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Abstract

Electricity demand management (DM) is a set of methods that encourage consumers

to change their usual consumption patterns, such as reducing the electricity consumption

at peak times or balancing preferred consumption times with energy costs. Better man-

agement of electricity demand will help to reduce the costs of satisfying peak demand and

better utilise the system infrastructure at off-peak usage times.

Demand response (DR) is an important DM method that encourages consumption

changes through financial incentives. Real-time pricing (RTP) is a widely considered

financial incentive that varies the electricity price with the demand in real time. Imple-

menting RTP is difficult without the aid of information and communication technologies

(ICTs), consequently, researchers have been working on developing ICTs and algorithms

that automate the DR process for consumers under RTP. Despite positive progress, the

existing research requires extensions to consider scalability to enable such algorithms to

be applied to large numbers of households in real time. In addition, existing research often

sacrifices solution quality or scheduling flexibility for a shorter computation time.

This thesis brings efficiency, optimality, feasibility and scalability together in a DR

algorithm. We seek a DR algorithm that provides the best solutions for residential con-

sumers, allows more flexibility for consumption requirements and preferences, and ensures

high scalability of the algorithm. Specifically, this thesis tackles a demand scheduling

problem for multiple households where households are equipped with shiftable appliances

and batteries.

viii



This thesis proposes a fast and scalable algorithm that schedules the appliances and

batteries in an iterative and distributed manner. This algorithm uses the Frank-Wolfe

(FW) method, primal decomposition, a constraint programming (CP) optimisation model

and a linear programming (LP) optimisation model. We call this algorithm Frank-Wolfe-

based distributed demand scheduling method (FW-DDSM).

Our experimental results on up to 10000 households show that the number of iterations

required to converge to the optimal solution is independent of the number of households.

This solution assumes that the appliance and battery scheduling is performed by house-

holds in parallel, so the number of households would essentially have no impact on the

computation time per iteration. Our algorithm used about ten seconds on modern com-

puters to find the optimal solution for 10,000 households with batteries, making it suitable

for real-time applications.
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Chapter 1

Introduction

1.1 Background

Our electrical consumption varies over the day. Typically, the consumption is low at night

when household occupants are sleeping, and high in the morning and evening when house-

hold occupants are active. Traditionally, our power systems are designed and built to have

the capacity to satisfy our demand at anytime and anywhere in the systems (Nicholson,

2012). This demand includes short time periods each year, when the demand becomes

significantly higher than the average demand, such as in the afternoon of the hottest day

when most people use air-conditioners We call the demand at these times the peak demand.

Although the peak demand appears for a very short period of time during a year, some

power stations must be built to specifically satisfy the demand at these times. However,

these power stations are very expensive to operate, which make electricity significantly

more expensive to supply at these peak times. Moreover, these power stations remain idle

or operate with reduced capacities for a great deal of the time (Van Den Briel et al., 2013;

Mishra et al., 2013), resulting in low utilisation of these generation resources.

Currently, increasing numbers of power stations and the associated infrastructure are

due to retire. In the meantime, demands are expected to be more variable due to the

increasing use of batteries, electric vehicles and electronic devices (IEA, 2020). Decisions

can be made to either keep following traditional approaches of building more power stations

and associated infrastructure to satisfy our growing demands, which will be costly, or

to seek alternative solutions to reliably supply electricity in a more cost effective and

environment friendly way (Finkel et al., 2017b).

1
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Smart grids are such alternative solutions to address the increasing challenges faced by

the existing power systems. Smart grids integrate advanced information and communica-

tion infrastructure to the existing power systems that allow electricity network operators

to monitor and manage the electricity supply and demand in a more efficient way. One of

the important features that are enabled by smart grids is enable demand response (DR).

