzoor et al., 2017).

e (Constraints: The scheduling time constraints are essential for all jobs. The sequential
constraint is considered when a job has multiple operation phases (Barbato et al.,
2011; Agnetis et al., 2013). Sometimes the between-phase delay constraint is used
together with the sequential constraint (Sou et al., 2011; Anvari-Moghaddam et al.,
2015; Ogwumike et al., 2015). The precedence constraint and the preceding delay
constraint are considered when some jobs need to run in a given order (Sou et al.,
2011; Anvari-Moghaddam et al., 2015; Ogwumike et al., 2015). The min-maz demand
constraint is used when a job is PF and its demand rate is adjustable (Sou et al.,
2011; Agnetis et al., 2013; Ma et al., 2016; Manzoor et al., 2017). The min consecutive
ON constraint, the maz consecutive OFF constraint and the max OFF constraint

are included when a job is interruptible (Agnetis et al., 2013).

Note that, the precedence constraint, the preceding delay constraint, sequential con-
straint, between-phase delay constraint and household demand limit constraint are con-
sidered as coupling constraints because they involve more than one job in a constraint.
These constraints couple multiple jobs together, preventing them from being scheduled
independently from each other and increasing the difficulties of scheduling.

In addition to constraints for job, the household demand limit constraint is sometimes
adopted when the total demand of running jobs cannot exceed a given threshold at any
time (Samadi et al., 2010; Mohsenian-Rad and Leon-Garcia, 2010; Goudarzi et al., 2011;
Sou et al., 2011; Lee et al., 2012; Agnetis et al., 2013; Ogwumike et al., 2015; Hussain

et al., 2018).

Battery Model A battery model also includes a set of attributes and constraints.
The constraints of a battery have been discussed in Section 2.3.1.
The common attributes of a battery model include a charge or discharge efficiency,

a minimum and a maximum charge or discharge rate, a maximum capacity (Vytelingum
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et al., 2010; Voice et al., 2011; Atzeni et al., 2013; Zhang et al., 2013; Worthmann et al.,
2015; Yang et al., 2015; Pelzer et al., 2016; Ghazvini et al., 2017; He et al., 2019; Hos-
sain et al., 2019; Couraud et al., 2020). Some works include additional attributes such
as a minimum capacity or a minimum initial capacity (at the start of the scheduling
horizon) (Atzeni et al., 2013; Yang et al., 2015; He et al., 2019), and an energy leakage
rate (Atzeni et al., 2013). A few works consider a running cost rate (Vytelingum et al.,
2010; Voice et al., 2011; Couraud et al., 2020), a storage cost rate (Zhang et al., 2013) or
a battery loss rate (Yang et al., 2015) to measure the loss of battery capacity over time
due to the charges and discharges.

Other studies consider a more advanced battery model where some attributes are
dynamic (Hossain et al., 2019; Pandzi¢ and Bobanac, 2019; Sui and Song, 2020). For
example, Pilz et al. (2017) modelled the charging process as a two-stage process. First, the
stored energy increased linearly when the battery was on charge. Second, when the battery
cell voltage was beyond a terminal voltage, the charging current dropped off exponentially
and the stored energy levelled off exponentially accordingly. This work also considered
two types of discharging: normal discharging (when the battery was being discharged)
and self-discharging (when the battery was not being used). During self-discharging, the

stored energy decreased exponentially over time.

Other Device Model Some studies include on-site generators such as photovoltaic
(PV) panels, fuel cell co-generation systems and micro combined head and power sys-
tems (Mohsenian-Rad and Leon-Garcia, 2010; Barbato et al., 2011; Agnetis et al., 2013;
Anvari-Moghaddam et al., 2015; Hossain et al., 2019) in their DSP-SHs. The simplest
model for a PV panel is a forecast of energy outputs for the next day (Barbato et al., 2011;
Anvari-Moghaddam et al., 2015). A more complex model for a PV panel may include a
forecast of solar irradiation, an overall efficiency, the area of the panel, the temperature
around the panels and a temperature coefficient of the maximum output power (Hossain
et al., 2019). The models for other fossil fuelled on-site generations can include a fuel
consumption rate, an efficiency, a minimum and a maximum power output capacity and

a ramping up/down rate (Agnetis et al., 2013; Anvari-Moghaddam et al., 2015).

Pricing Model The prices for DSP-SHs are often assumed to be known or forecasted

by most works. The commonly used pricing scheme is the day ahead pricing or RTP called
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by some works (Mohsenian-Rad and Leon-Garcia, 2010; Goudarzi et al., 2011; Barbato
et al., 2011; Sou et al., 2011; Zhang et al., 2013; Anvari-Moghaddam et al., 2015; Yang
et al., 2015; Ma et al., 2016; Manzoor et al., 2017; Hussain et al., 2018; Couraud et al.,
2020), followed by TOU (Agnetis et al., 2013; Zhao et al., 2013), which are all forecasted
or given a day ahead. However, few works do not require prices for scheduling (Lee et al.,

2012; Van Den Briel et al., 2013; Ogwumike et al., 2015).

Objective The most common objective of solving a DSP-SH is minimisation of the daily
consumption cost (Mohsenian-Rad and Leon-Garcia, 2010; Goudarzi et al., 2011; Barbato
et al., 2011; Sou et al., 2011; Agnetis et al., 2013; Zhao et al., 2013; Anvari-Moghaddam
et al., 2015; Ogwumike et al., 2015; Ma et al., 2016; Manzoor et al., 2017; Pilz et al.,
2017; Hussain et al., 2018) , followed by minimisation of inconvenience or dissatisfac-
tion (Vytelingum et al., 2010; Voice et al., 2011; Mohsenian-Rad and Leon-Garcia, 2010;
Goudarzi et al., 2011; Agnetis et al., 2013; Zhao et al., 2013; Anvari-Moghaddam et al.,
2015; Yang et al., 2015; Ma et al., 2016; Bharathi et al., 2017; Manzoor et al., 2017; Hussain
et al., 2018; He et al., 2019; Hossain et al., 2019; Couraud et al., 2020). The inconvenience
or dissatisfaction is usually considered as a penalty cost that is calculated based on dif-
ferences between preferred and actual start times/temperatures/operation modes. Some
works consider minimisation of the battery loss (Vytelingum et al., 2010; Voice et al.,
2011; Zhang et al., 2013; Yang et al., 2015; He et al., 2019; Hossain et al., 2019; Couraud
et al., 2020). Some other works include minimisation of the maximum/peak demand or
PAR (Barbato et al., 2011; Lee et al., 2012; Pilz et al., 2017). A few works consider min-
imisation of operation and maintenance costs when on-site generators and batteries are

included (Zhang et al., 2013; Anvari-Moghaddam et al., 2015; Bharathi et al., 2017).

Analysis In summary, we have found from our review of literature on DSP-SHs that:

1. Household demand model: A household demand may include jobs, a battery and

other devices such as on-site generators.

(a) Job model: The simplest household job model is a fixed demand profile, or
a variable demand profile that can be adjusted over time. More advanced
job models include a set of essential attributes and non-coupling constraints.

Complex job models have more attributes and coupling constraints.
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(b) Battery model: The simplest battery model is a fixed model where attributes
are all fixed. More advanced battery models have variable attributes and even

battery operation or degradation costs.

(c) Other device model: Sometimes, additional on-site generators are included in

the problem model.

2. Pricing model: Generally, DSP-SHs use price forecasts under various pricing schemes
instead of pricing functions where the price changes dynamically with the demand

in real time.

3. Objective: The most common objectives are consumption and inconvenience cost.
Sometimes, battery costs, peak demand, PAR or operation and maintenance costs

of on-site generators are also included.

The household job model can be continuous and linear when a demand profile is
considered, or mixed-integer and linear when shiftable jobs are considered. The battery
model can be linear when a fixed model is used, or non-linear when a variable model
is adopted. The pricing model is non-linear when a dynamic pricing function is used.
The objective functions can be linear or non-linear depending on the design of each cost
function. Overall, a DSP-SH can be a continuous and linear problem or a mixed-integer

non-linear problem depending on the problem models.

Demand Scheduling Problem for Multiple Households

Same as DSP-SHs, DSP-MHs include three key elements: a household job model, a pricing

model and objectives. The models of these elements vary across different research works.

Household Demand, Battery and Other Device Models The household demand
model is the same as those in DSP-SHs, except that an additional area demand limit

constraint is sometimes used for restricting the total demand of all households at any

time (Samadi et al., 2010).

Definition 2.19. Area demand limit constraint: a constraint that limits the total demand

of all households served by the same utility company in a given area.
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Pricing Model Different fromDSP-SHs, the prices for DSP-MHs are commonly deter-
mined by a pricing function which calculates the prices based on the actual demand A
pricing function can be a generic convex and increasing quadratic function (Samadi et al.,
2010; Mohsenian-Rad et al., 2010; Voice et al., 2011; Atzeni et al., 2013; Chavali et al.,
2014; Mhanna et al., 2016; Ghazvini et al., 2017; Pilz et al., 2017; He et al., 2019; Kou
et al., 2020), or a piece-wise linear convex function (Li et al., 2011; Kim and Giannakis,
2013). However, some studies still assume the prices are given a day ahead (Vytelingum
et al., 2010; Ramchurn et al., 2011; Zhang et al., 2013; Worthmann et al., 2015; Yang
et al., 2015; Fioretto et al., 2017; Couraud et al., 2020). Few works require no prices for
scheduling (Van Den Briel et al., 2013).

Objective The objectives of a DSP-MH are the same as those in DSP-SHs except that
the objective values are calculated from (the total demand profile of) all households instead

of from one single household

Analysis In summary, we have identified the following findings from our review of lit-
erature on problem formulations for demand scheduling problems for multiple households

with batteries (DSP-MBs):

1. The model of a DSP-MH is developed based on the model of a DSP-SH. The house-
hold demand model and objectives are the same as those in a DSP-SH, however,
an additional constraint that limits the total demand of all households may be con-
sidered and the objective values are calculated based on the total costs or the total

demand profile of all households.

2. The electricity price is generally calculated using a quadratic, piece-wise linear or

step pricing function. However, price forecasts are still used in some works.

DSP-MHs with or without batteries are generally non-linear because of the pricing
function, however, they can be continuous when jobs are modelled by demand profiles, or

mixed-integer when jobs include a set of attributes and constraints.

2.3.3 Demand Scheduling Method

The existing demand scheduling methods for DSPs can be broadly divided into two types:

centralised methods and distributed methods. Centralised methods refer to methods whose
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the computations are carried out on a single computation unit, while distributed methods
refer to those whose computations are distributed to various computation units. Cen-
tralised methods can be used for solving DSP-SHs and small-scale DSP-MHs. Distributed

methods are more efficient for solving large-scale DSP-MHs.

Centralised Method

Typically, centralised methods collect the full knowledge of appliances in households, com-
pute the optimal schedule for these appliances on a single computation unit, and send back
the schedule to each household. Most centralised methods are designed for solving DSP-
SHs. However, some studies also adopt centralised methods for solving small DSP-MH.
For example, Mohsenian-Rad and Leon-Garcia (2010) studied a DSP-SH where mul-
tiple shiftable and non-interruptible jobs (SNIJs) and an EV was scheduled to minimise
the daily consumption cost of all jobs and the delay of starting each job given a price
forecast. Goudarzi et al. (2011) investigated a DSP-SH where multiple SNIJs were sched-
uled under two pricing schemes: the day ahead pricing scheme and the RTP scheme to
minimise the daily consumption cost of all jobs and the inconvenience to consumers. Sou
et al. (2011) investigated a DSP-SH where multiple SNIJs and shiftable and interruptible
jobs (SIJs) were scheduled against known prices to minimise the daily consumption cost
of all jobs. Barbato et al. (2011) studied a DSP-SH where multiple SN1Js, a battery and
PVs were managed to minimise the daily consumption cost and the peak demand of all
jobs against a price forecast. Van Den Briel et al. (2013) investigated a DSP-SH where
SNIJs were scheduled to fit a desired load profile given by an utility company. Zhao
et al. (2013) studied a DSP-SH where multiple SNIJs/SIJs (rice cookers, air conditioners,
electric radiators, water heaters, dishwashers, kettles, humidifiers and clothes dryers) and
non-shiftable jobs (NSJs) (lights, computers, cleaners, TVs, irons, hair dryers and fans)
were scheduled against given prices to reduce the daily consumption cost of all jobs and the
wait time of using each job. Agnetis et al. (2013) investigated a DSP-SH where multiple
NSJs, SNIJs, thermal jobs (TJs) (water heaters or air conditioners (ACs)), SILJs, a battery
and On-site generators (OGs) such as micro-CHPs and PV were managed to minimise the
daily consumption cost and the deviations between the PSTs and the actual start times
(ASTs) of all jobs and the climate discomfort of the household under the TOU pricing

scheme. Anvari-Moghaddam et al. (2015) considered a DSP-SH where multiple SNILJs,
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TJs, PVs and a battery were managed against given prices to minimise the cost of pur-
chasing electricity from the main power system, the costs of operating the co-generation
generation system and the battery, and the inconvenience to consumers. Ogwumike et al.
(2015) considered a DSP-SH where four SNIJs (a washing machine, a dryer, a dish washer
and an electric vehicle) and two NSJs (a heater and a TV) were scheduled to reduce the
daily consumption cost of all jobs. Pelzer et al. (2016) studied a DSP-SH where a battery
was scheduled for energy arbitrage to maximise revenues from discharging back to power
systems, and minimising costs of purchasing energy from power systems and the degra-
dation cost from charging/discharging the battery. Ma et al. (2016) studied a DSP-SH
where NSJs, SN1Js, and power flexible jobs (PFJs) were managed to minimise the daily
consumption cost of all jobs and the discomfort/inconvenience to consumers against give
prices. Manzoor et al. (2017) investigated a DSP-SH where three NSJs (a kettle, a toaster
and a fridge), one SNIJ (a washing machine) and two PFJs flexible jobs (lights and a
heating, ventilation, and air conditioning (HVAC)) were scheduled against given prices to
reduce the daily consumption cost of all jobs and the discomfort/inconvenience to con-
sumers. Marzband et al. (2017) investigated a DSP-SH where a household managed its
distributed generators (DGs), batteries and jobs to reduce energy costs and protect the
stability of its power supply from sudden changes in the demand or supply. Pandzi¢ and
Bobanac (2019) worked on a DSP-SH for a single battery to evaluate revenues earned from
energy arbitrage using different battery charging models. Hossain et al. (2019) studied
a DSP-SH in a microgrid to evaluate the impacts of including the battery degradation
cost on energy costs when uncertainties in renewable energy resources, household jobs and
electricity prices were considered. Couraud et al. (2020) investigated a demand scheduling
problem for a single battery (DSP-SB) for a microgrid to evaluate cost savings and the

battery depreciation when the battery lifespan was considered.

Adika and Wang (2014) worked on a DSP-MH where households allowed an aggregator
to manage jobs and batteries, in order to reduce the total energy cost. Longe et al. (2017)
studied a DSP-MH where households allowed a controller (e.g. the utility company or
an aggregator) to compute the best schedules for their jobs and batteries, in order to
minimise the total consumption cost and the total inconvenience cost (dissatisfaction cost).
Pooranian et al. (2018) investigated a DSP-MH where a smart building scheduled the jobs

of multiple homes, a solar panel and a battery to minimise the total cost of buying/selling
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power from/to the main power system, the cost of maintaining and operating the solar
panels and the battery, and the cost of the peak demand charge. Zhou et al. (2018)
considered a DSP-MH where batteries and controllable jobs of consumers were managed
in ways to minimise the cost of purchasing energy from the power systems and the cost of
operating the cloud energy storage, and to maximise the revenues from sharing energies

between consumers.

Solving Technique The techniques that have been widely used in centralised meth-
ods are mixed-integer programming (MIP) methods, (meta)heuristic algorithms (MHAS)
(e.g. genetic algorithms and evolutionary algorithms) and constraint programming (CP)
methods. More explanations of these techniques are provided in Appendix B.3.

MIP methods have been widely used in early works. These methods involve implement-
ing problems in a modelling language such as AMPL (Fourer et al., 1989), YALMIP (Lof-
berg, 2004) or GAMS (Bussieck and Meeraus, 2004), and sending these models to a MIP
solver such as Gurobi or CPLEX to retrieve the optimal solutions (Mohsenian-Rad and
Leon-Garcia, 2010; Barbato et al., 2011; Sou et al., 2011; Agnetis et al., 2013; Anvari-
Moghaddam et al., 2015). Few works have considered CP methods (Fioretto et al., 2017).
Similar to MIP methods, CP methods also involve implementing problems in a mod-
elling language, however, CP methods send the models to a CP solver such as Gecode
and Chuffed instead. Recent years have seen increasing interests in using MHAs such as
evolutionary algorithms (Zhao et al., 2013; Manzoor et al., 2017; Bharathi et al., 2017;
Hussain et al., 2018), probability distributions (Van Den Briel et al., 2013), and variants
of searching algorithms (Ogwumike et al., 2015; Ma et al., 2016). After investigating each

type of method, we have found that:

e MIP methods: MIP methods are mature optimisation methods that have been used
in industrial applications for decades. They offer powerful modelling capacities,
however, their computation costs are exponential and therefore these methods do

not scale well in practice.

e heuristic algorithms: heuristics algorithms are widely used techniques that scarify
optimality for computation speed. However, their capacity to incorporate coupling

constraints is limited.
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o CP methods: similar to MIP methods, CP methods provide powerful modelling

capacities and optimality. However, CP and MIP methods are based on different

principles. CP methods are based on search and inference while MIP methods are

based on mathematical structures of the problems. More details on the differences

between CP and MIP methods have been presented in Chapter B. CP methods have

proven to be more efficient at solving some scheduling problems (Kelareva et al.,

2012; e Silva de Oliveira and de C. Ribeiro, 2015; Maleck et al., 2018; Li and van der

Linden, 2018; Laborie, 2018), however, limited studies have been done on applying

CP methods in demand scheduling problems.

The strengths and weaknesses of each type of methods are summarised in Table 2.6.

Table 2.6: Strengths and weaknesses of MIP, CP and heuristic algorithms

Strengths

Weaknesses

- well-known techniques
MIP - powerful modelling capacities
- guarantee optimality

- exponential complexity and
therefore do not scale well

- powerful modelling capacities

- exponential complexity and

Cp narantee optimalit therefore do not scale well
& P Y - limited studies available
- widel d techni L
.. WICGELy sed techuates - does not guarantee optimality
Heuristic - polynomial complexity and less powerful modelling capacities
therefore faster P & cap
Analysis While centralised methods are effective for scheduling devices including jobs,

batteries and on-site generators in ways to minimise some total costs while satisfying a

given set of constraints, our review of literature has informed us that these methods are

widely considered impractical at a large scale by many works (Samadi et al., 2010; Voice

et al., 2011; Ramchurn et al., 2011; Tsui and Chan, 2012; Logenthiran et al., 2012; Van

Den Briel et al., 2013; Shi et al., 2014; Chavali et al., 2014; Wang et al., 2014; Deng, Yang,

Hou, Chow and Chen, 2015; Zhang et al., 2015).

Firstly, centralised methods require complete knowledge of appliances and consumption

requirements/preferences across all consumers in advance, which is itself impractical and

even a privacy concern to many people.
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Secondly, centralised methods do not scale well with the number of consumers or
households as the computational complexity often increases exponentially with the prob-
lem size (Sou et al., 2011; Van Den Briel et al., 2013; Kim and Giannakis, 2013; Shi et al.,
2014; Wang et al., 2014; Mhanna et al., 2016), especially when coupling constraints and a
pricing function (when the price depends on the demand in real-time) are used. Ramchurn
et al. (2011) tested solving a DSP-MH using the IBM ILOG CPLEX solver on a 64-bit
machine with 12GB of RAM. A pricing function was used and no coupling constraint was
considered for each household. Their computer could only model and solve a DSP-MH
of up to 75 households with up to three SNIJs each and no other coupling constraints.
Mhanna et al. (2016) tested solving a DSP-MH using the Gurobi 6.0.5 solver on a 64-bit
machine with an Intel ® 4.7GHz Core i7 and 128GB of RAM. Their problem included
1280 households with up to ten appliances each. A pricing function was used and a cou-
pling constraint was set for all households. Their computation time was three days. Kou
et al. (2020) tested solving a DSP-MH using the CPLEX solver on a laptop with Intel ®
CoreTM i7-8650U 1.90GHz CPU, and 16.00GB RAM. Their problem included 35 house-
holds with an air-conditioner, an electric hot water heater, a battery and some jobs each.

Their machine could not reach a solution within an hour.

Distributed Method

The drawbacks of the centralised scheduling methods have driven researchers to look
for alternative methods that are more scalable, efficient and practical. The distributed
scheduling methods are such alternative methods, which allow households to schedule ap-
pliances or devices independently and be coordinated through smart pricing. Households
do not need to share their detailed consumption needs, addressing the privacy and prac-
ticality issue of the centralised scheduling methods; and the computation of scheduling is
distributed to each household, addressing the scalability issue.

Coordination of household is a key component of distributed methods, without which
will cause load synchronization or a rebound peak where the peak demand increases above
normal levels at the cheaper/cheapest time intervals. For example, consider when house-
holds schedule appliances independently against the same set of prices without any coordi-
nation, which is often the case in practice, households are likely to move consumption to-

wards the same cheaper/cheapest time intervals, causing load synchronisation or a rebound
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peak (Mohsenian-Rad and Leon-Garcia, 2010; Mohsenian-Rad et al., 2010; Vytelingum
et al., 2010; Goudarzi et al., 2011; Ramchurn et al., 2011; Voice et al., 2011; Chen et al.,
2011; Nguyen et al., 2012; Li and Trayer, 2012; Li et al., 2012; Van Den Briel et al.,
2013; Veit et al., 2014). Some form of coordination is essential for enabling the significant
benefits of managing demand for a large population.

Three types of coordination methods have been proposed in existing works. We have
named them the one-way coordination methods (OWCMs), the interactive coordination
methods (ICMs) and the third-party coordination methods (TPCMs). OWCMs reply on
information passed from utility companies to households without communication between
households or feedback from households to the companies. ICMs use information iter-
atively broadcasted among households. TPCMs employ a third-party entity, such as a
utility company or a demand response service provider (DRSP), to produce pricing sig-

nals based demand profiles of households sent from households.

One-way Coordination Method One-way coordination methods (OWCMs) include
distributed scheduling methods that coordinate households through information passed
from the utility company to households, such as day-ahead pricing signals (Ramchurn
et al., 2011) or ideal shiftable load profiles (Van Den Briel et al., 2013). Only once-off
communication is required between households and the utility company each day.
Vytelingum et al. (2010) studied a DSP-MB where households learnt to choose the
best battery capacities for themselves. Each household was considered as an agent that
selfishly scheduled its battery against predicted prices of the next day in ways to minimise
its own energy cost. At the beginning of each day, each agent calculated a better battery
capacity and a new storage profile. More specifically, each agent performed the following

actions at the beginning of the day:

1. calculated a desired battery capacity (regardless of its own battery capacity) that

would minimise its energy cost given the predicted prices,

2. applied a learning rate to update (increase) its current battery capacity towards the

desired battery capacity,

3. scheduled the battery using the updated capacity, and
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4. applied another learning rate to decide whether this agent would exercise the new

battery schedule in practice.

Their method was tested with simulated households created from typical UK load profiles.
Their results showed that when 38% of the simulated population were equipped with a
battery, the algorithm would converge to the best desired battery capacity (3.55 kWh on
average at which the market prices were flatten to the minimum values) after around two
months. This method took months to converge because each agent rescheduled its battery
once per day. Moreover, it did not consider dynamic pricing where the price varied with the
actual demand, and it assumed household demands to be the same every day. Thirdly, the
learning rate required manual tuning to ensure convergence. For example, both learning
rates needed to be small enough, e.g. between 0.05 to 0.2, to ensure convergence.

Ramchurn et al. (2011) solved a DSP-MH using pricing signals to coordinate house-
holds and an adaptive mechanism to avoid load synchronization each day. This method
scheduled households jobs against day-prices before a day starts, and used an adaptive
mechanism to determine how to execute the schedules during the day. This adaptive
mechanism included a learning rate and a probability. The learning rate was designed
for moving jobs towards their scheduled time intervals part of the way instead of all the
way through. The value of the learning rate affects how close jobs would be moved to
their scheduled times. The probability was used for deciding whether the heater would
execute the pre-calculated schedule at all. Both the learning rate and the probability were
given by the utility company and the same for all households. Their method was tested
on a population of 5000 households. Each household had two jobs and 7% to 25% of
these households had an electric heater. When the learning rate and the probability were
small enough, for example when the probability was 0.05, their method achieved the best
schedules for households after 100 days under the assumption that the household demands
remained more or less the same during the whole period. The peak demand was reduced
by 17% when 7% of the population owned a heater and 22% when 25% of the population
owned a heater. However, they assumed the consumption requirements and preferences
of all households were more or less the same for all those days.

Voice et al. (2011) investigated a DSP-MB where households were guided through
expected market prices to maximise the benefits. Each household was considered as an

agent that selfishly scheduled its battery to minimise its own energy cost given the expected
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market prices from the suppliers. This work proposed a scheduling method that is repeated

once every day (each day was an iteration), which is described as follows:

1. The supplier calculated the optimal amount of electricity to purchase for the next day
by minimising the expected market costs given the total expected demand profile.
Then the supplier calculated new market prices based on that optimal amount of

electricity, and passed the market prices to households.

2. Each household scheduled battery against the prices given by the supplier to min-
imise its energy cost, battery running cost and a penalty cost imposed by the supplier
to avoid the storage profile changing greatly between days. Note that the household

demand was assumed to be fixed everyday.

The penalty cost imposed for each household was the key for achieving the equilibrium.
This cost included a coeflicient that needed to be small but greater than a minimum
number calculated by the Lyapunov function. This work proved that the use of penalty
cost guaranteed convergence and the supplier would make a profit everyday. Their method
was tested with 1000 simulated households. The battery capacity of each household was
on average 10 kWh. Their results showed that the unique equilibrium was achieved after
a number of trading days and the wholesale cost for the supplier was reduced by 16%.
Although this work employed a dynamic pricing function, it again required days to achieve
convergence. Moreover, the demand was assumed to fixed.

Van Den Briel et al. (2013) solved a DSP-MH using an ideal shiftable load profile to
coordinate households and a probabilistic mechanism to avoid load synchronisation. This
ideal shiftable load profile is the total shiftable load desired by the utility company at
each time interval. This method scheduled household jobs by generating a probability
distribution based on the ideal load profile. A probability distribution was calculated for
each job based on its EST, LFT and the ideal shiftable load profile. The actual start
time of a job was randomly selected using its probability distribution. Their experiment
results showed that the actual shiftable load profile of all households approximated the
ideal shiftable load profile to a great extent when millions of jobs were scheduled using
their probability distributions. Their method was fast to run and easy to use. However,
the utility company needed to financially motivate consumers to choose ESTs and LFTs

for their SNIJs in ways that were more likely to match the ideal shiftable load profile.
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These methods provide guidances for households to move appliances or devices in ways
that avoid load synchronisation, and have a relatively low computation cost. However,
they assumed that the demand does not change over time, did not consider inconvenience
to consumers and excluded coupling constraints on appliances. It is unclear that how these

methods would incorporate changes in demands and coupling constraints in practice.

Interactive Coordination Method Interactive coordination methods (ICMs) refer to
distributed scheduling methods that coordinate households through iterative communi-
cation among households. Common ICMs include cooperative game theoretic methods
and multiagent methods. ICMs follow a general solving framework, which is described as

follows:

1. Initialisation: Each household schedules appliances and broadcasts its demand pro-

file to all other households.

2. Rescheduling: Upon receiving demand profiles from others, each household resched-
ules appliances to minimise its cost, assuming the schedules of others were fixed.

Then households again broadcast their demand profiles to others.

3. Iteration: Households iteratively reschedule appliances based on demand profiles of

others and broadcast demand profiles to others.

4. Conwvergence: The iteration continues until they reach a stopping condition, which
can be the Nash equilibrium (NE) where no household can reschedule appliances
to reduce its cost or some termination conditions (e.g. a timeout or a maximum

number of iterations) are met.

The problem solved by each household at the rescheduling step is in fact a DSP-SH that
can be solved by the methods introduced in Chapter ?77.

Mohsenian-Rad et al. (2010) proposed a cooperative game theoretic method that re-
duced the total cost of households. Each household was considered as a player and they
played a game together to find the NE. First, this work formulated the DSP-MH as two sep-
arate problems: a PAR minimisation problem and a cost minimisation problem. Second,
this work solved each problem following the solving framework of ICMs. At the reschedul-

ing and iteration step, households used the interior-point method (IPM) to reschedule
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appliances. Only one household was allowed to reschedule and broadcast at one time,
otherwise the NE will not be reached. The order of households at each iteration was
determined by an ordering heuristic algorithm. Their method was tested on up to ten
consumers each of which had 10-20 shiftable jobs and 10-20 non-shiftable jobs. The re-
sults showed that only minimising the total consumption cost was sufficient to reduce the
PAR effectively, however only minimising the PAR did not reduce the total consumption
cost effectively. When minimising the total consumption cost, this method converged in
22 iterations, which was 2 iteration per household, and achieved 17% PAR reduction and
18% cost reduction. This work proved that using a convex and strictly increasing function
as the cost function was essential for the algorithm to reach the desired NE. Moreover,
proportionally charging households would incentivise consumers to participate truthfully

as they would not gain benefits from cheating.

Pilz et al. (2017) studied a DSP-MB to evaluate the impacts of considering efficiencies
in the battery models on the overall cost reduction and the PAR reduction for multiple
households. Each household was considered as an agent that determined the battery
operation at each scheduling interval. The possible operations for each battery included
charging for the whole or half of the scheduling interval, discharging or doing nothing.
The goal of each agent was to satisfy the demand of its loads in ways to minimise the
cost of purchasing energy from the main power system and to maximise the earning of
selling excessive energy back to the power system. This work applied a best-response
algorithm (Shoham and Leyton-Brown, 2008) to solve the problem in an iterative fashion.
A maximum number of iterations was imposed to ensure the algorithm terminated within
a reasonable time frame and at least a good enough solution could be found. This work
applied their method on 25 simulated households created from the openei dataset (U.S.
Department of Energy, 2013). They compared the impacts of including and neglecting the
charge and discharge efficiencies on cost and PAR reductions. The results showed that the
efficiencies affected the battery schedules and the reductions. The PAR reduction was 14%
when the efficiencies were considered and 36% otherwise, and cost reduction was between
6 7% when the efficiencies were considered and 7 9% otherwise. This method required
broadcasting information to all consumers iteratively, imposing extra work loads on the

communication networks. Moreover, consumers were not allowed to update their battery
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schedules at the same time, which means only one or few consumers could update their

schedules per iteration, limiting the scalability of these methods.

Fioretto et al. (2017) proposed a multiagent method that reduced both the peak de-
mand and the total cost of all households. Each household was seen as an agent that
acted independently and selfishly based on the information received from other agents.
All agents repeated selfishly rescheduled their jobs to reduce its own cost and broadcast
information to others until no agent could further reduce its own cost. Their method
followed the general solving framework of ICMs and some adjustments were made at each
step. At the initialisation step, households scheduled actuators to minimise the consump-
tion costs using a CP solver. At the rescheduling step and the iteration step, households
calculated the peak demand and the consumption cost their new schedules would save after
rescheduling the actuators, and broadcast both the new demand profiles and the savings
to all other households. Although after all households had rescheduled and broadcast at a
iteration, only the household with the biggest saving would execute the new schedule and
all other households would use their previous schedule. If more than one household had
the biggest saving, then the household with the smaller identity number would execute its
new schedule. At the convergence step, households stopped rescheduling and broadcasting
when the biggest saving was zero or a termination threshold, e.g. the maximum time or

iterations, was reached.

While ICMs offer households independence and the power to collectively reduce the
overall cost and the peak demand, they introduce a large communication burden on com-
munication networks as a result of the constant data exchange among households (Mhanna
et al., 2016; Yu et al., 2011; Joe-Wong et al., 2012). Households must reschedule and
broadcast one by one at each iteration otherwise the method will not converge, which can
result in a long computation time especially when the population is large. Furthermore,
some works argue that sharing demand profiles with all other households is still a privacy

concern (Deng, Yang, Hou, Chow and Chen, 2015; Sheikhi et al., 2015).

Third-party Coordination Method Third-party coordination methods (TPCMs) re-
fer to distributed scheduling methods that coordinate households through a third-party
entity. This third-party entity can be the utility company or a DRSP. Let us call this

third-party entity a DRSP for convenience. The main idea of these methods is that a
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DRSP iteratively communicates with households to jointly find the best schedule through
smart pricing (Chavali et al., 2014; Li et al., 2011; Mhanna et al., 2016; Chen et al., 2010;
Samadi et al., 2010; Wang et al., 2014; Fan, 2011; Veit et al., 2014; Shi et al., 2015). The

general solving framework of TPCMs can be described as follows:

1. Initialisation: Households independently schedule appliances and report the demand

profiles to the DRSP.

2. Pricing: Upon receiving demand profiles from households, the DRSP calculates new

pricing signals and sends them back to households.

3. Rescheduling: Upon receiving pricing signals, households independently reschedule
their appliances to reduce their own consumption costs and report the updated

demand profiles back to the DRSP.

4. Iteration: Then, as in the case of ICMs, households and the DRSP iteratively com-

municates with each other.

5. Convergence: The iteration continues until no consumer can reschedule appliances to
receive lower prices from the DRSP or some termination conditions (e.g. a timeout

or a maximum number of iterations) are met.

Decomposition TPCMs involve decomposing a DSP-MH into a master problem
and a subproblem. The master problem is solved by the DRSP at the pricing step. The
subproblem is solved by each household at the rescheduling step. Let us rename the master
problem as the pricing master problem and the subproblem as the household scheduling
subproblem. The pricing signals sent by the DRSP can be artificial prices that are solely
for coordinating households or actual prices that reflect the true cost of electricity supply

for all households.

Coupling Constraint A challenge in decomposing DSP-MHs is the handling of cou-
pling constraints, such as the area demand limit constraint. Dual decomposition handled
the coupling constraints by incorporating them into the objective function of the original
problem as a constraint violation cost and the dual variables can be seen as the ”prices”
for violating those coupling constraints. Once decomposed, the subproblem can be con-

sidered as the original problem without the coupling constraints and the master problem
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minimises the prices for violating the coupling constraints based on the solution of the
subproblem. A step size is often used for updating the dual variables at each iteration
in order to find the optimal solution. More details on decomposition are presented in

Section B.3.6 of Chapter B.

Convergence Another challenge of TPCMs is converging to the global optimal solu-
tion that truly minimises the total cost of households. Many TPCMs include a parameter,
such as a step size, a coefficient or a scaling factor, that controls the number of iterations
required for convergence (Chen et al., 2010; Samadi et al., 2010; Li et al., 2011; Sheikhi
et al., 2015; Zhang et al., 2015; Shi et al., 2015; Mhanna et al., 2016; Kou et al., 2020).
Generally this parameter needs to be small enough to guarantee convergence. However,
when this parameter is too small, it can lead to more iterations or even oscillation where
no convergence will be reached. When this parameter is not small enough, it can lead
to premature convergence where the converged solution is sub-optimal. The value of this
parameter needs to be chosen carefully and the best value of this parameter can vary
from method to method and even problem instance to problem instance. Furthermore, an
additional penalty cost is sometimes used to guarantee convergence (Chavali et al., 2014;
Mhanna et al., 2016; He et al., 2019). This additional penalty cost is added to the objec-
tive of the household sub-problem, penalising the difference between the demand profiles
of any two consecutive iterations. The value of this penalty cost may increase proportional
to the number of iterations, or inversely proportional to the consumption cost or demand
of a household. For example, it may be smaller in early iterations and larger in later

iteration, or smaller when the cost or demand is lower and larger otherwise.

Existing TPCMs work on two levels of DSPs: the demand level and the job level.

Demand Level Method The demand level DSPs are concerned with finding the
best aggregate demand level per time interval for households, ignoring the details of any
appliances or jobs and assuming the demand level varies in a continuous fashion.

Samadi et al. (2010) decomposed a DSP-MH using the dual decomposition, and coordi-
nated households using the dual variables as artificial prices. The dual decomposition was
applied to incorporate coupling constraints into the original objective function, and obtain

a pricing master problem and a household scheduling subproblem. The gradient projection
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method was used for solving the master problem and the subproblem At each iteration, the
master problem updated the dual variables given the solutions of the subproblem and the
subproblem maximised its social welfare given the dual variables updated by the master
problem. A step size was used in updating the dual variables and it needed to be tuned
manually to guarantee convergence. Their method was tested on 10 households over 24
hourly time intervals.

Atzeni et al. (2013) investigated a DSP-MB where households were equipped with
DGs and/or batteries, and coordinated by an aggregator to minimise the overall supply
cost. Households were divided into two groups: passive and active households. Passive
households consumed electricity as usual without active demand management. Active
users engaged in active demand management by using DGs and/or batteries. This work
developed a day-ahead optimisation process to schedule DGs and batteries to minimise the
total supply-side cost of all households. The proposed method used the proximal decom-
position method to formulate the optimisation problem as a Nash game where households
communicated with the aggregator iteratively to find the equilibrium together. At each
iteration, each household minimised its own energy cost and a penalty cost. This penalty
cost included a parameter that required manual tuning to ensure the equilibrium of the

Nash game was found. The detailed optimisation process is described as follows:

1. Aggregator broadcasted the supply-side cost function, the grid coefficients and rele-

vant parameters to all households.

2. Each household selected an initial schedule for DGs and batteries arbitrarily, and
reported the demand profile (a result of the load profile minus the energy production

profile plus the battery storage profile) back to the aggregator.

3. Aggregator calculated the total demand profile of all households and broadcast it to
all households.

4. Each household calculated the total demand profile of other households at the previ-
ous iteration using the total demand profile of all households sent by the aggregator,
rescheduled DGs and batteries to minimise the total supply-side cost and the penalty
cost assuming the total demand profile of all other households were unchanged, and

reported the updated demand profile back to the aggregator.
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5. The aggregator and households repeated the above steps until the total demand

profiles of any two consecutive iterations were (nearly) the same.

Their method was tested with 1000 simulated households where 18% of those were active
households and the rest were passive. Their method converged in ten iterations, reducing
around 12.6% of the average supply price. They also changed the percentage of active users
to 6%, 12% and 24% of the population and found the more active users yielded a flatter
total demand profile and therefore a more uniform supply price per unit of electricity.
Although a dynamic pricing function and DGs are included in the problem, the household
demand was assumed to be fixed. Moreover, a parameter required manual tuning to ensure
the equilibrium was found and the desired results were achieved.

Worthmann et al. (2015) studied a DSP-MB where households either independently
scheduled their batteries against prices given by an aggregator (named as a market maker
in this work) to minimise their costs, or were coordinated by the aggregator taking into
the account the local generation from solar panels. Four methods were proposed to solve

their problem, which are described as follows:

1. Simple controller: This method simply charged the battery when the local generation

exceeded the demand and discharged otherwise.

2. Centralised method: The aggregator collected the demands, local generation and
battery information from all households, scheduled the batteries centrally and sent

the optimal decisions back to households.

3. Decentralised method: Each household scheduled its battery independently without

communicating with each other.

4. Distributed method: All households communicated with the aggregator iteratively
to find the best schedules for the batteries without needing to communicate with
each other. The convergence was achieved by the pricing setting method used by

the aggregator.

Their methods were tested with a group of 20 simulated households and another group
of 300 simulated households created from the real demand data obtained from Ausgrid

(an Australian electricity distribution company). The results showed that the simple



2.3. LITERATURE REVIEW o1

controller method performed the worst among the four methods, followed by the decen-
tralised method. The distributed method was better than the decentralised method. The
centralised method had the best result, although it was not scalable. It could not find a
solution for 300 households due to the significant computation cost of a problem at that

size. They assumed both prices and household demands were fixed and inflexible.