DR refers to demand management activities carried out by consumers to modify their

consumption patterns in response to financial incentives. The aims of DR is to reduce

the peak demand and the overall costs for both electricity suppliers and consumers. By

reducing the peak demand, we will improve the reliability, affordability and safety of the

electricity supply (U.S. Department of Energy, 2006, 2009; MITei, 2011; Balijepalli et al.,

2011; Deng, Yang, Chow and Chen, 2015; Vardakas et al., 2015; Finkel et al., 2017a).

A widely considered financial incentive for DR is the real-time pricing (RTP) scheme

which increases the price with demand in real time (Albadi and El-Saadany, 2007). Some

utility companies have developed programs that adopt this RTP or similar dynamic pricing

schemes to encourage changes in consumption behaviours. However, these programs are

difficult to implement in practice because: firstly, they can be challenging and confusing

for consumers to monitor and react to a dynamic price (Mohsenian-Rad et al., 2010;

Mohsenian-Rad and Leon-Garcia, 2010); and secondly, when reacting to the same pricing

information, multiple consumers may simultaneously move their demand from the same

expensive time periods to the same cheaper time periods, increasing the actual demand

at those cheap time periods instead (Ramchurn et al., 2011).

In addition, battery energy storage system (battery) have become popular for DR as

they can not only assist in flattening the peak demand but also compensate for variability

in typical renewable energy generators (REGs), making the integration of REGs more

viable and our electricity supply more environmental friendly in practice (Vytelingum

et al., 2010; Atzeni et al., 2013). However, realising the full benefits of batteries manually

is difficult in practice, as we need to consider not only our consumption requirements, but

also outputs from on-site generators such as solar panels or small wind turbines if there

are any, and the dynamic electricity price and other tariffs such as feed-in tariffs.

The challenges in implementing DR programs in practice have motivated researchers

to develop computer algorithms that automatically suggest or determine DR activities for

consumers. These algorithms can collect pricing and demand information, learn about
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consumers’ energy needs and preferences, decide the best time to use electricity and/or

control electric appliances and devices in response to changes in prices automatically for

consumers. One type of computer algorithm that has attracted significant interest from

the literature is optimisation, which finds the best times to use electric appliances or

devices in ways that maximise consumers’ benefits and minimise their costs.

This thesis combines the domains of optimisation and DR to investigate a novel algo-

rithm that automates DR activities for consumers under RTP. We aim to assist consumers

with adapting the smart grid technologies to better realise the full benefits of DR and keep

our energy use at lower prices.

1.2 Motivation

Managing the demand of multiple households at a regional level or even the national level

is essential for realising the full potential of DR. As an independent review into the future

security of the Australia Electricity Market points out, “[we need to] manage the load over

many consumers aggregating a total amount of load that can have a material impact on

the reliability of the national electricity market or a specific local distribution area” (Finkel

et al., 2017a). When the demand of large populations is better managed, it is possible to

better predict the behaviour of the power system with reasonable accuracy, leading to a

more efficient and stable power network. (Ramchurn et al., 2011).

However, managing the demand of multiple households is a complex task (Ramchurn

et al., 2011). Simply letting every household schedule appliances independently against

fixed prices without any form of coordination will lead to load synchronisation where

households schedule appliances to the same time with a low price, creating a demand peak

that is higher than normal. Load synchronisation is a serious threat to the power system

as it can lead to over-demand, causing blackouts and damage to the grid infrastructure,

jeopardising the reliability of the power system (Vytelingum et al., 2010). As our society

is becoming more reliant on electricity, peak demand is likely to increase significantly

over time, making load synchronisation more threatening to the power system (Ramchurn

et al., 2011; Van Den Briel et al., 2013).

The key to successfully avoiding load synchronisation is coordination. Loads need to

be coordinated or “orchestrated” in a way that stabilises the aggregate demand. One way
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to coordinate loads is through direct control where a demand response service provider

(DRSP), such as a utility company or a third-part service provider, directly controls or

advises the operations of appliances and devices. That means, appliances are managed

centrally. Let us call this direct control approach the centralised approach. Another way

to coordinate is through smart pricing, where consumers independently manage their own

appliances and devices, and a dynamic pricing scheme is used for guiding households to

schedule appliances and devices in the desired way. Let us call this smart pricing approach

the distributed approach. The distributed approach allows households to preserve a great

level of autonomy while being motivated by financial benefits to avoid load synchronisation.