Kou et al. (2020) decomposed the DSP-MH using a method called the alternating
direction method of multipliers (ADMM) (Boyd et al., 2011). Households were coordi-
nated using the primal variables and the dual variables introduced during decomposition
method as artificial prices. The ADMM was applied to obtain a pricing master problem
and a household scheduling subproblem. The coupling constraint was incorporated to
the objective functions of the master problem and the subproblem. This decomposition
method introduced two types of ancillary variables called the primal residuals and the
dual variables. Same as the dual decomposition, the dual variables in ADMM were used
for minimising the violation of the coupling constraint. The primal residuals were used for
updating the demand levels of households. At each iteration, the pricing master problem
updated the primal residuals and the dual variables using the CPLEX solver, and the
household scheduling subproblem adjusted the demand levels given the updated primal
residuals and and the dual variables using the BARON and SCIP solvers. A scaling factor,
called the penalty factor, was involved in solving the household scheduling subproblem and
updating the dual variables in the pricing master problem. The value of this factor needed
manual tuning to guarantee convergence. Their method was tested on 605 households on
a scheduling horizon of 96 15-minute intervals. The method converged after 23 iterations
in about 188s. The speed of convergence depended on the penalty factor, meaning that a
smaller value could yield better results but led to more iterations or no convergence while

a larger factor might be quick to converge but gave a sub-optimal solution.

Job Level Method The job level DSPs focus on finding the best start time and/or
the demand rate for each job per time interval, considering the (coupling) constraints of
jobs, and inconvenience to consumers.

Li et al. (2011) decomposed the DSP-MH using the primal decomposition. Households
were coordinated using the marginal cost of supplying electricity as the pricing signals.

The primal decomposition was applied to obtain a pricing master problem and a household
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scheduling subproblem. The pricing master problem calculated the prices for households
from the supply cost function. The household scheduling subproblem was solved by a gra-
dient descent algorithm and a step size was used in to update the schedules of households at
each iteration. The step size needed manual tuning to ensure convergence. Their method
was tested on up to 24 households each of which had up to six appliances on a scheduling

horizon of 24 hourly time intervals. No data on convergence speed was provided.

Similar to (Li et al., 2011), Chavali et al. (2014) decomposed a DSP-MH using the
primal decomposition. Households were coordinated using the marginal cost of supplying
electricity to all households as the pricing signals. The primal decomposition was applied
to obtain a pricing master problem and a household scheduling subproblem. The pricing
master problem computed the prices for households based on the supply cost function.
The household scheduling subproblem was solved by a greedy algorithm. An additional
penalty cost was added to the household scheduling subproblem to achieve convergence.
This penalty cost varied inversely proportional to the consumption cost of a household
and proportional to number of iteration, which means households with higher consump-
tion costs had smaller penalty costs particularly in early iterations while households with
smaller costs incurred larger penalty costs especially in later iterations. A coefficient that
required manual tuning was included in the penalty cost to guarantee convergence. Their
method was tested on 100 households each of which had 10 jobs. They applied a game
theoretic method (GTM) to their DSP-MH and compared the results of the game theoretic
method with those of their methods. On average, their method converged to a solution
that was very close to that of the GTM in about 30 iterations. Although the implemen-
tation of their method was much easier and cheaper than the GTM since no optimisation

solver was needed in the computation.

Zhang et al. (2013) investigated a DSP-MB where a microgrid managed several conven-
tional generators (CGs) (e.g. fossil fuel powered generators), renewable energy generators
(REGs) (e.g. wind farms), DGs or batteries, and jobs to minimise the cost of running the
CGs and batteries, and the worst-case transaction cost. The worst-case transaction cost
was for determining the amount of energy to buy from or sell to the main power system
based on predicted outputs of REGs. This work proposed an iterative and distributed

algorithm, which is described as follows:
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1. The dual decomposition and Lagrangian relaxation was applied to decompose the
original problem into a master problem and a subproblem. The master problem
updated the Lagrangian multiplier using the subgradient method. The subproblem
scheduled jobs, batteries, CGs of each household using general linear programming
or quadratic programming methods, and determined the amount of energy to buy

or sell using the bundle method and the vertex enumerating algorithm.

2. The master problem and subproblems were solved iteratively until convergence.

Their linear programming model was implemented in CVX (Grant and Boyd, 2014) and
solved by the MOSEK solver. Their method was applied on a simulated microgrid with
three CGs, ten shiftable or flexible jobs, three batteries, and two REGs. The inelastic jobs
were modified from the real load data provided by Midcontinent Independent System Op-
erator (Fderal Energy Regulatory Commission, n.d.) in America in 2012. The maximum
capacity of the batteries was 30kWh. The results showed that their proposed method
worked as expected. The outputs of CGs increased with the total demand of inelastic jobs
over time, the microgrid always purchased power from the main system when the purchase
price is lower than the marginal cost of running CGs and selling activities were the most
active during times with the highest selling prices. Although this work considered both
flexible and inflexible demand, it assumed the prices to be fixed and known in advance.
Moreover, optimising against the worst-case transaction cost would lead to very conser-
vative battery behaviour, missing more opportunities to save money. Furthermore, a step
size used in the subgradient method required manual tuning to ensure convergence.
Yang et al. (2015) focused on a DSP-MB where a building scheduled multiple appliances
and batteries to minimise the total energy cost, the total battery loss cost and the total
dissatisfaction cost (inconvenience cost) against the prices given by a central controller,
such as the utility company. This work proposed a hybrid of Lagrangian relaxation and
Benders decomposition to solve their problem in a distributed and iterative manner. Their
proposed involved two step sizes that required manual tuning to ensure the convergence
of the iterative process. Their method was tested with a simulated building of 5, 60
and 100 shiftable appliances. The number of batteries in the building increased with
the appliances. The results showed that the number of iterations before convergence was

almost the same when the appliance and battery ratio was kept the same. Although
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this work has incorporated flexibility in household appliances for scheduling, it assumed
the prices were known. Moreover, two parameters required manual tunings to ensure the
effectiveness of the proposed method.

Different from other works, Mhanna et al. (2016) aimed to achieve a near-optimal solu-
tion in exchange for a higher scalability and a shorter computation time. They smoothed
the dual problem of the DSP-MH and decomposed the smoothed dual problem. House-
holds were coordinated using multiple parameters introduced in the smoothing and the

decomposition processes as artificial prices. They solved the problem in two stages:

e Stage one: First they applied the Lagrangian relaxation to obtain the dual problem
of the original DSP-MH. Second, they applied a double smoothing technique to the
dual problem and decomposed the double smoothed dual problem into a pricing
master problem and a household scheduling subproblem. Third, they used a fast
gradient algorithm to solve the master problem and the subproblem iteratively for
a fixed number of iterations to obtain the suitable values for some key parameters

including the smoothing parameters, the step size and the Lagrange multipliers.

e Stage two: First, they applied a single smoothing technique on the dual problem
again, added a penalty term to the single smoothed dual problem, and decomposed
this augmented single smoothed dual problem into a pricing master problem and a
household scheduling subproblem. The penalty term was added to guarantee conver-
gence. Second, they solved the new master problem and subproblem iteratively with
the pre-computed smoothing parameters, the step size and the Lagrange multipliers
using the fast gradient algorithm for 60 iterations. The number of iterations in the

second step might be tuned in practice based on the problem instance.

A parameter used in the double smoothing technique required manual tuning to ensure
the double smoothed dual problem was as close to the original dual problem as possi-
ble. A couple of other parameters could be tuned to further reduce the gap between the
near-optimal solution and the optimal solution. Their method was tested on up to 2560
simulated households each of which had up to ten appliances on average. Their scheduling
horizon included 24 hourly time slots. The compared the results of their methods with
those of the centralised method (the Gurobi solver). They claimed that their method could

find a near-optimal solution that was on average less than 0.5% worse than the optimal
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solution. The optimal solution was found by the solver in three days and the near optimal
solution was found by the proposed method in 9 seconds (assuming all households solved
the subproblems in parallel at each iteration), although it is unclear that how much time
was needed to solve the master problem. Moreover, the smoothing parameters, the step
size and the Lagrange multipliers needed to be pre-computed in stage one to boost the
performance in stage two, which means those pre-computed parameters may not suit dif-
ferent problem instances and additional time was required to complete the whole solving

process besides those 60 iterations.

He et al. (2019) decomposed the DSP-MH using the primal decomposition. Households
were coordinated using the marginal cost of supplying electricity to all households as the
pricing signals. Different from other works which only ran the iterative process once at
the beginning of the day, this work employed a model predictive control (MPC) framework
that repeated the iterative process at every time interval, incorporating changes during
the day in near real time. The primal decomposition was applied to obtain the pricing
master problem and the household scheduling subproblem. The pricing master problem
simply updated the selling and purchasing prices. The household scheduling subproblem
was solved by a CPLEX solver. An additional penalty cost was added to the household
scheduling subproblem to achieve convergence. This penalty cost varied proportionably
to the number of iteration and inversely proportional to the demand of a household. A
penalty coefficient was included in the penalty cost that required manual tuning to guaran-
tee convergence. Different from other TPCMs, this method employed a MPC framework
where the iteration between the DRSP and households repeated at every time interval.
Only the decision for the next time interval would be carried out in practice. This way,
changes during the day, such as output from REGs and consumption requirements of
households, could be incorporated timely, balancing the demand and supply in real time.
Their method was tested on four households each of which had wind and PV generators,
a battery and eight appliances of various types. The scheduling horizon had 24 hourly
intervals. The outputs of REGs were predicted using the historical data of NSJs, wind
and PV generation collected and modified from Belgium’s transmission system. Similar
to (Li et al., 2011), they implemented the cooperative GTM proposed by (Mohsenian-Rad

et al., 2010) and compared the results of that method with the results of the GTM. Their
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method managed to converge in 12 iterations while the GTM converged after 44 iteration
in total (11 iterations per household).

Third-party entity (TPE) methods require minimum changes to the communication
networks as only pricing signals and demand profiles are exchanged between households
and the TPE, which already exists in places where smart meters are installed (see Ap-
pendix A.3 for details of smart meters). However, some existing works consider only the
aggregate demands of households and ignore all details of jobs. Other methods incorporate
details of jobs, however, require at least one parameter to be tuned manually to ensure
convergence. Otherwise, a method can converge prematurely to a sub-optimal solution or
lead to oscillation where no optimal solutions can be achieved. Moreover, the best values
of these parameters can vary from problem (instance) to problem (instance), making these

methods less general.

Analysis In summary, we have identified the following findings from our review of lit-

erature on distributed methods for DSPs:

o One-way coordination methods: Their methods move appliances in ways that benefit
households and the utility company, and avoid load synchronisation at a relatively
lower computation cost, however, they exhibit limitations in achieving optimality,

incorporating changes in demands or introducing coupling constraints on appliances.

e Interactive coordination methods: These methods find the best schedules for house-
holds without interventions from any third-party entity. However, they can be time-
consuming for a large population since only one household is allowed to reschedule
and broadcast at each iteration. Furthermore, these methods introduce large work-
loads on the communication networks as households broadcast information to all
others iteratively. Some works argue that sharing demand profiles with all other
households is a privacy concern to some consumers, therefore, these methods are
not considered as practical. An optimisation solver is required for each household

to schedule appliances.

e Third-party coordination methods: These methods find the best schedules for house-

holds with the help of a TPE. They are more scalable as each household can schedule
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appliances independently and simultaneously without interaction with other house-
holds. However, some existing works consider only the aggregate demands of house-
holds and ignore all the details of jobs. Other methods incorporate details of jobs,
however, convergence can be a challenge for these methods as at least one parame-
ter requires manual tuning to guarantee convergence. Moreover, the best values of
these parameters can vary from problem (instance) to problem (instance), making

the methods less general.

Moreover, when batteries are considered, existing works often assume the consumer de-

mands are fixed and known in advance, ignoring the flexibility in consumers’ energy needs.

2.3.4 Summary and Analysis

We summary our findings from the review of literature on demand scheduling problem

models and solving methods, and the key limitations and areas to extend as follows:

Problem Model

A typical DSP includes three essential elements: a household demand model, a pricing
model and objectives. The models of these elements vary across different research works.
A household demand model can include a job model, a battery model and/or other device
model such as an on-site generator model.

The simplest household job model is a fixed demand profile, or a variable demand
profile that can be adjusted over time. More advanced job models include a set of essential
attributes and non-coupling constraints. Complex job models have more attributes and
coupling constraints. The simplest battery model is a fixed model where attributes are all
fixed. More advanced battery models have variable attributes and even battery operation
or degradation costs. Generally, a demand scheduling problem for a single household (DSP-
SH) uses price forecasts instead of pricing functions where the price changes dynamically
with the demand in real time. The most common objectives are the electricity cost and
the inconvenience value. Sometimes, battery costs, the peak demand, the peak-to-average
ratio (PAR) and/or the operation and maintenance costs of on-site generators are also
included.

The DSP-MH model is developed based on the DSP-SH model. The household demand

model and objectives are the same as those in a DSP-SH, however, an additional constraint
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that limits the total demand of all households may be considered and the objective values
are calculated based on the total costs or the total demand profile of all households.
Moreover, the electricity price is generally calculated using a pricing function instead of

using a forecast. However, forecasts are still used in some works.

Both DSP-SHs and DSP-MHs (with or without batteries) can be continuous and linear,
or mixed-integer and non-linear depending on the design of the demand model, pricing

function and objective functions.

Solving Method

A significant amount of research has investigated the application of optimisation algo-
rithms to various DR problems under RTP (Deng, Yang, Chow and Chen, 2015; Vardakas

et al., 2015; Bayram and Ustun, 2017), however, there are limitations in existing works.

Many existing studies apply centralised methods to solve DSPs (Adika and Wang,
2014; Longe et al., 2017; Pooranian et al., 2018). However, these algorithms do not scale
well with the number of households (Van Den Briel et al., 2013; Zhang et al., 2015; Kou
et al., 2020), making them impractical for solving problems for hundreds and/or thousands

of consumers, such as the size of a major city suburb in Australia.

Some other works develop distributed methods that allocate computation cost into
each household and coordinate households in ways to flatten the total demand profile of
all households as much as possible (Mhanna et al., 2016; He et al., 2019). However, some
of these works assume demands or prices are fixed and known in advance (Vytelingum
et al., 2010; Atzeni et al., 2013; Worthmann et al., 2015), limiting the flexibility of their
methods. Some other works incorporate a dynamic pricing scheme and shiftable jobs in
their problems. However, they either require broadcasting information to all households
sequentially and iteratively (Mohsenian-Rad et al., 2010; Pilz et al., 2017), imposing extra
burdens on communication networks and limiting the scalability of their methods; or
manually tuning some parameters to ensure the optimal solutions will be reached (Yang
et al., 2015; He et al., 2019), making their methods not general to all problem instances.
Some studies prioritise scalability of their DR algorithms, however, sacrifice the optimality
of solutions, and consumer preferences and requirements (Manzoor et al., 2017; Hussain

et al., 2018). Table 2.7 summarises the strengths and weaknesses of these methods.
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Table 2.7: Strengths and weaknesses of existing works for solving demand scheduling
problem for multiple households with batteries

Method Strength Weakness
Centralised scheduling Optimal, feasible Do not scale well
One-way coordination Fast Near optimal, may not be feasible
Interactive coordination Optimal Time consuming for large

populations, privacy concern,
Large workloads on the
communication networks

Thirty-party coordination More scalable Convergence can be challenging,
manual parameter tuning is
required.

Limitations in Existing Works

Our review of literature on demand scheduling problems and solving methods have in-

formed us that the DSP-MHs are challenging to solve because:

C.1 The prices and demand schedules are coupled together: The optimal schedules of

households depend on the prices, and the prices are calculated based on the schedules.

C.2 The DSP-MHs are mixed-integer non-linear problems with coupling constraints and
multiple objectives when shiftable jobs are considered. These problems are NP-hard,

which means they very hard to solve especially at a large scale.

Many works did not address both challenges at the same time or only considered
particular aspects of the problems. For example, many works have assumed that the
prices or the demands are known and fixed in advance, missing the correlation between
the prices and the demands. Some other works exclude integer variables by modelling
the household demand as a demand profile or ignore coupling constraints, removing some
of the complexity. Some studies have addressed both challenges, however, they consider
only job scheduling or battery scheduling, and/or require manual parameter tuning or
information broadcasting to achieve convergence. Moreover, most studies schedule jobs
or batteries over a sparsely granulated time horizon, e.g. 24 hourly or 48 thirty-minute
periods, offering limited flexibility in scheduling.

In summary, none of the existing works has achieved all of the followings:

1. scheduling jobs with coupling constraints and batteries,
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2. balancing the cost of electricity supply, the energy need of consumers, the inconve-

nience to consumers and constraints on household appliances,

3. coordinating households using dynamic pricing without iterative and sequential in-

teractions among households,

4. requiring minimum parameter tuning to achieve convergence for any problem in-

stance,

5. is optimised for speed so that it can be used in real time to incorporate changes in

energy requirements and constraints during the day,

6. providing a finer granulated scheduling horizon and therefore more flexibility in

scheduling appliances.

In addition, very limited works have investigated the application of CP on DSPs while
CP has been shown to be effective and efficient for solving combinatorial problems such
as scheduling problems (see Appendix B.3.4 for more details). There are opportunities for
designing a new algorithm that will address all of the above challenges and limitations, and
investigating the impacts of incorporating CP into such an algorithm. These opportunities

constitute the work of this thesis.



Chapter 3

Problem Model

3.1 Introduction

This chapter presents the detailed model of the demand scheduling problem for multiple
households with batteries (DSP-MB) of this thesis. We introduce the scheduling and
pricing time horizon in Section 3.2, the household demand model including the job model
and the battery energy storage system (battery) model in Section 3.3, the pricing model
in Section 3.4, the objective function in Section 3.5 and the formal problem formulation

in Section 3.6.

3.2 Time Horizon

This thesis have chosen 144 ten-minute intervals per day for scheduling and 48 thirty-
minute periods for pricing. The ten-minute interval is shorter than the intervals chosen
in many existing works. We believe that a shorter interval provides more flexibility for
scheduling appliances. The thirty-minute periods are adopted to match the trading fre-
quency currently in the Australian electricity wholesale market. Let us write a period and

an interval as the following:
e m € [1,M]NZso: the index of an interval and M = 144,

e n € [1,N]NZ=p: the index of a period and N = 48.
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3.3 Household Demand

This thesis considers two types of demands: household jobs and batteries. The job model
is presented in Section 3.3.1, the battery model in Section 3.3.2 and the demand profiles

and limits in Section 3.3.3.

3.3.1 Household Job

This subsection presents the attributes and constraints for a job model. Detailed expla-

nations of each attribute and constraint are provided in Section 2.3.1 of Chapter 2.

Job Attribute

We have adopted shiftable appliances or jobs (see Definition 2.13 in Section 2.3.1 of Chap-
ter 2) including interruptible and non-interruptible ones, and modelled them with the

following attributes:

1. demand rate: a flat demand rate measured in KW

2. duration: the amount of time required from the start to finish, measured in the

number of scheduling interval

3. actual start time (AST): the actual start time

4. earliest start time (EST): the earliest time an appliance can start running

5. latest finish time (LFT): the latest time an appliance must finish running

6. preferred start time (PST): the time that a consumer prefers this appliance to start

7. care factor (CF): the level of inconvenience to a consumer rated by the consumer
when an appliance doesn’t start at its PST, ranging from 0 to 10 (0 meaning highly
satisfied to 10 highly dissatisfied)

8. predecessors: the device or the set of devices that must finish running before using

this appliance

9. maximum succeeding delay (MSD): the maximum amount time allowed after the

predecessors are finished before this appliance starts
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The best AST of each job is the decision variable that our demand scheduling method

needs to calculate. We denote a job with the followings:
e he[l,H]NZsp: the index of a household,
e d € [1,D4] N Zg: the index of a job inside the h*" household.
e ¢, 4 € Ryo: the power of a device in KW,
° tfbfﬁ;““o” € [1, M] N Zsg: the duration,
° thé"al_St“” € [1, M] N Zso: the actual scheduled start time (AST),
. tﬁfjfeweal*smrt € [1, M] N Zsq: the preferred start time (PST),
o tflf‘g””t*sm” € [1, M] N Zso: the earliest start time (EST),
o ty!7o I € [1 M) 1 Zs: the latest finish time (LFT),
. wZ‘fge_faCtor € [0,10] NR~q: the care factor (CF),
. hfjc € [1, Dp] N Zg: the index of job preceding the job with the index d,
o tz;x_delay N Z~go: the maximum succeeding delay (MSD).

In experiments, we assume that the EST, LFT, PST, CF, predecessors and MSD are
provided by consumers. In practice, these data can be learned from historical data using
machine learning methods (Siebert et al., 2017; Varghese et al., 2018; Jiang et al., 2019;
Sharda et al., 2021). The care factor indicates the flexibility of a job where 0 means this
job has full flexiblity can be scheduled to any time within the operation window and 10
means this job is the least flexible. The MSD for a job can be zero if this job has no
preceding job.