A significant amount of research has investigated the application of these approaches

to various DR problems under RTP (Deng, Yang, Chow and Chen, 2015; Vardakas et al.,

2015; Scott, 2016; Bayram and Ustun, 2017) to address the need for managing the demand

of multiple households at a regional level . However, there are limitations in existing works.

Firstly, many works assume that the prices (Mohsenian-Rad and Leon-Garcia, 2010;

Goudarzi et al., 2011; Barbato et al., 2011; Sou et al., 2011; Zhang et al., 2013; Anvari-

Moghaddam et al., 2015; Yang et al., 2015; Ma et al., 2016; Manzoor et al., 2017; Hussain

et al., 2018; Couraud et al., 2020) or the demands (Vytelingum et al., 2010; Voice et al.,

2011; Atzeni et al., 2013; Worthmann et al., 2015) are known and fixed in advance, thus

missing the dynamic relationships between the prices and the demands under the RTP.

Some works only consider the aggregate demand profiles of households, ignoring the details

of appliances and devices (Samadi et al., 2010; Kou et al., 2020). Some studies consider

limited constraints for household appliances, preventing consumers from expressing more

complex consumption requirements (Mohsenian-Rad and Leon-Garcia, 2010; Lee et al.,

2012; Zhao et al., 2013; Van Den Briel et al., 2013; Anvari-Moghaddam et al., 2015; Ma

et al., 2016; Manzoor et al., 2017). Some other studies investigate DR problems with

batteries only (Vytelingum et al., 2010; Voice et al., 2011; Atzeni et al., 2013; Zhang

et al., 2013; Worthmann et al., 2015; Yang et al., 2015; Pelzer et al., 2016; Ghazvini et al.,

2017; He et al., 2019; Hossain et al., 2019; Couraud et al., 2020), missing the opportunities

of utilising both appliances and batteries to achieve more DR benefits. In summary, most

studies focus on particular aspects of a DR problem without considering all aspects.

Secondly, many existing studies apply the centralised methods to solve DR prob-

lems (Adika and Wang, 2014; Longe et al., 2017; Pooranian et al., 2018). However,
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these methods do not scale well with the number of households (Van Den Briel et al.,

2013; Zhang et al., 2015; Kou et al., 2020), making them impractical for solving problems

for hundreds and/or thousands of consumers, such as the size of a major city suburb

in Australia. Some other works investigate distributed methods that distribute compu-

tation cost into each households and coordinate households to ensure the total demand

profile of all households is flattened as much as possible (Mhanna et al., 2016; He et al.,

2019). However, some of these works assume demands or prices are fixed and known in

advance (Vytelingum et al., 2010; Atzeni et al., 2013; Worthmann et al., 2015), limiting

the flexibility of their methods. Some other works incorporate a dynamic pricing scheme

and shiftable jobs in their problems, however, they either require households to broadcast

information to others sequentially and iteratively (Mohsenian-Rad et al., 2010; Pilz et al.,

2017), which imposes extra burdens on communication networks and limiting the scala-

bility of their methods; or require users to manually tuning some parameters to ensure

the best schedules can be found (Yang et al., 2015; He et al., 2019), which makes their

methods not general to all problem instances. Furthermore, some existing works increase

the efficiency and the scalability of their DR algorithms by ignoring consumer preferences

and requirements (Manzoor et al., 2017; Hussain et al., 2018) or finding good solutions

instead of the best solutions instead. In summary, none of these existing works can provide

flexibility, scalability, optimality and feasibility together with ease of use at the same time

in a scheduling algorithm for DR problems.

This thesis aims to address these limitations by proposing a novel algorithm for solving

demand scheduling problems for multiple households (DSP-MHs). This algorithm should

schedule both appliances and batteries, consider complex consumer requirements and ref-

erences, and use a dynamic pricing scheme. This algorithm aims to brings efficiency,

flexibility, optimality, feasibility and scalability together.

1.3 Research Question and Plan

In order to design the desired algorithm that addresses the limitations in existing works,

we ask the following questions:

(Q)1 Can a demand scheduling algorithm be formulated such that the number of iterations

required to converge to the best solution is independent of the number of households?
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(Q)2 Can this algorithm require minimum manual tuning of parameters and no informa-

tion broadcasting to achieve the best solutions?

(Q)3 Can it satisfy all of the following requirements:

(R)1 schedule both household appliances and batteries with complex constraints

(R)2 respond to RTP

(R)3 minimise the total consumption cost and the inconvenience of all households

(R)4 reduce the peak demand

(R)5 meet complex consumption requirements and preferences of consumers such as

dependency between appliances

In order to answer these questions, we have divided this thesis into four parts:

1. Literature review : We conduct our literature review of DR problems and their solving

methods in the following two steps: :

(a) Review of existing modelling methods: We investigate existing methods for mod-

elling DR problems for individual and multiple households including the exist-

ing mathematical models for appliances, batteries, pricing, costs, inconvenience

and consumer requirements and preferences.

(b) Review of existing demand scheduling methods: We study the optimisation

methods for scheduling appliances and batteries for individual households; and

investigate the algorithms for solving large-scale DR problems.

2. Problem model : We formulate the DR problems of this thesis.

3. Frank-Wolfe-based distributed demand scheduling method : We propose a novel de-

mand scheduling algorithm for solving the DR problem formulated in Step 2 that sat-

isfies the desired requirements listed in the research questions. We call this novel al-

gorithm the Frank-Wolfe-based distributed demand scheduling method (FW-DDSM).

4. Experiment: We evaluate the efficiency, scalability, optimality and feasibility of our

FW-DDSM.
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1.4 Thesis Overview

This section outlines the development of the research outcomes for each part of the thesis.

1.4.1 Literature Review

In the first part of the thesis, we compare and discuss the strengths and weakness of

existing methods for modelling and solving DR problems. From the review of modelling

methods, we identify various types of models for appliances, batteries, pricing, costs and

consumption requirements and preferences in the literature. The DR problems studied

by existing works can be divided into two types: problems for individual households and

problems for multiple households. Existing methods can be categorised into two types: the

centralised methods and the distributed methods. We then identify the limitations and

areas to expand in existing works, which constitutes the work of this thesis. the details

are presented in Chapter 2.

1.4.2 Problem Model

In the second part of this thesis, we formulate the DR problems of this thesis. First, we in-

troduce our models of household appliances, batteries, electricity pricing, costs, consumer

inconvenience, and consumption requirements and preferences. In particular, we develop

a new pricing function that is created based on bid stacks used by electricity wholesale

markets to determine the real cost of electricity, instead of using a generic quadratic func-

tion that is commonly considered in existing studies. Second, we identify the parameters,

variables, constraints and objective functions of our DR problems, and formulate the DR

problems using these models. The details are provided in Chapter 3.

1.4.3 Frank-Wolfe-based Distributed Demand Scheduling Method

In the third part of this thesis, we introduce our novel algorithm that addresses the

limitations found in the literature review and satisfies all our research goals. We call this

method FW-DDSM. This algorithm consists of the primal decomposition, the Frank-Wolfe

(FW) algorithm, a job scheduling module and a battery scheduling module.

The FW-DDSM decomposes a demand scheduling problem for multiple households with

batteries (DSP-MB) using the primal decomposition into a household subproblem and a
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pricing master problem. The method for solving the household subproblem includes a job

scheduling module and a battery scheduling module. We have proposed three types of so-

lutions for the job scheduling module: a mixed-integer programming optimisation model, a

constraint programming optimisation model and the Optimistic Greedy Search Algorithm.