Note that power flexible appliances are excluded from this thesis because they com-
monly refer to thermal appliances that are very hard to model. Their models depend on
the design of the appliances and factors vary from household to household, such as the
the structure of the house, the total mass of air inside the house, the behaviour of its
occupiers and so on. Moreover, the data for supporting such modelling is very difficult to
get if available. Most importantly, the absence of PF appliances do not affect the design
of algorithms developed in this thesis. Therefore, we have decided not the include them

in this thesis but in the future work instead.
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Job constraint
For each household h, we have adopted the following constraints for each job:

e Scheduling Time Constraint A job d of any household A must run after its EST

tzagli“t_smrt and finish before its LFT tilaff“_f miSh, which is described as follows:

earliest—start actual—start latest— finish duration
\V/h, Vd € [1, Dh] ﬂ Z>0, th,d S th,d S th7d - th,d + ].

(3.1)

o Precedence Constraint and Preceding Delay Constraint If a job d has a preceding
job pﬁrsc, this job must run after the preceding job is finished and the delay between
these two jobs must be smaller than the MSD t?gz_dday. The sequential and MSD

constraints can be described as follows:

= ol (32)

Vh, Vd € [1, D] N Zso, (3.3)

earliest—start duration actual—start actual—start duration maz—delay
5 + th — 1<ty < 15 + — 141

(3.4)

The scheduling time constraint is non-coupling as it involves one job only. The precedence
constraint and the preceding delay constraint are coupling as they involve multiple jobs.
More explanations of these constraints are provided in Section 2.3.1 of Chapter 2.

3.3.2 Household Battery

This subsection presents the attributes and constraints of a battery model. Detailed
explanations of each attribute and constraint are provided in Section 2.3.1 of Chapter 2.
Battery Attribute

We model a battery using a fixed model with a fixed maximum capacity (in kW), a fixed

maximum charge or discharge rate (in kW/h), a fixed round-trip efficiency and a linear
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state-of-charge (SOC) function. The charge rate and the discharge rate are assumed to be
same. As a simplified assumption, we do not consider variable models in this thesis.
This thesis assumes that each household can have at most one battery. Let us write

the battery of the h" household as follows:

bE2?": the maximum power rate (charge or discharge rate),

biP: the maximum capacity,

np: the round-trip efficiency,

b7°¢ . the SOC at the mt" time period.

Additionally, we define a battery profile as the following:

Definition 3.1. A battery charge/discharge profile includes the amount of electricity

charged/discharged at each time period of the day.

Definition 3.2. A battery activity profile is the sum of the charge and the discharge

profiles of a battery.

We write these battery profiles as the following:

e bl = {b;[m | m € [1, M] N Zsp}: the charge profile, where b;m is the amount of

electricity charged at the m*" period,

e b, ={b,,, | mel[l,M]NZso}: the discharge profile, where b, is the amount of

electricity discharged at the m!" period.
o by = {b},, | m € [1, M]NZxo}: the battery activity profile, where b = = by by .
The best charge and discharge profiles of each battery are the other decision variables that
our demand scheduling method needs to compute.

Battery Constraint

For each household h, the battery is limited by the following constraints:

e Charge and discharge constraints: require the battery to either charge or discharge
below the maximum power rate at any time, which are written as Equation 3.5 and

Equation 3.6.
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Vm € [1, M] N Zsg, 0 <bf <0 (3.5)
Vm € [1,M]NZsy, — b < Dy <0 (3.6)
vm € [1, M] N Zso, by, X by =0 (3.7)

e Capacity constraint: requires a battery to maintain its energy level below the max-

imum capacity at all times, which is written as Equation 3.8.

Vm € [1,M] N Zso, 0 < b, < by (3.8)

e SOC constraints: describe the change of energy level over time, which are written

as Equation 3.9 and Equation 3.10.

Vm € [2, M] N Zso, byl = biom—1 + by -1+ 1 (3.9)
bi‘:cl = b‘;l?CM + b;’M + b};M (3.10)

These constraints are non-coupling as they involve individual batteries only. More expla-

nations of these constraints are provided in Section 2.3.1 of Chapter 2.

3.3.3 Demand Profile and Limit

This subsection defines the battery profiles, demand profiles and demand limit constraints

defined in this thesis.

Demand Profile

We define a demand profile as the following;:

Definition 3.3. A demand profile is a set of demands at at every interval/period.

We write a demand profile as the following;:
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. liosfs = {lios;f | m € [1, M]NZso}: the demand profile of job d at the granularity

ljob—s h

of scheduling intervals, where I;", ° = ej 4 means the job is running at the m?

scheduling interval and lios:j = 0 otherwise.

o lpousems — fhouse=s |y ¢ [ M] N Zso}: the demand profile of a household h

h,m

without batteries at the granularity of M scheduling intervals, where lzonlisefs is the

total demand of jobs at the m!”" scheduling interval and calculated as follows:

Dy,
Vh, VYm, ZZ,O;;S@_S _ Z{eh,d if tzﬁtfual—start <m< tzf:flual—start_i_t%gatzon_1} (311)
d=1

lzouse_b“tte’"y_s = {lzonise—battery_s | m € [1,M] N Zso}: the demand profile of a

household A with batteries at the granularity of M scheduling intervals, where

lhouse—battery—s
h,m

is the total demand of jobs and the battery at the m!” scheduling

interval and calculated as follows:

Vh, m, ponseT YT = b 4 by X LR (3.12)

hym m

o 1/0USCTP — (JIOUSCTP |y ¢ [1, N] N Zso}: the demand profile of a household A at the

granularity of N pricing periods, where l;ﬁ?se*p is the total demand of all jobs at

the n'* pricing period and calculated as follows:

nx3
Vh, Vn, [00eTP =y housers (3.13)
m=nx3—2

o Lfotal=s — [ptotal=s | 1y ¢ [1, M]NZ0}: the demand profile of all households, where
Ltotal=s ig the total demand of all households at the m!" scheduling interval and
calculated as follows:

h,m

H
\V/’ITL, L;oltal—s — Z lhousefs (314)
h=1

o Lictal=p — {Lfo'=P | 1 ¢ [1 NN Zso}: the demand profile of a household h at the
granularity of N pricing period, where Li%1=P g the total demand of all households

at the n'" period and calculated as follows:
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nx3
Vn, Liger = " Lol (3.15)

m=nx3—2

Demand Limit and Constraint

We denote the demand limit for every household h at any time as E}’l‘ouse and the total

demand limit for all households as E%  These constraints are written as follows:

o Household demand limit constraint: The total demand of household A at time inter-

lzo,zse_batt”y_s with batteries cannot exceed the

val m: l,}igffe—s without batteries or

given demand limit E;quse’ which is described as Equation 3.16.

Vm € [1, M] N Zsg, 1100678 op (rovsebattery=s < phouse (3.16)

o Area demand limit constraint: The total demand of all households at any time
interval m cannot exceed the given demand limit £ which is described as Equa-

tion 3.17.

h,m h,m

H H
¥m € [1, M] N Zsg, Y Ipouse=s op Y ppousertattery=s < potal (3.17)
h=1 h=1

These constraints are coupling as they involve all jobs and batteries of one or all households.

More explanations of these constraints are provided in Section 2.3.1 of Chapter 2.

3.4 Electricity Pricing

This thesis has adopted the real-time pricing (RTP) to incentivise consumers to shift

demand. Two different models are used for single households and multiple households.
e For single households: we have adopted the day-ahead prices.

e For multiple households: we have adopted a pricing function to calculate the price

based on the total consumption of all households.

Existing works often use a generic quadratic function to calculate the prices for multiple
households based on the total demand. In this thesis, we have designed a pricing table
created from bid stacks used by the Australian Electricity Market Operator (AEMO) to

calculate the actual prices of electricity in real time.
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3.4.1 Bid Stack

A bid stack is a table that includes generation capacities of participating power generators,
prices they ask for, the actual generation of each dispatched generator and the cumulative
generation of all dispatched generators. Details of a bid stack and the dispatch order are

explained in Appendix A.2.2. An example of such bid stacks is provided in Table 3.1.

Table 3.1: An example of the bid stack

Fuel Type Price Quantity Dispatched Cumulative
($/MWh) (MW) (MW) Generation (MW)
Wind -1000 159 45 45
Wind -1000 130 114 159
Gas 65.69 138 138 1762
Gas 79.99 100 55 1817
Gas 79.99 100 54 1871

3.4.2 Pricing Table

We have designed our pricing table based on such bid stacks. This pricing table includes
a list of consumption levels that approximates the cumulative generation, and a price
level for each consumption level that approximates the dispatch price. Similar to a bid
stack, the price level and the marginal cost increase with the consumption level, which
can be understood as when the consumption exceeds another consumption level, a more-
expensive-fuel fired generator is required and therefore the marginal cost and the price
have to increase. Moreover, we allow each time period to have a pricing table with a
different set of consumption levels to better simulate the fact that the generators dispatch
in each time period can vary over time. An example of such a pricing table for one time
period is illustrated in Table 3.2 and Figure 3.1.

This pricing function is essentially a strictly increasing step function. The electricity
cost calculated using this pricing function is piece-wise linear. When setting the price for
a pricing period with this table, a algorithm would calculate the total consumption of all
households in that period, find the lowest consumption level that is higher than the total
consumption and use the price level for that consumption level as the price for households
in that period.

Let us write the pricing table at the n'® period as R,(-) = {(rleve, eif’fl) | k €

n,

[1,K,]NZso}:
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Table 3.2: An example of the pricing table for a pricing period

Level 1 2 3 4 5 6 7 8
Price (cent/KWh) 14.0 14.1 14.2 14.3 14.4 14.5 14.6 14.8
Consumption (KWh) 102.31 104.32 108.33 112.34 114.35 118.36 122.37 126.38
Level 9 10 11 12 13 14 15 16
Price (cent/KWh) 15.1 15.4 15.8 16.3 17 17.8 18.9 20.3
Consumption (KWh)  128.39 132.4 136.41 138.42 142.43 146.44 148.45 152.46
Level 17 18 19 20 21 22 23 24
Price (cent/KWh) 22.1 24.5 27.5 31.3 36.3 42.7 50.9 61.6
Consumption (KWh) 156.47 160.49 162.49 166.5 170.52 172.52 176.53 180.55
Level 25 26 27 28 29 30

Price (cent/KWh) 75.2 92.8 115.5 144.6 182.1 230.4

Consumption (KWh) 182.55 186.56 190.58 194.59 196.59  200.61

Electricity Supply Curve

164

114

PRICE (CENT)

64

14
100 120 140 160 180 200 220

DEMAND (KW)

Figure 3.1: An example of the pricing function

° rff};e’ : the k" price level in period n,

level . th : : :
enef;f : the k' consumption level in period n,

e ke [l,K,)NZsp : the index of a price or consumption level in period n.

K, : the total number of levels in period n.

The pricing function at the n” period: 7, can be written as Equation 3.18.

level : total—p level
(A if L, < €

Tn = riz%el, if elrillffl_l <Lyr < Glrilléel (3.18)

level : total—p level
T o if Ly, > ek,
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Note that, we use the prices given by this table as the prices that consumers pay
for in the algorithms and experiments. However, the design of such a pricing table is a
complicated economic problem that is not investigated in details by this research. The
future work could improve the design of pricing tables so that they indeed reflects the true
value of electricity in the market. Moreover, in practice, these prices can also be seen as
pricing signals that coordinate the demand scheduling of households instead of the actual

prices that consumers receive.

3.4.3 Implicit Area Demand Limit Constraint

The design of our pricing table allows us to incorporate the area demand limit constraint
implicitly by adding an extra consumption level that is the same as this demand limit and
assigning a extremely high price for this consumption level. This way, the demand schedul-
ing method will automatically satisfy this constraint by avoiding this very high price, thus
reducing the problem complexity without changing the original problem. Moreover, this
design allows us to convert this area demand limit constraint into a soft constraint, which
means the violation of this constraint will incur an extremely high cost and a solution will

still be found. Otherwise, no solution will be found if this constraint is violated.

3.5 Objective

We have adopted the widely used costs or cost-like measurements in the literature: the

monetary cost and the inconvenience cost.

3.5.1 Monetary Cost

We compute the supply cost for electricity providers using a piecewise linear function

derived from the pricing table proposed in Section 3.4.2 as follows:

rlevel x L7 5 24/ N, if L' 7P x 24/ N < eleyel
total A —
e =y x elenel plevel o (LIPITP 5 94 N — elevel )

+ 3 I o x (e = e i), if Ly x 24/N > )t

(3.19)
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N
Ctotul _ Z C;otal (3'20)
n=1

We calculate the consumption cost for a consumer using the household demand profile
and the prices offered by the electricity provider. Let us write C"°"*¢ as the cost of the
household A and 7, as the price of the pricing period n. The cost for a consumer or

household A is defined as follows:

N
Chouse =N “{ry, x [P} x 24/N (3.21)
n=1
The price of each scheduling interval is essentially the largest gradient of the supply

cost in that interval.

3.5.2 Inconvenience Cost

We have chosen to model the inconvenience cost for a job as a linear function that increases
with the difference between the PST and actual start time of that job. We believe a linear
function provides sufficient flexibility for distributing some peak demand to other times
of the day. Moreover, we have introduced a care factor for each job (see Section 2.3.2) to
indicate the scale of inconvenience that occurs to the consumer when a job is scheduled

away from its PST. Let us write:

. ui?sz the inconvenience cost of the d** job in the A*"* household,
° U}’Zw“se: the total inconvenience cost of the h*" household,
e Ul the overall inconvenience cost of all households.
The inconvenience costs of a job and a household are calculated as the followings:

job __ |;preferred—start actual—start care— factor
Up,da = |th,d - th X Wy, 4 (322)

Dy,
Upense = "l (3.23)
d=1
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3.5.3 Cost Combination

We combine two types of costs together using the weighted sum approach. The details of

this approach are provided in Appendix B.2.1. Let us write:

e )% the weight of the consumption cost,

e \“: the weight of the inconvenience cost.

The new combined cost function is written as:

f _ )\cCtotal + AuUtotal (324)

3.6 Problem Formulation

The formal formulation of a demand scheduling problem for a single household (DSP-SH)

can be written as follows:

minimise f= )\Cchouse + AUU}fZLouse
subject to  (3.1), (3.3), (3.5), (3.6), (3.7), (3.8), (3.9), (3.10), (3.25)
(3.16)

The formal formulation of a demand scheduling problem for multiple households with

batteries (DSP-MB) can be written as follows:

minimise f — )\cCtotal + )\uUtotal
subject to  (3.1), (3.3), (3.5), (3.6), (3.7), (3.8), (3.9), (3.10), (3.26)

(3.16), (3.17).

The decision variables include the best start time of each job tzcé“al_swrt

and the charge
and discharge profiles b;Lr and b, of the battery in each household h. The constraints of
jobs are (3.1) and (3.3). The constraints of batteries are (3.5) , (3.6) , (3.7) , (3.8) , (3.9)
and (3.10). The demand limit constraints of every household and all households are
(3.16) and (3.17), respectively. The demand scheduling problem for multiple households
with batteries (DSP-MB) is a mixed-integer non-linear optimisation problem as the start

times are discrete, the charge and discharge profiles are continuous, the constraints are all



74 CHAPTER 3. PROBLEM MODEL

linear, the supply cost function is increasing piece-wise linear and the inconvenience value

function is linear.

3.7 Summary

This chapter presents our models for household jobs and batteries which compose of the
household demand. We also introduce our method for developing a new pricing function
as a step function that is derived from the bid stacks used by Australian Electricity Market
Operator (AEMO). Then we present the objective functions and the formal formulation

for our demand scheduling problems (DSPs), which will be investigated in later chapters.



Chapter 4

Frank-Wolfe-Based Distributed
Demand Scheduling Method

4.1 Introduction

This chapter presents the method we proposed for solving the demand scheduling prob-
lems (DSPs) introduced in Chapter 3. We call our proposed method Frank-Wolfe-based
distributed demand scheduling method (FW-DDSM). First, this method decomposes the
original demand scheduling problem for multiple households with batteries (DSP-MB) into
two subproblems: a household subproblem and a pricing master problem. The household
subproblem is solved by two optimisation models that schedule jobs and the battery energy
storage system (battery) for each household independently. The pricing master problem
is solved by the Frank-Wolfe algorithm, which is also known as the conditional gradient
descent method. Second, these two problems are solved in a distributed and iterative man-
ner until convergence. The convergence is guaranteed by the Frank-Wolfe algorithm and
minimum parameter tuning is required. Third, once converged, the intermediate results
calculated during the iterative process are used to construct a probability distribution for
choosing the actual schedules of households.

The details of the decomposition and the iterative framework are presented in Sec-
tion 4.2, the optimisation models for solving the household subproblem are introduced in
Section 4.3, the Frank-Wolfe algorithm for solving the pricing master problem is explained
in Section 4.4 and the steps for calculating the probability distribution and finalising the

actual schedules for households are described in Section 4.5.
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4.2 Decomposition

4.2.1 Primal Decomposition

Our FW-DDSM applies the primal decomposition to divide our DSP-MB into two sub-
problems: a household subproblem and a pricing master problem. The pricing master
problem involves summing the demand profiles of all households, setting the price per
period using the pricing table based on the total demand profiles of households, and min-
imising the total supply cost and the inconvenience cost of all households. This problem
is solved by an aggregator or a demand response service provider (DRSP). The household
scheduling subproblem involves scheduling jobs and a battery in ways that minimise its
electricity cost and the inconvenience value against the prices given by the DRSP. The
pricing master problem and the household scheduling subproblem are then solved in an

iterative way until convergence.

The primal decomposition we have adopted is different from the dual decomposition
that is commonly used in the literature. The dual decomposition is best for optimisation
problems with coupling constraints (or complicating constraints as called in the optimi-
sation literature) whereas the primal decomposition is best for problems with coupling
variables or complicating variables. In order to solve problems with complicating vari-
ables using the dual decomposition, we need to firstly modify the original problem by
converting the complicating variables into coupling constraints, secondly transform the
modified problem into its dual problem, thirdly decompose the dual problem into sub-
problems and fourthly solve the subproblems in an iterative fashion. However, when using
the primal decomposition, we can decompose the problem based on complicating and non-
complicating variables straight-away without any problem transformation. More detailed
explanations of the complicating constraints and variables, and decomposition methods

are provided in Appendix B.3.6.

The decision variables (the best start times of jobs, and the charge and discharge pro-
files of batteries) are the complicating variables of our DSP-MB, because they are involved
in the objective function (they are used for calculating the demand profiles which are then
used for calculating the prices and the supply cost, and the total inconvenience value of all
households in the objective function). Although our DSP-MB has coupling constraints,

most of these constraints are applied to individual households except for the area demand
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limit constraint which is applied to all households. As discussed in Section 3.4.3 of Chap-
ter 3, the area demand limit constraint can be satisfied implicitly by the pricing table. This
way, our DSP-MB can be considered as an optimisation problem with coupling variables
on the household level. Therefore, applying the primal decomposition on the household

level, which is more straightforward and efficient.

4.2.2 Iteration

We solve the pricing master problem and the household scheduling subproblem iteratively

as follows:

Initialisation: Households schedule jobs at their preferred start times (PSTs) and

send the resulting demand profiles to the DRSP.

e Pricing: Upon receiving the household demand profiles, the DRSP solves the pricing

master problem and sends prices to households.

e Rescheduling: After receiving the prices, households solve the scheduling subprob-

lems and send the resulting optimal demand profiles to the DRSP again.

e [teration: Repeats the pricing step and the rescheduling step until convergence.

The iterations are showed in Figure 4.1. The details of each subproblem are presented in

the following sections.

Convergence conditions We consider the convergence is reached when the objective
value (the total consumption cost and the total inconvenience value of all households)
calculated by the pricing master problem does not change, or change within a very small

range (e.g. 0.01), in any two consecutive iterations.

4.3 Household Subproblem

The household subproblem is responsible for finding the best schedules for jobs and the
battery of each household, such that the costs of the consumer are minimised. In the
iterative framework of our FW-DDSM, each household receives prices from the DRSP and

schedules its demand against those prices. This subproblem is equivalent to the demand
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Figure 4.1: Iterations of the Frank-Wolfe-based distributed demand scheduling method

scheduling problem for a single battery (DSP-SB) we have discussed in Section 2.3.2 of
Chapter 2.

These days, our homes are becoming smarter. Recently developed appliances have
the capabilities of being monitored and controlled through wireless networks at any where
and any time. Consumers can install smart scheduling algorithms on a computation
machine that has the ability to communicate with smart appliances through the Internet.
Consumers can express their consumption preferences or requirements to this machine
using some interface. This machine can convert these preferences and requirements into
constraints for the household subproblem, collect the pricing information from the DRSP
through the Internet, calculate the best feasible schedule for their smart appliances using
the scheduling algorithms, and dispatch the control commands to the smart appliances
accordingly. Details of such smart homes can be found in Appendix A.3.2. Our solution
to the household subproblem can be installed on such a computation machine to compute

the best schedules and take advantages of the advanced features of smart appliances.

4.3.1 Subproblem Model

The decision variables of this problem are the start time of each job tzc;"alfst”t and the
charge and discharge profiles of the battery b; and b,". The constraints of jobs and the
battery have been defined in Equation (3.1) — (3.16) in Section 3.3 of Chapter 3. The
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objective function includes the consumption cost and the inconvenience cost defined as

Equation (3.21) and Equation (3.23) in Section 3.5.

4.3.2 Subproblem Solving Method

We solve the household scheduling subproblem in two steps. First, we schedule the jobs
against the prices to minimise the consumption cost and the inconvenience value of this
household, and calculate the optimised demand profile of this household (the aggregate
demand of jobs per scheduling interval when the jobs start at their best start times).
Second, we schedule the battery given the optimised demand profile to further flatten the
demand profile of this household.

Note that, since the scheduling of jobs and batteries are independent at each iteration
(both jobs and the battery are scheduled against the same prices and the households do
not update prices based on their schedules), scheduling the battery after jobs does not
affect the feasibility nor the optimality of the job schedule. Moreover, scheduling the
battery given the optimised demand profile of jobs can only further improve the objective

value of this household.

Job Scheduling Module

In Section 2.3.3, we have discussed three types of techniques for scheduling jobs in a
demand scheduling problem for a single household (DSP-SH): mixed-integer programming
(MIP), constraint programming (CP) and heuristic methods. Since few exiting works, if
any, has compared the optimality and efficiency of these methods, in order to select the
most efficient method, this research is interested in developing three types of methods for
scheduling jobs of a household with these techniques, and comparing their performances.
Moreover, we will investigate the impacts of using each of these methods on the solutions

to our DSP-MB in Chapter 5.

MIP Optimisation Model First, we have developed a MIP model for scheduling jobs

of a household, depicted in Figure 4.2. This model includes the following elements:

o Model input parameters: We declare the problem parameters from line 3- 27: the
number of time intervals per day (line 4), the number of time intervals per hour

(line 6), the price per time interval (line 8), the number of jobs (line 10), the PSTs
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of all jobs (line 12), the earliest start times (ESTs) (line 13), the latest finish times
(LFTs) (line 14), the durations (line 15), the consumption per interval (line 16),
the care factors (CFs) (line 17), the weight of the inconvenience cost (line 18), the
weight of the electricity cost (line 19), the total number of jobs that have precedences
(line 21), the indices of the preceding jobs (line 23), the index of succeeding job for
each preceding job (line 24) and the maximum succeeding delays (MSDs) between

the preceding and the succeeding jobs (line 25).

e Decisions: We define the decision variables in lines 30-34. The set of variables
actual_starts represent the time interval at which each job is scheduled. For
instance, actual_start[i, 3] = 1 means that the job i is scheduled at the 37¢
time interval while actual_start[i, 4] = 1 means that this job is not scheduled
at the 4*" time interval. The second set of variables, run_costs (line 34), represents
the objective value (including the electricity cost and discomfort) of scheduling each

job at each feasible time interval.

e (Constraints: The constraints are listed from line 37-50. First, we ensure each job
is scheduled after its EST and will be finished before its LET (line 40). Second,
we define the succeeding orders for jobs that have precedences (line 47). Third, we
impose the demand limit constraint stating the scheduled jobs must not exceed the

demand limit (line 50).

e Objective: we state the objective (line 54 and line 55).

CP Optimisation Model Second, we have developed a CP model for scheduling jobs
of a household, depicted in Figure 4.3. This CP model is similar to the MIP model except

for the following elements:

e Decisions: While it is more efficient for a MIP model to use binary values as decision
variables, it is better for a CP model to use feasible values instead. Consequently,
we define the decision variable actual_starts as an array where each element rep-
resents the actual start time of a job, instead of a matrix where each element rep-
resents if a job is scheduled at a time interval as in the MIP model. For instance,

actual_start[i] = 3 means that the job i is scheduled at the 3rd time interval.
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Figure 4.2: MIP model for scheduling jobs of a household
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YA S input parameters -—-—----—-—--- A

int: num_intervals;
int: num_intervals_hour;
set of int: INTERVALS = 1..num_intervals;

array [INTERVALS] of int: prices;

int: num_jobs;

set of int: JOBS = 1..num_jobs;

array [JOBS] of int: preferred_starts;
array [JOBS] of int: earliest_starts;
array [JOBS] of int: latest_ends;
array [JOBS] of int: durations;

array [JOBS] of int: consumptions;
array [JOBS] of int: care_factors;
int: inconvenience_weight;

int: cost_weight;

int: num_precedences;

set of int: PREC = 1..num_precedences;
array [PREC] of JOBS: predecessors;
array [PREC] of JOBS: successors;

array [PREC] of int: prec_delays;

int: max_demand;

4 —-———————- Decision variables ---------- A

array [JOBS, INTERVALS] of var 0..1: actual_starts;

array [JOBS, INTERVALS] of int: run_costs = array2d(JOBS,INTERVALS, [

care_factors[d] * abs(s - 1 - preferred_starts[d]) * inconvenience_weight *
num_intervals_hour +

sum (t in s..min(s + durations[d] - 1, no_intervals)) (prices[t] * consumptions

[d]) * cost_weight | d in JOBS, s in INTERVALS]);
f —ecsssssss Constraints —-----—---—- %

constraint forall (d in JOBS) (

earliest_starts[d] + 1 <= sum(s in INTERVALS) C(actual_starts[d,s] * s)
/\ sum(s in INTERVALS) (actual_starts([d,s] * s) + durations[d] - 1 <=
latest_ends[d] + 1);

constraint forall (p in PREC) (
let {JOBS: pre = predecessors[p]l ;

JOBS: succ = successors[p] ;

int: d = prec_delays[pl; } in
sum(s in INTERVALS) (actual_starts[pre,s] * s) + durations[pre] <= sum(s in
INTERVALS) (actual_starts[succ,s] * s)
/\ sum(s in INTERVALS) (actual_starts[succ,s] * s) <= sum(s in INTERVALS) (
actual_starts[pre,s] * s) + durations[pre]l + d);

constraint forall (s in INTERVALS)
(sum(d in JOBS) (actual_starts[d, s] * consumptions[d]) <= max_demand);

74 SIS eSs oS Objective and search ---------- 4
var int: obj= sum (d in JOBS, s in INTERVALS)
(run_costs[d, s] * actual_starts[d, s]);

solve minimize obj;
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e Constraints: A major advantage of CP methods is the use of global constraints.
More explanations of global constraints are provided in Appendix B.3.4. We take
advantage of this benefit by calling the global constraint library (line 1) and replac-
ing the demand limit constraint in the MIP model with a global constraint called
cumulative (line 50) to ensure the accumulated demand is below the household

demand limit at any time interval.

e Search and reasoning strategies: As CP methods reply on search and inference rea-
soning to eliminate infeasible and suboptimal values, choosing which variable to
search and which value to reason next is important for the efficiency of a CP solver.
Users can choose such variable selection strategies and value choice strategies for
a solver to improve its solving time. Common strategies are listed in Table 4.1.
Detailed explanations of these strategies can be found at the MiniZinc. Hand-
book (Stuckey et al., 2018). This CP model uses the first fail and indomain mazx
strategies (line 54). Section ?? will implement more strategy combinations and

compare their performances.

Table 4.1: Commonly used value choice strategies and selection strategies for CP solvers

Value Choice Strategy Variable Selection Strateg
input_order most_constrained indomain_min indomain_max
first_fail anti_first_fail indomain_random indomain
smallest largest indomain _split indomain_reverse_split

Note that we have declared all decision variables as integers although in practice prices
and consumptions are floating point numbers. We have multiplied all prices and con-
sumptions by 100 to transform them into integers because CP solvers are most efficient
for integer variables. A sample data file used for both the MIP model and the CP model

is presented in Appendix C.1.

Data Preprocessing Third, we have noticed that the cost of starting each job at each
time interval is independent of any constraints. We can develop a preprocessing algorithm
to pre-computes the run_costs and even eliminate some constraints and parameters in
the model by incorporating them into the precomputed run_costs. For example, we can

incorporate the scheduling time constraints into the run_costs by setting an extremely
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Figure 4.3: CP model for scheduling jobs of a household
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include "globals.mzn";
f eecsssssss input parameters ---------- 74

int: num_intervals;
int: num_intervals_hour;
set of int: INTERVALS = 1..num_intervals;

array [INTERVALS] of int: prices;

int: num_jobs;

set of int: JOBS = 1..num_jobs;

array [JOBS] of int: preferred_starts;
array [JOBS] of int: earliest_starts;
array [JOBS] of int: latest_ends;
array [JOBS] of int: durations;

array [JOBS] of int: consumptions;
array [JOBS] of int: care_factors;
int: inconvenience_weight;

int: cost_weight;

int: num_precedences;

set of int: PREC = 1..num_precedences;
array [PREC] of JOBS: predecessors;
array [PREC] of JOBS: successors;

array [PREC] of int: prec_delays;

int: max_demand;
7 cocoommoos Deeiésdton VePEabies —==sss=o0s %

array [JOBS] of var INTERVALS: actual_starts;
array [JOBS, INTERVALS] of int: run_costs = array2d(JOBS,INTERVALS, [

care_factors[d] * abs(s - 1 - preferred_starts[d]) * inconvenience_weight *
num_intervals_hour+
sum (t in s..min(s + durations[d] - 1, num_intervals)) (prices[t] x*

consumptions [d]) * cost_weight | d in JOBS, s in INTERVALS]);
Jommmmm Con8tradntg ———-oo=—ooo 4

constraint forall (d in JOBS) (
earliest_starts[d] + 1 <= actual_starts[d]
/\ actual_starts[d] + durations[d] - 1 <= latest_ends[d] + 1);

constraint forall (p in PREC) (
let {JOBS: pre = predecessors[p] ;
JOBS: succ = successors[p] ;
int: d = prec_delays([pl; } in
actual_starts [pre] + durations[pre] <= actual_starts[succ]
/\ actual_starts[succ] <= actual_starts[pre]l + durations[prel + d);

constraint cumulative(actual_starts, durations, consumptions, max_demand);

h —occomomos Objective and search ---------- 4
var int: obj= sum (d in JOBS) (run_costs[d, actual_starts[d]]);
solve :: int_search(actual_starts, first_fail, indomain_max, complete)

minimize obj;
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high cost for starting a job outside its feasible time intervals. This way, we can further re-
duce the computation time of the model. This preprocessing algorithm is straight forward.
We have included the pseudo code in Appendix 4.

The modified MIP model and CP model used with the preprocessing algorithm are
depicted in Figure 4.4 and Figure 4.5, respectively. These modified models do not require
the ESTs, PSTs, LFTs and CFs parameters. Instead, a new parameter run_costs is used.
However, in the modified MIP model, an additional constraint is required to ensure that
only one start time is selected for each job (line 33). An example of the input data file for

both modified models is provided in Appendix C.2

Optimistic Greedy Search Algorithm Fourth, we have developed a heuristic algo-
rithm based on the greedy algorithm. We call this algorithm the Optimistic Greedy Search
Algorithm (OGSA). Similar to the modified models, this algorithm is used after the run
costs are calculated by the data preprocessing algorithm. The OGSA schedules each job

independently in the following steps:

1. Find the time intervals that satisfy the scheduling time constraints, and the prece-
dence constraint and the preceding delay constraint if a predecessor exists for this

job. This set of intervals is called the feasible interval set.

2. Select the time intervals from the feasible interval set that have the lowest run costs

(precomputed by the data-preprocessing algorithm).

3. Choose a cheapest time interval as the actual start time and calculate the maximum

demand of the household.
4. Check if the maximum demand exceeds the limit:

(a) if no, the chosen interval is the final actual start time.

(b) if yes and the feasible interval set is not empty, remove this interval from the

feasible interval set and go back to Step 2.

(c) if yes and the feasible interval set is empty, choose the removed time interval

that exceeds the limit the least as the final actual start time.

The pseudo code of this algorithm is presented at Appendix 5.
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Battery Scheduling Module

The battery scheduling method is responsible for finding the best time to charge and
discharge a battery given the prices and the demand profile of a household after its jobs
have been scheduled. Different from the job scheduling problem, we use minimisation
of the consumption cost, the maximum demand and the peak-to-average ratio (PAR) of
the household demand profile as the objective, because inconvenience is not applicable to

batteries and we want to flatten the demand profile to the lowest. We have observed from

Figure 4.4: Modified MIP model for scheduling jobs of a household

74 SO input parameters -—-—-----—--- A

int: num_intervals;
set of int: INTERVALS = 1..num_intervals;

int: num_jobs;

set of int: JOBS = 1..num_jobs;
array [JOBS] of int: durations;
array [JOBS] of int: consumptions;

int: num_precedences;

set of int: PREC = 1..num_precedences;
array [PREC] of JOBS: predecessors;
array [PREC] of JOBS: successors;

array [PREC] of int: prec_delays;

int: max_demand;

array [JOBS, INTERVALS] of int: run_costs;

f ==ms=s=sos Decision variables ---------- Z
array [JOBS, INTERVALS] of var 0..1: actual_starts;
p coosesosos Objeetives =ceceocoos= V4

var int: obj= sum (d in JOBS, s in INTERVALS)
(run_costs[d, s] * actual_starts[d, s]);

f eecmssssss Constraints —-———-—————- 2

constraint forall (p in PREC) (
let {JOBS: pre = predecessorsl[p] ;

JOBS: succ = successors[p] ;

int: d = prec_delays([pl; } in
sum(s in INTERVALS) (actual_starts[pre,s] * s) + durations[pre] <= sum(s in
INTERVALS) (actual_starts[succ,s] * s)
/\ sum(s in INTERVALS) (actual_starts[succ,s] * s) <= sum(s in INTERVALS) (
actual_starts[pre,s] * s) + durations[pre] + d);

constraint forall (s in INTERVALS)
(sum(d in JOBS) (actual_starts[d, s] * consumptions[d]) <= max_demand);

YA SO S T E Objective and search ---------- %
solve minimize obj;
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Figure 4.5: Modified CP model for scheduling jobs of a household

include "globals.mzn";
f —=======-- input parameters -—-—-—-—-—----- A

int: num_intervals;
set of int: INTERVALS = 1..num_intervals;

int: num_jobs;

set of int: JOBS = 1..num_jobs;
array [JOBS] of int: durations;
array [JOBS] of int: consumptions;

int: num_precedences;

set of int: PREC = 1..num_precedences;
array [PREC] of JOBS: predecessors;
array [PREC] of JOBS: successors;

array [PREC] of int: prec_delays;

int: max_demand;

array [JOBS, INTERVALS] of int: run_costs;

f coccccosos Decision wariables ---------- A
array [JOBS] of var INTERVALS: actual_starts;

f emccssssss Objectives —-————————- %
var int: obj= sum (d in JOBS) (run_costs[d, actual_starts[d]l]);

VAN Comstravsnts —=——-=-==——-— A

constraint forall (p in PREC) (
let {JOBS: pre = predecessors[p] ;
JOBS: succ = successorsl[p]l ;
int: d = prec_delays([pl; } in
actual_starts[pre] + durations[pre] <= actual_starts[succ]
/\ actual_starts[succ] <= actual_starts[pre] + durations[pre] + d);

constraint cumulative (actual_starts, durations, consumptions, max_demand);
Jommmmm Objective and search ---------- VA

solve :: int_search(actual_starts, first_fail, indomain_max, complete)
minimize obj;

our experiments that minimising both PAR and the maximum demand yields the flattest
demand profile, compared to simply minimising the PAR or the maximum demand.
However, PAR is a ratio that depends on multiple decision variables. Introducing
this ratio into the objective function has turned the battery scheduling problem into a
fractional linear programming (FIP) problem (Hooker, 2019). Solving such FIP problems
requires transforming the original problem to a linear problem using the Charnes-Cooper

transformation (Charnes and Cooper, 1962).

Charnes-Cooper Transformation Let us write the general form of FIP problems as

Equation 4.1.
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cx + ¢o
d.il?-i-d()

minimise
subject to Ax > b (4.1)

x>0
The Charnes-Cooper transformation linearises this FIP problem by replacing x = 2'/z

and fixing the denominator to 1, showed as Equation 4.2.

minimise ¢z’ + cpz
subject to Az’ > bz
(4.2)
de’ +dpz =1
2,2>0
Particularly for FIP problems whose objective value is a relative maximum value, showed

as Equation 4.3, the problems are linearised as Equation 4.4.

Umaz Umaz

minimise e (1/n) Zluz

subject to Vi, Umazr > U;
(4.3)

Vi, ui = a;x;, 0 <x; < by

Zl‘i:B
i

minimise  Umaz
subject to Vi, Umas > u;

Vi, uf = a;zy, 0 <zl <bi¢

I
2 wi=B (4.4)
(1/n)> uj=1

¢=0

Vi, u, >0

Battery Scheduling Subproblem Linearisation Using Charnes-Cooper transforma-

tion, the battery scheduling subproblem is linearised in the following steps:
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1. Reformulate the PAR minimisation objective for our battery scheduling subproblem

in the form of Equation 4.3 as the following:

MAXhouse MAXhouse
L h _ h _ h
minimise PARhouse " Jhouse—battery—s 1/M lhousefbatteryfs
1 (L/M)> 2 (4.5)

subject to  Vim, MAXJeouse > [louse-batiery=s

2. Linearise the PAR minimisation objective in the form of 4.6 as the following:

minimise ~ PARI“¢~! = M AX],
subject to  Vm, MAX; > 1} .,
Vm, Uy = ¢ X lhm (4.6)
(1/M)Y b =1
m

¢=0

3. Let us remove the division in the Equation 4.6 by replacing [, ,,, = l;; ,, x M, and

hym

rewrite the linearised PAR minimisation objective as the following:

minimise PARZOUS@_Z = MAXj,

subject to  Vm, MAX; >l ., x M
Vm, Uy = ¢ X o (4.7)
=1
0<{=¢/M<1

4. Reformulate the battery scheduling subproblem as Equation 4.8. The differences

between the transformed problem and the original problem are highlighted in bold.

minimise yp = )\cchouse + )\maxMAX}}lwuse + )\parPARZouse—l
(4.8)

subject to (3.5), (3.6), (3.8), (3.9), (3.10), (3.16), (4.7)

The reformulated battery scheduling subproblem is a linear programming problem where
the decision variables are continuous, and the constraints and the objective functions are

linear. This problem can be solved by a linear programming (LP) optimisation model.
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We do not use CP solve this subproblem because the battery charge and discharge rates
are continuous instead of discrete, and LP is the best solving method for optimisation

problems with continuous variables.

LP Optimisation Model Figure 4.6 shows the LP model developed for the battery

scheduling problem, including elements which are described as follows:

e Input parameters from line 3 to line 18:

— The time related parameters: the number of intervals per day (line 3) and the

number of intervals per hour (line 4)

— The battery related parameters: the minimum energy capacity (line 8), the
maximum energy capacity (line 9), the maximum power rate (line 10) and the

efficiency (line 11) of the battery

— The demands and prices related parameters: the optimised demand profile of
jobs (line 14), the limit of the total demand at any time (line 15) and the price

per interval (line 18).

e Decision variables from line 21 to line 34:

— The original decision variables: battery_soc represent the state-of-charge (SOC)
of the battery at each interval, battery_charge (or battery_discharge)represent
the amount of electricity charged (or discharged) per interval, and demand rep-
resent the optimised demand profile of the household after the battery is sched-
uled.

— The additional variables for linearising the PAR objective: z, maxz, minz,

battery_soc2, battery_discharge2 and demand?.

e Objectives from line 37 to line 41.