Each optimisation model has two versions: one with a data preprocessing algorithm and

one without. The battery scheduling model is a linear programming optimisation model

that includes the Charnes-Cooper transformation. The method for solving the pricing

master problem is based on the Frank-Wolfe (FW) algorithm. The subproblem and the

master problem are solved in an iterative manner until the objective value calculated by

the pricing master problem does not reduce any more (or reduce no more than 0.01) in

any two consecutive iterations.

After the iterations converge to the optimal solution, the best step size calculated

by the pricing master problem at each iteration is then used to construct a probability

distribution for choosing the actual schedules for households. We call this method the

probability-based scheduling method. The details are presented in Chapter 4.

1.4.4 Experiments

In the fourth part of the thesis, we demonstrate the effectiveness of our FW-DDSM pro-

posed in Chapter 4 for solving DSP-MBs. In particular, first we compare the three types

of methods proposed for solving the household subproblem; second we demonstrate the

optimality and scalability of our FW-DDSM; and third we investigate the impacts of some

problem parameters, such as the objective weight, the number of sequential jobs, and the

battery efficiency and capacity, on the solutions and the scalability of our FW-DDSM.

The results show that our FW-DDSM is highly scalable, as the number of iterations for

convergence are independent of the number of households, and the scheduling time per

household per iteration is minimally affected by the number of households. In particular,

the actual solutions produced by our probability-based scheduling method highly approx-

imate, if not match, the optimal solutions of FW-DDSM. Moreover, including batteries

in households has limited impacts on and scalability of the FW-DDSM, and yields lower

total inconvenience values and more supply cost reductions.
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1.5 Contribution

To summarise, the main focus of this thesis is to investigate what method can rapidly

schedule appliances and batteries of a large number of households under a dynamic pricing

scheme (such as real-time pricing) in a scalable manner, such that complex constraints

such as dependency between appliances are enforced, the consumer requirements and

preferences are included, the peak demand is reduced, and the total consumption cost and

the inconvenience are minimised. Moreover, the computation time should be minimally

affected by the number of households and minimum manual tuning of parameters or

information broadcasting should be required to achieve the best solutions.

This thesis contributes to the domain of DR by introducing a highly scalable algo-

rithm that achieves the above research goals, called FW-DDSM. The implementation of

this algorithm can be found at https://github.com/dorahee/FW-DDSM. The experiment

results have shown that our FW-DDSM is optimised for speed so that it can be used in

real-time, making it easy for consumers to take up DR programs under a dynamic pricing

scheme. This is a result that has set a new standard in scheduling algorithms for DR.

There are several benefits of our FW-DDSM: 1) the primal decomposition method de-

composes a DSP-MB in a straightforward way without the additional transformation steps

as in the dual decomposition; 2) enabling households to schedule demands independently

in parallel and eliminating the needs for iteratively broadcasting information to households

one by one; 3) the achievement of high efficiency and scalability with minimum manual

parameter tuning; 4) the achievement of a distributed and iterative algorithm whose con-

vergence speed is minimally affected by the number of households, jobs and batteries;

and 5) enabling households to choose from multiple feasible schedules using a probability

distribution while causing very limited impacts on the optimality of the results.

We also contribute to the domain of optimisation by demonstrating that a distributed

and iterative algorithm that uses primal decomposition, the FW algorithm, a data prepro-

cessing algorithm and optimisation models can solve a mixed-integer convex optimisation

problem with linear constraints efficiently with high scalability.

A further contribution of this thesis is that the FW-DDSM can be implemented as part

of the software used by both utility companies and consumers to jointly manage demand,

in order to reduce peak demand and costs. Electricity is essential in our everyday life.

https://github.com/dorahee/FW-DDSM
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Meeting the new challenges of power systems while keeping the cost down is crucial for

supplying reliable and affordable electricity to consumers. Our research provides a solution

for consumers to participate in overcoming the challenges of power systems and reducing

the costs of providing electricity, which will in turn improve the benefits for consumers.