— The weight of the original PAR objective: par_weight.

The linearised PAR objective: PAR.

The maximum demand: max_demand.

the consumption cost: cost



90CHAPTER 4. FRANK-WOLFE-BASED DISTRIBUTED DEMAND SCHEDULING METHOD

Figure 4.6: LP model for scheduling the battery of a household

B —oo=== time intervals ----- A

int: num_intervals;

int: num_intervals_hour;

set of int: INTERVALS = 1..num_intervals;

B ooc=os battery specifications —------ A
float: min_energy_capacity;

float: max_energy_capacity;

float: max_power;

float: efficiency;

{ ====== demands ------ %
array [INTERVALS] of float: existing_demands;
float: demand_limit = 9999999999.9;

B oomm== Préees —o===o %
array [INTERVALS] of float: prices;

B ====== decision wariables ------ 74
array [INTERVALS] of var min_energy_capacity..max_energy_capacity: battery_soc;

array [INTERVALS] of var O..max_power: battery_charge;

array [INTERVALS] of var -max_power..0: battery_discharge;

array [INTERVALS] of var O..demand_limit: demand = arrayld([existing_demands[i]
+ (battery_charge[i]l / efficiency) + (battery_discharge[i] * efficiency) | i
in INTERVALS]);

B oocoos additional wariables for PAR linearisation ------ A
float: minz = 0 ;
float: maxz = 1 ;

var float: z;

array [INTERVALS] of var minz * min_energy_capacity..maxz * max_energy_capacity:
battery_soc2;

array [INTERVALS] of var 0..maxz * max_power: battery_charge?2;

array [INTERVALS] of var -maxz * max_power..0: battery_discharge2;

array [INTERVALS] of var O..maxz * demand_limit: demand2 = arrayld([z =*
existing_demands[i] + (battery_charge2[i] / efficiency) + (battery_discharge2[i

] * efficiency) | i in INTERVALS]);

B =om==s objectives -—----- A
int: par_weight;
var float: max_demand;

var float: PAR = max(demand2) * num_intervals ;

var float: cost = sum (i in INTERVALS) (demand[i] * prices[i]);
var float: obj = cost + par_weight * PAR + max_demand;

f oooo=s constraints for the original dectision wvariables —------ 4

constraint forall(i in INTERVALS) (battery_soc[i] <= max_energy_capacity);
constraint forall(i in INTERVALS) (battery_soc[i] >= min_energy_capacity);
constraint forall (i in 2..num_intervals) (battery_soc[i]l * num_intervals_hour

- battery_soc[i - 1] * num_intervals_hour = battery_chargel[i - 1] +
battery_discharge[i - 11);

constraint battery_soc[1] * num_intervals_hour - battery_soc[num_intervals] *
num_intervals_hour = battery_charge[num_intervals] + battery_discharge[

num_intervals];
constraint forall(i in INTERVALS) (max_demand >= demand[i]);

B ooooos constraints for the additional wvariables ------ %
constraint z >= minz /\ z <= maxz;
constraint sum(demand2) = 1;

constraint sum(i in INTERVALS) (battery_charge2[i] * battery_discharge2[il) = 0;

constraint forall(i in INTERVALS) (battery_soc2[i] <= max_energy_capacity * z);
constraint forall(i in INTERVALS) (battery_soc2[i] >= min_energy_capacity * z);
constraint forall (i in 2..num_intervals) (battery_soc2[i] * num_intervals_hour
- battery_soc2[i - 1] * num_intervals_hour = battery_charge2[i - 1] +
battery_discharge2[i - 1]);
constraint battery_soc2[1] * num_intervals_hour - battery_soc2[num_intervals] x*
num_intervals_hour = battery_charge2[num_intervals] + battery_discharge2[
num_intervals];

f =ee=== minimise the objective walue ------ A
solve minimize obj;
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— the objective value: obj
o Constraints from line 44 to line 57.

— The SOC constraints for the original decision variables: line 44 to line 47.
— The maximum demand constraint for the original decision variables: line 48.

— The constraints for the additional variables: line 51 to line 57

4.4 Pricing Master Problem

The pricing master problem is responsible for setting the prices for households, such that
when households respond to these prices in the most selfish way (e.g. in a way that
minimise their own costs), the total demand profile of all households will be flatten as
much as possible and the total cost of all households will be reduced. The prices for
all households are the same. No information needs to be exchanged among households.
During the iterations, only the demand profile of each household is required to be sent to
the DRSP and no information other than prices are sent back to households.

In countries where smart meters have been widely adopted (see Appendix A.3.2 for
explanations of smart meters), electricity network operators have already recorded house-
hold consumptions at a higher frequency (e.g. every seconds or minutes) remotely using
the wireless communication features of these meters. These meters have the capabilities
of receiving information from network operators through the Internet. Our solution to the
pricing master problem can be applied to a retailer or a network operator with minimum

changes to the existing network infrastructure.

4.4.1 Naive Approach

First, we have used the simplest way to calculate prices: at each iteration, we calculate
the total demand profile of all households from the optimised demand profiles sent by

households, and compute the prices from the total demand profile using the pricing table.

Oscillations However, this naive approach cannot achieve convergence at all. We have
observed from experiments that at one iteration, households would schedule most demands

to the cheapest time intervals, making them very expensive for the next iteration; and at
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the next iteration, households would schedule very little demands in the those time inter-
vals due to their high prices, making them very cheap again. Figure 4.7 and Figure 4.8
show the experimental results of this naive approach. This experiment was conducted
with 90 simulated households over 48 thirty-minute time periods. At each iteration, the
households scheduled devices against the prices given by the DRSP in the previous iter-
ation, and the DRSP updated the prices based on the total demand profile of the same
iteration. The figures show the total consumption of households per period and the total

costs for 20 iterations. We can observe that the oscillation started just after iteration 3.

Aggregated |oads of 30 housesin each teration

nz of 90 houses | KWh
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Figure 4.7: Oscillations of Consumptions as a Result From the Naive Approach
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Figure 4.8: Oscillations of Costs as a Result From the Naive Approach
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4.4.2 Averaging Approach

Second, we have adopted the traditional mechanism for achieving convergence while reduc-
ing the objective value: averaging (Chapman et al., 2011). At each iteration, we calculate
the prices based on the demand profiles found at the current iteration and the average
demand profiles from all previous iterations. Let us write the total demand profile of all

households, calculated from the optimised demand profiles of all households, at iteration

total—itr—p

z as Ly The averaged total demand profile of all iterations up to iteration z

I—itr—
LLtal=1r=avg a0 be calculated as follows:

Ltotal—itr—avg — (1 _ a) % Ltotalfitrfavg
z

1 + a * L=ir=r where o = 1/2

(4.9)

Liotal—ztr—avg

The prices are then calculated using and the pricing table. We illustrate the

iterations of the primal decomposition with this averaging approach as Figure 4.9.
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subproblem)

Demand profile & ]
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® |

[ Average total demand profile ]
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[ Demand Response Service Provider ]

(Pricing master problem)

Figure 4.9: Iterations between the DRSP and households with the averaging method
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Total Expected Demand Profile and Probability

This approach can be understood as calculating prices based on partial demand profiles
from all iterations, or the expected demand profiles of households at each iteration. The
form of Equation 4.9 allows us to interpret Lioml_m_a”g as the total expected demand
profile of all households at iteration z, where 1 — « is the weight of the average total
demand profile at iteration z — 1: Liof‘ilfitrfavg , and « is the weight of the total demand
profile at iteration z: Llotal=itr=p, Alternative, we can understand « as the probability for
households to switch to their optimal schedules found at iteration z from the schedules

at iteration z — 1; or the probability for a job to start and a battery to charge/discharge

according to the optimal schedules of its household at iteration z.

Oscillations and Convergence

Calculating the prices from the total expected demand profile allows the pricing master
problem to consider the possible responses of households from all iterations, preventing
prices from swinging with the demands at each iteration. Although this method will
achieve convergence, it is unclear whether it will converge to the global optimal solution
or a local optimal. Moreover, we have observed in experiments that this approach preserves
smaller ranges of oscillations, making the convergence very slow to achieve. Figure 4.10
shows the results of applying the averaging approach to the problem and data discussed in
the naive approach (see Section 4.4.1). We can observe that the small ranges of oscillations

appear just after iteration 3.

4.4.3 Frank-Wolfe Approach

Although the averaging approach is very slow to converge, it has shown the potential of
finding an (local) optimal solution to our DSP-MB using the weighted demand profiles
from all iterations or the total expected demand profile of all households. We believe that
there are opportunities for a more sophisticated algorithm to achieve the optimal solution
in less iterations in a similar way. The Frank-Wolfe (FW) algorithm (Sheffi, 1985; Frank
and Wolfe, 1956), also known as the conditional gradient descent method, is such a method
we have found. Moreover, this algorithm can guarantee that the global optimality of the

solution to a convex optimisation problem.
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Figure 4.10: Cost per Iteration Using the Averaging Approach

Frank-Wolfe Algorithm

The FW algorithm is an optimisation method that solves constrained convex optimisation
problems iteratively using the linear approximations or the first-order Taylor approxima-
tions of the problems at each iteration. It has been successfully applied to scheduling
problems in the traffic assignment domain (Nakamura et al., 2020). In general, the FW

algorithm works as follows:

1. Choosing an initial solution x, (k = 0) to the problem by selecting values for variables

randomly or using some heuristic methods.

2. Calculating the linear approximation of the original problem which is also the gra-

dient at the current solution xy: Fy, (z) = f(zk) + Vf(zk)(z — ).

3. Finding a new feasible solution y; that minimises the objective value of this linear

approximation function subject to the constraints.

4. Calculating the steepest descent direction as the line function that connects the two

newly calculated solutions: di = yp — k.

5. Performing a line search on this descent direction to find the point x4 that min-
imises the objective value of the original problem. This xx11 can be written using a

variable called the step size oy and the previous solution as:
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Tp41 = T + oy * dy, where o € [0, 1] (4.10)

Since both x; and dj are known, this step is equivalent to determining the best value

of ay that minimises the objective value.
6. Repeating Step 2 — Step 5 until convergence.

In a multi-dimension problem like our DSP-MB, each point in the solution space has
various descent directions that reduce the value of the objective function. One of these
descent directions reduces the objective value in the fastest way, which is the steepest
descent descent. This steepest descent direction is the linear approximation or the gradient
of the objective function. The FW algorithm searches for solutions along this steepest
descent that reduce the objective value the most (Step 2). In addition, this algorithm
ensures the feasibility of solutions at each iteration by considering the descent direction
within the feasible solution space only (Step 3 and 4).

In more details, at each iteration, the FW algorithm finds a point x; in the solution
space (Step 1) using some optimisation methods, calculates the gradient at this point
F,, (x) (Step 2) and finds another feasible point y, on the gradient that minimises the
value of this gradient function while satisfying all constraints (Step 3). Then we draw a
line dj, between the previous point z; and this new point ¥;. Since the problem is convex
and both zp and y; are feasible, any points on this line d, is feasible. As y; is found on
the steepest descent direction, all points on this line have reduced objective values. So we
find a point xx41 on this line that has the lowest objective value of the original problem
(Step 5). This point x4 is best solution we can find up to the current iteration. Then
we repeat Step 2 — Step b5 iteratively until xg, does not have a lower objective value.
The last z, is the optimal solution we seek to the optimisation problem. More details
of line search methods, gradients and descent directions can be found in Appendix B.3.5.

Note that the FW algorithm can solve convex problems that are not strictly convex.
When a problem is non-strictly convex, in Step 5, there may be several points on dj that
have the same optimal objective value. We choose one of these points as the best solution
Zr+1 up to the current iteration. In other words, although there can be multiple optimal
solutions with the same objective value in a non-strictly convex optimisation problem, we

simply find one of these optimal solutions as the best final solution.
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Relations Between Frank-Wolfe, Averaging, Decomposition and DSP-MB

We have found some relations between the FW algorithm and our DSP-MB, the primal

decomposition and the averaging approach as follows:

o Relations between the FW and our DSP-MB: In our DSP-MB, the linear approxi-
mation of the objective function Fy, (x) is the pricing function. The gradient at any

solution is the prices of that solution.

e Relations between the FW and the primal decomposition: In our household subprob-
lem, we schedule jobs and the battery given the prices from the DRSP, which is
equivalent to finding a new solution given a fixed the gradient in Step 3 of the FW
algorithm. In the pricing master problem, we calculate new prices given the total
demand profile of households, which is equivalent to calculating the new gradient at

a given solution in Step 2.

e Relations between the FW and the averaging approach: Equation 4.10 in Step 5 of

the FW algorithm has the same form as Equation 4.9 in the averaging approach.
This comparison has informed us that:

e Step 1, 2 and 3 of the FW algorithm match with the purposes of the subproblem

and the master problem in our primal decomposition.

e The similarity between Equation 4.10 in the FW algorithm and Equation 4.9 in the
averaging approach allows us to 1) interpret the step size oy in the FW algorithm in
the same way as that in the averaging approach: the probability for each household
to adopt the new schedule yy, at iteration z; and 2) integrate Step 4 and 5 of the FW
algorithm in the same way as integrating the averaging approach into our primal

decomposition, which is illustrated as Figure 4.11.

Different from the averaging approach, the FW algorithm re-calculates the step size
ay at each iteration to ensure the objective value is reduced in the fastest way. Moreover,
by adopting this variable step size, we transform our DSP-MB into a continuous convex
optimisation problem whose goal is to find a sequence of step sizes that minimises the
objective function, instead of the exact start times of jobs and charge/discharge profiles

of batteries. The prices and the total objective value optimised by the FW approach will
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Figure 4.11: ITterations between the DRSP and households with the FW algorithm

be guaranteed to be global minimum. We explain this problem transformation in more

details in the following subsection.

Problem Transformation

By integrating the FW algorithm, our pricing master problem at each iteration is now
concerned with calculating prices based on the best step size and the total demand profiles
in the current and previous iterations (Step 2, 4 and 5). Since a step size of the FW
algorithm can be interpreted as the probability of adopting the optimal schedules at an
iteration, the total demand profile used for pricing can also be seen as the total expected
demand profile (see Section 4.4.2 for explanations) of all households. Consequently, the
supply cost is calculated from the total expected demand profile instead of the total
demand profile at any iteration.

Since the step size is optimised per iteration to reduce the objective value in the fastest

way, the total expected demand profile is also optimised to find the lowest possible prices at

each iteration. This means, the solution to our DSP-MB is in fact now the optimal total
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expected demand profile that minimises the objective value; and the decision variables
are now the best step size per iteration instead of the exact start times of jobs and the
charge/discharge profiles of batteries. In other words, we essentially allow a job or a
battery to be used at any time and we optimise the probability of using a job or a battery
at each feasible time interval, so that the total expected objective value is minimum.
Note that, due to the scheduling time constraints of jobs, the probability of starting a job
outside its feasible time intervals is zero.

Although this FW approach optimises the total expected demand profile instead of
the total demand profile at any iteration, we show that we can achieve this optimal total
expected demand profile and the minimum objective value in practice using a probability-
based scheduling method, to be described in Section 4.5.

Since the step size or the probability is continuous, our DSP-MB is now a continuous
convex optimisation problem instead of the mixed-integer non-linear problem discussed
in Section 3.6 of Chapter 3. Therefore, the global optimality of the best solution can be
guaranteed by the FW algorithm. We prove the convexity of this transformed problem in

the following subsection.

Proof of Convexity

Let us write Lg and L as two total demand profiles (or demand vectors in mathemat-
ical terms) of households, calculated from different feasible job and battery schedules of
households. Let us consider an arbitrary point L¢ on the line joining these two demand
vectors as follows:

L} = Lg + a(Lj — L), where a € [0,1] (4.11)

Since all constraints of jobs and batteries are linear, L¢ is also feasible. To prove that
the objective function is convex, we must show that the objective value of L is less than

its linear approximation as follows:

FLZ) < f(Lg) + a(f(Ly) — f(L7)) (4.12)

The objective value consists of the supply cost for all households and the total incon-
venience cost. Since the inconvenience cost function is linear, it is sufficient to prove that

the supply cost function satisfies the following;:
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C*(L7) < C*(L3) + a(C(Ly) — C*(L3)) (4.13)

Since for any demand vectors L¢, the total supply cost is the sum of the cost at each

period n:

48
CULy) =y CU(Lj,) (4.14)
n=1

It is sufficient to proof convexity by proving for each period n that:

CULER) < CU(Len) + a(CH(Lyn) — C*(Lg ) (4.15)

With the use of o, we can rewrite this expression as follows:

Ck(Ca(LZm) - Ca(Lg,n))
—a(C(L8,) — C7(LE,) + C°(LE,) — C°(L2,) (4.16)

=a(C%(Ly,) = CU(LZ,)) + CU(LE ) — O (Lg ) — (1= a)(CU(LE,) — C%(Lg )

To complete the proof we need to show that:

CH Ly ) +a(C(Ly ) = C%(Lgp)) — C(LZ,)
=CU(Lgn) +(C(Ly,) — CU(LZ,)) + CU(LE ) — CU(LG )

— (1= a)(CU(LZ,) = C*(Ly ) — CULE ) (4.17)
=a(C%(Ly,) = C*(LZ,)) — (1= a)(CU(LE,) — C%(Lg )

>0

Let 6 = L, ,, — L3 ,,, then:

z,m’

LS, — L, =6xa
(4.18)
Lo, — L%, =dx(1-a)

Case 1: C%(Lg,) < C%(L;,) Let p(Lg,) be the price of any demand vector Ly in

period n. From the price table T,,(-), find the level indexed by iz < iz < iy, with price
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levels pp iz = p(LS 1,), Pniz = P(LS ), Pnjiy = p(Ly ), and the corresponding consumption

levels €y iz, €niz, €n,iy- Accordingly:

C*(LS,) — C*(Len)
(4.19)
=pix X (i — Lg ) + Piz X (LS, — €i2-1) + Z (Pi % (& — éi-1))

1r<i<iz

The proof for this case follows, if we replace higher prices by lower prices in a positive

context, and lower prices by higher prices in a negative context:

a(C(Ly,) = C*(LE ) — (1= a)(CU(LE,) — C%(Lg )

=a X (Piz X (€ — L2 ) + Piy X (Lyy, — €iy—1) + Z (Pi % (& — €i-1))

12<1<1Y
— (1 =) X (Piz X (€iz — L3 ;) + Diz X (LL,, — €iz—1) + Z (Pi % (& — €i-1)))
1r<1<12
>a X (Piz X (62 — LE,) 4 Piz X (L — ig—1) + Y (Piz X (8 —€i-1)))
12<1<1Y
— (1= ) X (Piz ¥ (Eiw — L% ) + Piz X (L, — izm1) + Y (Piz X (61 — €i-1)))
1x<1<1%

=piz X (@ X (Ly, = LZ,) = (1 =) x (L3, = Lg )

=piz- X (axdx(l—a)—(1—a)xdxa)=0
(4.20)

Case 2: C%(Lg,) > C%Ly,) In this case the consumption levels are in reverse order,

but the proof is similar.

Case 3: C%(L3,) = C%(L;,,) In this case C*(LZ,) = C*(Lg,,) and the linear approxi-

mation is equally C*(Lg ).

Q.E.D
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Pricing Master Problem Model and Solving Method

Since our pricing master problem is now concerned with finding the best step size based
on the Step 2, 4 and 5 of the FW algorithm, we can describe the steps of solving this

pricing master problem as follows:

1. Calculate the total demand profile L% ~#"~P of households in the current iteration.

2. Compute the descent direction d, from Li‘ml*m*p and the total expected demand
profile Lg‘il—itr—f “ optimised for pricing in the previous iteration as follows:
total—itr— total—itr—
d, = Lietal=itr—p _ p fotal=itr=fuw (4.21)

Since the demand profiles are calculated by households when the prices are fixed and
the prices comprise the gradient of the objective function, d, is the steepest descent

direction at Lite=itr=r,

3. Compute the best step size o, along d, that minimises f, as follows:

o, = argmin fz(Li(f‘ilfitrffw +ad;) (4.22)
a€l0,1]

= arg min Czotalfitr(LinC{l—ZtT—fw + adz) + U;otalfitr(Li(ftlll—ZtT—fw + Ozdz)

a€0,1]
(4.23)
— ar%[glll]Il [Li(fcilfit’r‘ff’w + a(LiOtal—itT—p _ Linil*lt’f'*fU})] (424)
o )
x Rn(Ltzo_t(il_itT_fw + O[(Liotalfitrfp _ Lio_tcil—itr—fw)) x 24/N (425)
+ Uéotal—itr + a(Uéotal—itr o U:ititl—fw> (426)
=argmin Y [LIMTPTIY g g(pletalmitrmp _ Il TIRRI0) ] o 24/ N
acl01] 5
(4.27)
+ [t e 4 g(yletal—itr _ gytetal=fuyy (4.28)
(4.29)

4. Move Lio_t‘{l_itr_f Y to LEMUP along d, by a, as follows:



4.4. PRICING MASTER PROBLEM 103

Liotal—itr—fw _ Liczftil—itr—fw + az(Liotal—itr—p _ Lio_ttil—z’tr—fw) (4'30)
5. Calculate new prices from Llotal=itr=fw using the pricing table for each period. These

prices are the ones that incorporate the demand profiles and their probabilities from

all previous iterations.

6. Send the new prices back to households for another round of rescheduling as illus-

trated in Figure 4.11.

Solving this pricing problem is straightforward except for Step 3 where a linear opti-
misation problem is required to solve to find the best step size. Since the only constraint
for this problem is that the step size must take a value in [0,1], we can solve this problem
by simply finding the «, at which the gradient of the linear approximation of the objective

total—itr— fw

function f, (L7 _1+ ad;) reaches zero (or turns positive) without using a solver.

The problem in Step 3 can be re-written as follows:

h(e) = V£(LES 10 4 ad,) (4.31)
— V{Z[L;‘szaletr_p_fw + a(LZO’l;alflt’r‘fp _ Lzoytzaizltr—p—f’w)] X T (432)
n=1
X 24/N 4 [Ut=Tv o g (ytetal=itr _ grtotal=fwyy (4.33)
N . .
_ Z(L%?ial—ztr—p _ L:zt)gafl;ztrfpffw) X Ty X 24/N (434)
n=1

+ (Uiotal—itT - U;T‘«ill*fw) (435)

_0 (4.36)
(4.37)

Since the pricing table is a step function, the gradient changes in steps instead of
continuously, therefore the objective value changes only when the total demand of a period
exceeds the next (higher or lower) consumption level of the pricing table for that period.

We propose to find the best step in an iterative manner which is described as follows:

1. Set a, = 0.
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total—itr—p— fw

2. For each time period n, move the total expected demand L, .~ along the
descent direction dy, , to the next (higher or lower) consumption level eﬁfjﬁ) where
the price for that period changes.

3. Calculate the step size o, . for each time period as follows:

nz = (€5 = Lieiy 7)o (4.38)
tent

4. Calculate the smallest step size « calculated from the step size per period calcu-

z

lated in Step 3 as follows:

™ = min({ay,. | n € [1,N])} (4.39)

z

total—itr—p— fw

This aie”t is the smallest distance that the total expected demand Ln’zf1

needs to move along the descent direction to change the price and reduce the objec-

tive value.

5. Update a, using the smallest step size found in Step 4 as follows:

. = a, + ol (4.40)

6. Use the updated a, to update the total expected demand profile as follows:

Vn € [1,N], Lital=itr=p=fw _ plotal itr=p=fv 4 o s d, . (4.41)

n,z—1

7. Calculate the gradient of the linear approximation function at the updated total

expected demand profile h(a) = V£, (L= 4 d,) = V£, (L= fw).

e If the gradient is less than zero: h(a) < 0, repeat Step 2 — 7.

e If the gradient is greater than zero: h(a) > 0, we remove the last o™ from a,

as follows:

a, = a, — o™ (4.42)
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This «, is the optimal step size we seek for the pricing master problem at
iteration 2. We remove the last o™ to ensure the total expected demand

profile calculated in the next step will not increase the objective value at all.

e If the gradient is zero: h(a) = 0, we make no change to a, and use it as the

optimal step size.

Convergence Rate

Two types of iterations are involved in our FW approach: 1) the outer iterations between
the household subproblem and the pricing master problem for finding a sequence of step
sizes that minimises the objective value, and 2) the inner iterations within the pricing
master problem for calculating the best step size at each iteration. We do not consider
the iterations involved in the solvers as those information are often unknown to users
especially when using commercial solvers. We have analysed the convergence rates for

these iterations as follows:

e Quter iterations: The details of jobs and batteries are handled by the household
subproblem. The pricing master problem needs only the total demand profile and
the total inconvenience value of households to calculate the objective value. This
means, the number of iterations required for finding a sequence of step sizes are
affected by the total demand profile and the total inconvenience value, and the
number of time intervals in a demand profile is fixed regardless of the number of
households. In other words, increasing or decreasing the number of households in
the DSP-MB changes the values of the total demand profile and the inconvenience
value, however, it has very limited impacts on the number of iterations required
for convergence. We demonstrate that the convergence speed for various number of

households is near constant in the experimental results in Section 5.5.3 of Chapter 5.

e Inner iterations: The best step size is found by iteratively moving the total expected
demand per period to the nearest consumption level until the gradient of the linear
approximation function reaches zero or turns positive. This means, the number of
iterations depend on the number of pricing levels and the distances between the total
expected demands and the consumption levels. We have observed in the experiments

that the number of inner iterations is high in the early outer iterations, however,
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reduces significantly as the objective value reduces in the later outer iterations.
Nevertheless, the computation time for the pricing master problem is very small.

The experimental results show that the computation time is close to zero.

4.5 Probability-Based Scheduling

Since we optimise the total expected demand profile of all households to achieve the lowest
possible prices and the minimum objective value, we cannot simply use the prices or the
job and battery schedules in the last iteration as the optimal solutions. However, we need
to achieve the optimal total expected demand profile and its minimum objective value
using a probability-based scheduling method. This probability-based scheduling method
calculates a probability distribution using the best step size calculated at each iteration

and selects the actual schedules for households uses this probability distribution.

4.5.1 Probability Distribution

As the optimal step size at a iteration is considered as the probability for households to
adopt their new schedules calculated at that iteration, when the iterations converge, we
can obtain an accumulated probability for each iteration z. Let us expand the formulation
of the optimal total expected demand profile (or the probability-weighted total demand

total—itr— fw
LZ

profile) at the last iteration Z: as Equation 4.43.
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LtZotal—itr—fw :LtZot_all—itr—fw Ty dZ (443)
:LtZot_allfitrffw T ay * (LtZotalfitrfp _ LtZot_allfitrffw) (444)
=(1 — ag) * LHA=r=Iv o g s Lot =itrr (4.45)
=(1—ag)* [(1 —ag_q)« L=itr=dw o, |« LIZ9H=r) (4.46)

+ay x Lige-ire (4.47)
=(1 —ag)* (1 —az_)« Liga-ir-iv (4.48)
+(1—az)*xaz_q* L?t_allfitrfp + ag * LtZOtal*itT*p (4.49)
Z .
=] - o) s LGPy (4.50)
z=1
Z—1 Z A )
(I (1= i) % s Lital=tr=p) 4 gy s L P (4.51)
z=1 i=z+1

(4.52)

Lgomz_itr_p is calculated before the iterations start when jobs are assumed to start at their

PSTs and no batteries are required.

The accumulated probability per iteration prob, is the coefficient of LI/ =P for
z = 0...7 in Equation 4.43. This accumulated probability is the weight of the tentative
optimal total expected demand profile at each iteration, or the chance for households to
adopt their optimal schedules calculated at each iteration to be their final schedules. Let

us rewrite the accumulated probability per iteration z as Equation 4.53.

[17.,(1— ) if 2 =0
prob, = a, HiZ:Z_H(l —q;), fl<z<Z (4.53)
(6%/4 le =7

Note that the accumulated probability per iteration is the same for all households as these
probabilities are calculated from step sizes which are independent of any consumption

details within households.

These accumulated probabilities comprise a probability distribution of the tentative

optimal schedules of households at each iteration. We can use this probability distribution
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to choose the actual job schedule and battery charge/discharge profile for each household.

We describe the steps for choosing the actual schedules in the following subsection.

4.5.2 Actual Household Schedule

The steps for choosing the actual schedules for each household using this probability

distribution is straightforward as follows:

1. Each household independently selects a number i from 0 to Z (the total number of

iterations) using the probability distribution.

2. Each household independently chooses the optimal job and the battery schedules

calculated at iteration ¢ during the FW-DDSM iterations as its actual schedules.

According to the law of large numbers (LLN) and the central limit theorem (CLT),
when we choose schedules for a large number of households independently using a proba-
bility distribution in this way, the resulting total demand profile of all households approx-
imates the optimal total expected demand profile with a very high probability. Moreover,
the schedules chosen by each household enforce the constraints of jobs and batteries, main-
taining the feasibility of the final solutions. We explain the effectiveness of the LLN and

the CLT in our probability-based scheduling method in the following subsection.

4.5.3 Law of Large Numbers and Central Limit Theorem

The key to the effectiveness of this probability-based scheduling method lies in LLN (Evans
and Rosenthal, 2009) and the CLT (Central Limit Theorem, 2008).

The LLN states that the average of random variables in a sample converges to the
true mean of the population when the sample size is large and each variable has a finite
expected value. In our DSP-MB, the random variables are the schedules or the demand
profiles of households. The expected demand profile of each household is finite. Let us
write the total actual demand profile of all households as Ltotal—actual the optimal total
expected demand profile as Ltotel—ezpected and the total number of households as H. The
sample average is Ltotel—actual /H and the true mean of the population is L total—expected /H.

The LLN states that:

P(I}lm Ltotalfactual/H — Ltotalfexpected/H) =1 (454)
—00
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The CLT states that the sum of a large number of random variables will always have
approximately a normal distribution with the mean of this normal distribution being the
true mean of the population. In other words, the sample average approximates the true
mean of the population with a high probability when the sample size is large. Generally,

a sample size of 30 is considered sufficiently large.

Considering the statements of LLN and CLT, we claim that when a large number of
households sample schedules or demand profiles using this probability distribution cal-
culated from the sequence of step sizes that lead to the optimal total expected demand
profile, the resulting total actual demand profile of all households approximates the op-
timal total expected demand profile with a high probability. In other words, we can
achieve the optimal solution calculated by the FW approach using this probability-based
scheduling method. The effectiveness of such a probabilistic scheduling method has been
demonstrated by Van Den Briel et al. (2013). We will demonstrate the effectiveness of our

scheduling method in Section 5.5.4 of Chapter 5.

4.6 Summary

This chapter proposes a novel distributed and iterative scheduling algorithm called Frank-
Wolfe-based distributed demand scheduling method (FW-DDSM) for solving a demand
scheduling problem for multiple households with batteries (DSP-MB). This algorithm uses
primal decomposition, the Frank-Wolfe (FW) algorithm, a job scheduling module and a

battery scheduling module.

The FW-DDSM decomposes the DSP-MB using the primal decomposition into a house-
hold subproblem and a pricing master problem. The method for solving the household
subproblem include a job scheduling module and a battery scheduling module. We have
proposed three types of solutions for the job scheduling module: a mixed-integer pro-
gramming optimisation model, a constraint programming optimisation model and the
Optimistic Greedy Search Algorithm. KEach optimisation model has two versions: one
with a data preprocessing algorithm and one without. The battery scheduling model is
a linear programming optimisation model that includes Charnes-Cooper transformation.
The method for solving the pricing master problem is based on the FW algorithm. The

subproblem and the master problem are solved in an iterative manner until the objective
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value calculated by the pricing master problem does not reduce any more (or reduce no
more than 0.01) in any two consecutive iterations.

After the iterations converge, the best step size calculated by the pricing master prob-
lem at each iteration is used to construct a probability distribution for sampling the actual
schedules for households. We call this method the probability-based scheduling method. The
law of large numbers and the central limit theorem have showed that by independently
choosing schedules for a large number of households using this probability distribution,
we will achieve the optimal total expected demand profile calculated by the FW-DDSM
that has the minimum objective value in the last iteration.

There are a number of benefits of using our FW-DDSM to solve DSP-MBs:

1. The primal decomposition method decomposes a DSP-MB in a straightforward way
without the additional transformation steps as in the dual decomposition, simplifying

the solving process.

2. The decomposition allows households to schedule demands independently in par-
allel, eliminating the needs for iteratively broadcasting information to households

sequentially.

3. To the best our knowledge, the FW-DDSM is the first method that applies the FW
algorithm to solve DSPs, which is the key to achieve high efficiency and scalability

with minimum manual parameter tuning.

4. The combination of the primal decomposition and the FW algorithm achieves a
distributed and iterative algorithm whose convergence speed is minimally affected

by the number of households, jobs and batteries.

5. The probability-based scheduling method allows households to choose from multiple
feasible schedules using a probability distribution while causing very limited impacts

on the optimality of the results, offering more flexibility for consumers.



Chapter 5

Experimental Result

This chapter presents the results that demonstrate the effectiveness of our Frank-Wolfe-
based distributed demand scheduling method (FW-DDSM) proposed in Chapter 4 for solv-
ing demand scheduling problems for multiple households with batteries (DSP-MBs). First,
we define a list of terms that are used to describe the variations of our FW-DDSM and to
name the results in Section 5.1. Second, we present the experiment environment and our
methods for generating the experiment data in Section 5.2 and Section 5.3, respectively.
Third, we compare the mixed-integer programming (MIP), constraint programming (CP)
and Optimistic Greedy Search Algorithm (OGSA) we have proposed for solving the house-
hold subproblem in Section 5.4. Fourth, we demonstrate the scalability and efficiency of
our FW-DDSM, and the effectiveness of our probability-based scheduling method in Sec-
tion 5.5. Fifth, we evaluate the impacts of various problem parameters on the solutions

and the scalability of our FW-DDSM in Section 5.6.

5.1 Preliminary

Let us define a list of terms for describing the variations of methods and naming the results

this chapter.

Definition 5.1. FW-DDSM-CP: the FW-DDSM that uses the modified CP model and

the date preprocessing algorithm as the method for solving the household subproblem.

Definition 5.2. FW-DDSM-OGSA: the FW-DDSM that uses OGSA as the method for

solving the household subproblem.

111
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Definition 5.3. total demand profile (TDP) : the total demand of all households per time

period/interval.

Definition 5.4. Preferred total demand profile (preferred TDP): the total demand profile
of all households where jobs are scheduled at their preferred start times before FW-DDSM

is applied.

Definition 5.5. optimal total demand profile (optimal TDP): the total expected demand

profile of all households computed at the last iteration of FW-DDSM-CP.

Definition 5.6. improved total demand profile (improved TDP): the total expected de-
mand profile of all households computed at the last iteration of FW-DDSM-OGSA.

Definition 5.7. peak-to-average ratio (PAR): the ratio of the peak demand to the average

demand of the entire scheduling horizon (e.g. 24 hours in our experiments).

5.2 Experiment Environment

This section presents our experiment environment. All optimisation models were im-
plemented in MiniZinc 2.2.3 (Nethercote et al., 2007). The MIP models were solved by
Gurobi (Gurobi Optimization, LLC, 2021) 7.5.2 and the CP models were by Gecode (Gecode
Team, 2017) 6.1.1. The experiments were performed on a virtual machine with 32 vir-
tual CPUs and 64GB memory, provided by the NCRIS-funded Australian Research Data

Commons (Department of Education, Skills and Employment, n.d.).

5.3 Data Generation Method

This section introduces our methods for generating time horizons, jobs, battery energy
storage systems (batteries) and pricing data. Similar to existing works (Mhanna et al.,
2016; Van Den Briel et al., 2013), this work synthetically generated data based on real-

world data.

5.3.1 Time Horizon

We scheduled jobs on a time horizon of 144 ten-minute scheduling intervals and 48 thirty-

minute pricing periods in all experiments. This design is different from the majority
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of existing works where 48 half-hourly periods or 24 hourly periods are used for both
scheduling and pricing. Using a finer granulated scheduling horizon increases the number
of decision variables in the DSP-MB, making it more time consuming to solve, however,
it also offers more flexibility for consumers to use their devices. Moreover, our FW-
DDSM can efficiently find the optimal solution to a DSP-MB despite the granularity of

the scheduling horizon.

5.3.2 Household Demand Data

Each household had five to ten jobs, of which up to nine were sequential. The size of the
battery in each household was assumed to be the same, however, varied in each experiment.

Each job of a household was generated in the following steps:

1. used the average working-day demand profile of Victoria, Australia in 2018 obtained
from the Australian Electricity Market Operator (AEMO) website to generate a
probability distribution that describes the probability of a job being set to turn on

by a consumer at each time interval,
2. sampled the preferred start time (PST) using the above probability distribution,
3. sampled the duration using the Rayleigh distribution,

4. sampled the power rate from a list of commonly used appliances obtained from the

Ausgrid website (Ausgrid, n.d.),

5. sampled the earliest start time (EST) and the latest finish time (LFT) using the

uniform distribution,
6. sampled the care factor (CF) between 1 and 10 using the uniform distribution,

7. selected from 0 and 1 randomly to decide if this job had a predecessor. If 1 (yes),
then selected a predecessor and the maximum succeeding delay (MSD) using the

uniform distribution.

According to the law of large numbers (LLN), when a large number of jobs were sched-
uled at their PSTs using the probability distribution generated in Step 1, the resulting
preferred TDP would approximate the demand profile used for generating this probability
distribution. Figure 5.1 demonstrates the effectiveness of this method by showing the

preferred TDP of 10000 synthetically generated households, and the average working-day
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demand profile used for computing the probability distribution to sample the PSTs of jobs
in these households. For simplicity, this work set the household demand limit as the total
demand of all jobs, and used the Rayleigh distribution to sample durations as it provided

a good approximation to empirically observed durations.

Victoria Whole Period Profiles - Working Spot Price (Average)
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Figure 5.1: Average working-day demand profile obtained from AEMO for generating job
and household data, and the preferred TDP of 10000 synthetic households

Demand Wrapping Around We allow each job to start from a time interval from
the previous day and finish by another time interval the next day. When calculating the
demand profile of a household, the demand of a job that occurred yesterday would be

added to the end of today, and the demand that occurred tomorrow would be added to



5.3. DATA GENERATION METHOD 115

the start of today. We call this method the demand wrapping around method, which is
illustrated in Figure 5.2. We used this method to generate a more realistic total demand

profile, otherwise very little demand would appear at the beginning and the end of a day.

Midnight Midnight ~ Midnight Midnight
(a) Append the job demand from yesterday to the (b) Wrap the job demand from tomorrow to the start
end of today of today

Figure 5.2: Demand wrapping around method

5.3.3 Price Data

We generated fixed prices for evaluating the three types of solving methods for the house-

hold subproblem, and pricing tables for evaluating the FW-DDSM for the DSP-MB.

Fixed Prices

Twelve average monthly price profiles of Victoria, Australia in 2018 obtained from AEMO
were used as the fixed prices for solving the household subproblem without the iterations

of FW-DDSM, which is illustrated in Figure 5.3.

Pricing Table

A pricing table was created from a supply curve that was derived from one year of historical
data from the Australian National Energy Market (NEM) where we used the average
relationship between the wholesale market spot price and the total supply. The detailed

steps are described as follows:

1. We downloaded a year of wholesale market spot prices!, the metered demand of
the whole NEM and the available electricity generation of the whole NEM from the

AEMO website.

2. We calculated the percentage of the metered demand in the available electricity gen-
eration for every thirty-minute period. We called these percentages the normalised

demands.

IThe market spot price was the price that paid by all electricity retailers for all the bulk purchases they
make on behalf of their retail customers, and all power station operators earn for power generated in the
same half hour. The metered demand is the total demand of all consumers in the NEM. The available
generation is total capacity of available generators. The data was recorded in thirty-minute intervals.



116 CHAPTER 5. EXPERIMENTAL RESULT

Month =1 Month = 2 Month =3
800
600
3
& 400
200
—
0
Month =4 Month = 5 Month = 6

800

600

Price

400

mOM M M

Month =7 Month = 8 Month =9

800

600

Price

400

MM M M

0

Month = 10 Month =11 Month =12

800

600

Price

400

0 — P e e o — N —— ‘_/v___k_,

0
00:00 06:00 12:00 18:00 00:00 06:00 12:00 18.00 00:00 06:00 12:00 18.00
Time Time Time

Figure 5.3: Twelve monthly average working-day price profiles of Victoria, Australia in
2018 used in the experiments

3. We derived a curve from the spot prices and the normalised demands, called the

supply curve.

4. We discretised the supply curve evenly to retrieve a set of price levels and the cor-

responding normalised consumption levels.

5. We compiled a normalised pricing table from those pricing levels and the normalised

consumption levels.

6. We rescaled the normalised pricing table according to the maximum demand of the

preferred TDP in each problem instance as follows:

(a) We calculated the maximum demand of the preferred TDP.

(b) We computed new consumption levels for this problem instance by multiplying

all normalised consumption levels by the maximum demand.
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(¢) We multiplied the new consumption levels with a scaler, such as 0.8, 1 or 1.2,
to reduce or increase the consumption level for each price level. We called this

scaler the pricing table multiplier.

For example, assuming there are 200 households to be scheduled, the highest or the
second highest consumption level of the pricing table at each time period would be

the maximum demand of the preferred TDP of those 200 households.

Implicit Area Demand Limit Constraint As discussed in Section 3.4.3 of Chapter 3,
the design of our pricing table allows us to incorporate the area demand limit constraint
implicitly by adding an extra consumption level that is the same as this demand limit and
assigning a extremely high price for this consumption level. This implicit constraint was
achieved in Step 6 where we rescaled the normalised pricing table to ensure the highest

consumption level matched with the area demand limit.

5.4 Comparison of Job Scheduling Methods

This section presents the results of comparing the three types of methods (proposed in
Section 4.3.2 of Chapter 4) to schedules jobs for households. Recall that in Section 2.3.4 of
Chapter 2, we have discussed that few exiting works, if any, have compared the optimality
and efficiency of the MIP, CP and heuristic methods for solving the demand scheduling
problems for a single battery (DSP-SBs). Moreover, very limited works have investigated
the application of CP on demand scheduling problems (DSPs) despite that CP has been
shown to be effective and efficient for solving combinatorial problems such as scheduling
problems (see Appendix B.3.4 for more details). We therefore have proposed two MIP
models, two CP models, a data preprocessing algorithm and a heuristic approach (OGSA)
for scheduling jobs per household in Section 4.3.2. This set of experiments first compared
the run times of these optimisation models (MIP or CP) with and without the data pre-
processing algorithm and the run times of the OGSA, and second compared the solutions

of these three types of methods.



118 CHAPTER 5. EXPERIMENTAL RESULT

5.4.1 Problem Instance and Parameter Setting

For this set of experiments, we defined a problem instance as a set of synthetic jobs and
a price profile for one household. In total, we created 1200 problem instances using 100
households and twelve monthly price profiles. We fixed the electricity cost weight to be
1: A® =1 and the inconvenience value weight to be 900: A* = 900. We have chosen these
weights because we observed from experiments that they are sufficiently large to produce

the desired balance between these two objectives.

5.4.2 Evaluation of Run times

This experiment investigates the impacts of the data preprocessing algorithm on the run
times of the optimisation models, and compares the run times of the optimisation models

and those of the OGSA.

Impact of the Data Preprocessing Algorithm

e (Criteria: In order to evaluate the impacts of the preprocessing algorithm on the

optimisation models, we defined a model run time ratio as follows:

Definition 5.8. Model run time ratio is the ratio of the initial model’s run time to
the modified model’s run time, which is calculated as Equation 5.1. This ratio rep-
resents the number of times the initial MIP/CP model are slower than the modified

MIP/CP model. A higher ratio means the modified model is faster.

del 4 4 run time of the initial model (5.1)
model run time ratio = .
run time of the modified model

e Results: The model run time ratios of the 1200 problem instances are illustrated in
Figure 5.4. The aggregate model run time ratios such as the maximum, the minimum

and the average ratios, and the standard deviations are presented in Table 5.1.

Table 5.1: Aggregate model run time ratios, initial models vs. modified models

Run time ratio

Result Type

Mean Std. Min 25% 50% 75% Max
Ratios of the CP models 1.13 0.12 0.5 1 1.17 1.2 2
Ratios of the MIP models 1.29 0.16 0.69 1.22 1.25 1.38 2.78

Note: N% means N% of the problem instances.
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e Analysis: The results demonstrate that using the data preprocessing algorithm with

the modified models were faster than using the models alone in most problem in-
stances. Table 5.1 shows that the model run time ratios for the CP and MIP models
were above 1.13 while the standard deviation is less than 0.2, which means the modi-
fied models with preprocessing were faster than the initial models in most instances.
In the worst case, the run time of the modified CP model with preprocessing was
0.5 of the initial CP model, and the run time of the modified MIP model was 0.69
of the initial MIP model.

Comparison of MIP and CP Models

e Criteria: In order to evaluate the impacts of the optimisation techniques (MIP or

CP) on run times, we defined a solver run time ratio as follows:

Definition 5.9. Solver run time ratio is the run time of the MIP model to the run
time of the CP model ratio, calculated as Equation 5.2. This ratio represents the
number of times the initial/modified MIP model are slower than the initial/modified

CP model. A higher ratio means the CP model is faster.

] . run time of Gurobi
solver run time ratio = - (5.2)
run time of Gecode

Results: The solver run time ratios of the 1200 problem instances are illustrated in
Figure 5.5. The aggregate solver run time ratios such as the maximum, the minimum
and the average ratios, the standard deviations are presented in Table 5.2.

Table 5.2: Aggregate solver run time ratios, CP models vs. MIP models

Solver run time ratio

Model type
Mean Std. Min 25% 50% 75% Max
Initial CP/MIP 1.87 0.37 1.08 1.67 1.83 2 4.86
Modified CP/MIP  1.64 0.28 0.75 1.5 1.6 1.8 3.17

Note: N% means N% of the problem instances.

e Analysis: The results show that the CP models were faster than the MIP models

in most problem instances. Table 5.2 shows that the solver run time ratios for the
initial and the modified models were above 1.5 while the standard deviation is less

than 0.5, which means the CP models were faster in most instances. The initial CP
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model was faster than the initial MIP in all problem instances. The run time of the

modified CP model was 0.75 of the modified MIP in the worst case.

Comparison of the Optimisation Models and the Heuristic Method

e (Criteria: We simply compared the run times of the heuristic method OGSA with

those of the modified optimisation models with the data preprocessing algorithm.

o Results: The run times of the modified optimisation models with preprocessing, and
OGSA are illustrated in Figure 5.6. The aggregate run times including the maxi-
mum, the minimum and the average values, and standard deviations are presented

in Table 5.3.
Table 5.3: Aggregate run times of the modified CP/MIP models and OGSA

Run time (ms)

Method
Mean Std. Min 25% 50% 75% Max
Modified CP model 58.98 8.41 50 50 60 60 140
Modified MIP 83.88 15.85 60 70 80 90 250
OGSA 0.00022 5.00E-05 0.00017 0.0002 0.00021 0.00022 0.00077

Note: N% means N% of the problem instances.

o Analysis: The results show that OGSA was at least four orders of magnitude faster
than any optimisation models in all instances. Table 5.3 shows that the maximum
run time of OGSA was 0.00077ms while the minimum run time of the modified CP

mode was 50ms and the minimum run time of the modified MIP model was 60ms.

Finding from the Evaluation of Run times

From the experimental results of evaluating the run times of three types of job scheduling
methods, we have validated our hypothesis that CP methods can be more efficient than
MIP methods when solving demand scheduling problems for a single household (DSP-SHs).
Using a data preprocessing algorithm with a modified CP models can further reduce the

run times. OGSA is extremely fast as expected for a heuristic method.

5.4.3 Evaluation of Solutions

This experiment presents the results of comparing the solutions of the modified optimisa-

tion models (MIP or CP) with the data preprocessing algorithm and those of the OGSA.
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Figure 5.6: Run times of the modified CP/MIP models and OGSA
Note: the legend Gurobi refers to the run times of the modified MIP models, and Gecode refers to the run

times of the modified CP models.
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e Criteria: We compared the solutions of the optimisation models and the OGSA by

evaluating their objective values. We defined an objective ratio as follows:

Definition 5.10. Objective ratio is the ratio of the improved objective value found
by OGSA and the optimal objective value found by the modified (CP or MIP)
model, calculated as Equation 5.3. This ratio represents the number of times that
the OGSA solution is worse than the modified model solution. A higher ratio means

the objective value of the modified model is better.

suboptimal objective calculated by OGSA
optimal objective calculated by a solver

(5.3)

objective ratio =

Results: The original objective values of the problem, the optimal objective values
calculated by the optimisation models and the improved objective values computed
by the OGSA are illustrated in Figure 5.8. The objective ratio of each problem
instance is illustrated in Figure 5.7. The aggregate objective ratios such as the max-
imum, the minimum and the average ratios, the standard deviations are presented in

Table 5.4. The average cost reductions for each method are presented in Table 5.5.

Table 5.4: Aggregate objective ratios for the OGSA and optimisation models

Ratio Type Mean Std. Min 25% 50% 75% Max

Objective ratio 1.05 0.16 1 1 1 1.01 4.17

Note: N% means N% of the problem instances.

Table 5.5: Average daily consumption cost reductions of the MIP, CP and OGSA solutions

Month of Method
the Price Profile OGSA CP/MIP Difference
1 48% 48% 0%
2 35% 35% 0%
3 17% 17% 0%
4 22% 22% 0%
5 39% 39% 0%
6 38% 39% 1%
7 49% 51% 2%
8 53% 55% 2%
9 33% 34% 0%
10 24% 25% 1%
11 19% 19% 0%
12 31% 32% 1%
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Figure 5.7: Objective ratios of the OGSA and optimisation models
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e Analysis: The results demonstrate that the improved solutions of the OGSA were
close to the optimal solutions of the optimisation models in many instances. Table 5.4
shows that the objective ratio was within 1.01 in 75% of the instances, the average
objective ratio was 1.05 and the standard deviation was 0.16, which means the OGSA
solutions were close to the optimal solutions (less than 1.21 times worse) in most
instances. Moreover, Table 5.5 shows that the OGSA solutions achieved the same
average cost reductions for seven price profiles as those of the optimal solutions, and

were at most 2% worse than the optimal solutions for other price profiles.

Finding from the Evaluation of Solutions

The results have informed us that the OGSA was very fast and its solutions were close
to the optimal solutions in many instances. Moreover, the OGSA is simple to implement
without the needs of a solver, it can be used in practice when good solutions are sufficient

and computation resources are limited.

5.4.4 Summary of Findings

We have summarised our main findings in experiments from comparisons of the job

scheduling methods as follows:

1. The modified CP model with the data preprocessing algorithm was faster than the

initial MIP and CP models, and the modified MIP model with the preprocessing.

2. The heuristic method OGSA was significantly faster than any MIP and CP models,

and it can find good or near-optimal solutions in many instances.

5.5 Demonstration of Scalability and Optimality

This section demonstrates the scalability and optimality of our FW-DDSM including the
effectiveness of our probability-based scheduling method. We tested two versions of our
FW-DDSM: the version with the modified CP model and the preprocessing algorithm as
the job scheduling method (FW-DDSM-CP), and the version with the OGSA as the job
scheduling method (FW-DDSM-OGSA), because we were interested in investigating the

trade-off between an optimal approach and a heuristic approach. Moreover, we evaluated
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the scalability and optimality of our FW-DDSM using problem instances with and with-
out batteries, because we were interested in studying the impacts of using batteries on
the optimality and the scalability of FW-DDSM. Note that when solving the instances
without batteries, we simply deactivated the battery scheduling module (see Section 4.3.2
of Chapter 4 for explanations) in the household subproblem during the FW-DDSM itera-

tions.

5.5.1 Problem Instance and Parameter Setting

For this set of experiments, we defined a problem instance as a number of households
(e.g. 1000 households) and a pricing table rescaled based on the preferred TDP of these

households. We created one set of instances without batteries and another with.

5.5.2 Convergence Condition

The condition for our FW-DDSM to converge to the optimal solutions is when the objective
value calculated by the pricing master problem reduced within 0.01 in any two consecutive

iterations.

Instances without batteries For the set of instances without batteries, we set the
electricity cost weight at A = 1, the inconvenience value weight at \* = 5, the EST of
each job to be 0, and the LFT to be the last time interval of the day (144). In total, we
generated five sets of problem instances for 50, 100, 500, 1000, 1500, 2000, 4000, 6000,
8000, and 10000 households, where each household had ten jobs. The pricing table was

rescaled according to the preferred TDP of all households in each problem instance.

Instances with batteries For the set of instances with batteries, we set electricity
cost weight at A® = 1, however, increased inconvenience value weight to be 10, in order
to better illustrate the impacts of batteries on the total inconvenience value. We set the
maximum capacity of the battery in each household at 3 kWh, the minimum capacity at
0 kWh and the maximum power rate at 3 kW. For simplicity, we assumed the efficiency
to be 1. In total, we generated ten sets of problem instances for 200, 400, 800, 1000,
2000, 4000, 6000, 8000, and 10000 households. For comparison, five of these ten sets had

batteries in households and the other five did not. Each problem instance had the same
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number of households and the same number of jobs per household. The pricing table was

rescaled based on the preferred TDP of all households in each problem instance.

5.5.3 Demonstration of Scalability

This experiment demonstrates the scalability of our FW-DDSM for DSPs for multiple

households with and without batteries.

Criteria

We evaluated the scalability of our FW-DDSM by showing the number of iterations for
the FW-DDSM to converge to the optimal solutions and the run times of the household

subproblem and the pricing master problem.

For Instances without Batteries

We applied both the FW-DDSM-CP and FW-DDSM-OGSA on each problem instance.

e Results: Table 5.6 presents the aggregate run times and the numbers of iterations,
including the maximum, the minimum and the average values, which are calculated
from problem instances of all numbers of households. Figure 5.9 shows the average
scheduling/pricing time per iteration and the average number of iterations before

convergence for each number of households.

Table 5.6: Run times and No. of iterations of the FW-DDSM-CP and FW-DDSM-OGSA

Method Results Mean Min Max
FW-DDSM-CP Number of iterations 25.09 20.60 30.00
FW-DDSM-OGSA Number of iterations 24.67 20.20 29.60
FW-DDSM-CP Pricing time 0.01s 0.01s 0.01s
FW-DDSM-OGSA Pricing time 0.01s 0.01s 0.01s
FW-DDSM-CP Scheduling time 1,758.91s 19.68s  5,321.29s
FW-DDSM-OGSA  Scheduling time 6.63s 0.10s 19.92s
FW-DDSM-CP Scheduling time/household 0.46s 0.39s 0.53s
FW-DDSM-OGSA  Scheduling time/household 0.00s 0.00s 0.00s

e Analysis: The results demonstrate that:

1. The number of iterations before convergence was on average 25 for any number

of households and any version of FW-DDSM.
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2. The average scheduling time of all households per iteration increased (almost)
linearly with the number of households, which means the number of households
had little impact on the scheduling time per household per iteration. The
scheduling time per iteration per household of FW-DDSM-CP was on average
0.45 second for any number of household, however, that average scheduling time

of FW-DDSM-OGSA was close to zero.

3. The average pricing time per iteration was less than 0.01 second for any number

of households and any version of FW-DDSM.

For Instances with Batteries

We applied the FW-DDSM-CP on each problem instance to investigate the impacts of

including batteries on the scalability.

o Results: Figure 5.10 shows the average number of iterations for convergence and the
average time for solving the household subproblem per iteration for each number of

households.

e Analysis: The results demonstrate that:

1. The average number of iterations were under 20 for all numbers of households
(with or without batteries). Less than 15 iterations were required when there

were more than 2000 households.

2. The average run times per household per iteration were a little higher for in-

stances with batteries, although on average they were less than 0.12 second.

Findings from the Evaluation of Scalability

We have identified the following findings from the evaluation of the scalability of FW-
DDSM:

1. High scalability: The FW-DDSM is highly scalable. Regardless of the choice of the
job scheduling methods, the total scheduling time per household increased almost
linearly with the number of households and the number of iterations for convergence
was independent of the number of households. Moreover, the inclusion of batteries

in households had minimum impacts on the scalability of our FW-DDSM.
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5.5. DEMONSTRATION OF SCALABILITY AND OPTIMALITY 133

2. Low computation time: Households can reschedule jobs in parallel in practice, which
means the total run time (including pricing time and scheduling time) of FW-DDSM

can be less than 10 seconds, making it suitable for real-time application.

Comparison with Existing Works

Our FW-DDSM converges to the optimal solutions in about 20 iterations for less than
10000 households with both appliances and batteries, while existing works achieved their

optimal solutions in:

100 iterations for 5000 batteries (Ramchurn et al., 2011).

30 iterations for 100 users with only appliances (Chavali et al., 2014).

60 iterations for 2560 households with only appliances (Mhanna et al., 2016).

12 iterations for 4 users with appliances, batteries and small wind/solar genera-

tors (He et al., 2019).

23 iterations for 35 households with appliances and batteries (Kou et al., 2020).

5.5.4 Demonstration of Optimality

This experiment demonstrates the optimality of our FW-DDSM by showing the peak-to-
average ratios (PARs), the maximum demands, the total inconvenience values and the total
supply costs of the optimal TDPs (calculated from the FW-DDSM-CP iterations) and the

improved TDPs (calculated from the FW-DDSM-OGSA iterations) for all instances.

We then show the effectiveness of our probability-based scheduling (proposed in Sec-
tion 4.5 of Chapter 4) by comparing the cost reductions (CRs), the maximum demand re-
ductions (DRds) and the PARs of the optimal and improved TDPs with those of the actual
TDPs (computed from the probability-based scheduling method after the FW-DDSM-CP
or FW-DDSM-OGSA iterations) for each problem instance. Note that for each problem,
we have used the probability-based scheduling to generate five actual TDPs, in order to

evaluate the average reductions of these actual TDPs.
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Criteria

We defined the followings to evaluate the quality of the optimal, improved and the actual

TDPs, and the differences in these three types of solutions:

1. CR: the cost reduction of the optimal or improved TDP of all households,

2. CR-D: the distance between the cost reduction of an actual TDP and that of the

optimal or improved TDP, which is defined as Equation 5.4.

CR-D = CR of the optimal or improved TDP — CR of the actual TDP (5.4)

3. DRd: the maximum demand reduction of the optimal or improved TDP,

4. DRdA-D: the distance between the maximum demand reduction of an actual TDP

and that of the optimal or improved TDP, which is defined as Equation 5.5.

DRd-D = DRd of the optimal or improved TDP — DRd of the actual TDP  (5.5)

5. PAR-D: the distance between the PAR of an actual TDP and that of the optimal or

improved TDP, which is defined as Equation 5.6.

PAR-D = PAR of the actual TDP — PAR of the optimal or improved TDP  (5.6)

For Instances without Batteries

We applied both the FW-DDSM-CP and FW-DDSM-OGSA on each problem instance.

o Results: Figure 5.11 illustrates the PARs, the cost reductions and the maximum
demand reductions of the optimal and improved TDPs. Figure 5.11 and Figure 5.11
demonstrate the preferred, the optimal or improved and the actual TDPs of each
problem instance. Table 5.7, 5.8 and 5.9 present the PAR, the PAR distance (PAR-

D), the cost reductions (CR), the cost reduction distances (CR-D), the demand
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reductions (DRd) and the demand reduction distances (DRd-D) of the actual and

optimal or improved TDPs.
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Figure 5.11: Preferred, improved and actual TDPs of FW-DDSM-OGSA for varying num-
bers of households

Note: legend 1/2/3/4/5 represents five actual TDPs generated after the FW-DDSM-OGSA itera-
tions using the probability-based scheduling method
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Table 5.7: PARs and differences in PARs of the FW-DDSM-CP and FW-DDSM-
OGSA solutions for varying numbers of households

#House- Result TDP FW-DDSM-CP FW-DDSM-OGSA
holds Min Median Max | Min Median Max
50 PAR Preferred 1.79 1.79 1.79 1.79 1.79 1.79
50 PAR Optimal 1.02 1.02 1.02 1.01 1.01 1.01
50 PAR Actual 1.72 1.99 2.55 1.61 1.72 1.85
50 PAR-D  Actual -0.7 -0.97  -1.583 | -0.60 -0.71 -0.84
100 PAR Preferred 1.96 1.96 1.96 1.96 1.96 1.96
100 PAR Optimal 1.03 1.03 1.03 1.03 1.03 1.03
100 PAR Actual 1.4 1.82 2.07 | 1.42 1.57 1.69
100 PAR-D  Actual -0.87 -0.79  -1.04 | -0.39 -0.54 -0.66
500 PAR Preferred | 1.31 1.31 1.3