The outcomes of this research will benefit both electricity suppliers and consumers.

1.6 Thesis Outline

The remainder of this thesis is outlined as follows:

• Chapter 2 Background: presents the background information of DR and the

literature review DR problem models and solving methods.

• Chapter 3 Problem Model: introduces the demand scheduling problems (DSPs)

of this thesis.

• Chapter 4 Frank-Wolfe-based Distributed Demand Scheduling Method:

presents the details of our novel FW-DDSM.

• Chapter 5 Experimental Results: demonstrates the efficiency, optimality and

scalability of our FW-DDSM.

• Chapter 6 Conclusion: concludes the findings and outcomes of this thesis and

discusses future work.

• Appendix 2 Power System Now and Then: provides a non-technical back-

ground on power systems.

• Appendix 3 Optimisation: introduces an overview of optimisation techniques

that support the algorithm development in this thesis.

• Appendix 3 Additional Data, Code and Figures: contains additional infor-

mation for each chapter.



Chapter 2

Background

2.1 Introduction

This chapter provides the context of this thesis, including the background information

of demand response (DR) in Section 2.2 and the literature review of demand scheduling

problem (DSP) models and the solving methods in Section 2.3.

2.2 Demand Response

Historically, electricity is produced when it is needed and must be consumed when it is

produced. Power stations and electricity networks are designed and built to have the

capacity to satisfy electrical demand at any time and any where in the network. It is vital

to have a reliable and stable electricity supply at all times, however, there is a trade-off

between the reliability and the cost.

Meeting the demand at any time requires extra power stations specially built for peak

demand periods. However, these power stations are expensive to operate. Moreover, the

peak demand is significantly higher than the average demand and it only occurs for a very

short time of a year. It follows that the majority of capacity is idle for a great deal of the

time (Van Den Briel et al., 2013; Mishra et al., 2013). This means, the current way to

satisfy the peak demand is costly and cause low utilisation of system infrastructure.

Furthermore, current power systems worldwide were built decades ago. The current

power stations and associated infrastructure are nearing their optimum working life and

11
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require retirement. However, the increasing uses of battery energy storage systems (bat-

teries), electric vehicles (EVs) and electronic devices are introducing more variability in

our electrical demands, putting more pressure on these ageing components.

Decisions can be made to either keep building new power stations and associated

infrastructure to satisfy our growing demands as the traditional approach, which will be

costly, or seek alternative solutions to provide reliable electricity supply in a more economic

and environment friendly way (Finkel et al., 2017b). Smart grids are the next-generation

power systems that integrate modern information and communication technologies (ICTs)

to enable the development of more economic and environment friendly solutions to the

above challenges. One of the important goals of smart grid is to realise DR that encourages

consumers to better manage their electricity consumption through financial incentives.

DR refers to activities carried out by consumers that actively modify their consumption

patterns in response to financial incentives, in order to induce lower electricity use at times

of high wholesale market prices or when system reliability is jeopardized (Albadi and El-

Saadany, 2007; Good et al., 2017). A main goal of DR is to reduce the peak demand, and

allow our demands to be more predictable and economic to satisfy (Finkel et al., 2017a).

The detailed explanations of power systems, smart grids and DR technologies are provided

in Appendix A.

2.2.1 Financial Program

Two types of financial programs for DR have been considered in practice: incentive-

based or price-based programs. Incentive-based programs reward consumers for reducing

consumption at high demand times or when power systems are under emergency condi-

tions (Albadi and El-Saadany, 2007). These programs are usually only used on a small

number of hours per year (Siano, 2014), otherwise they will cause “demand fatigue” where

participants decrease their responsiveness or exit from the programs if they are called too

frequently. For example, interrupting air-conditioners on the hottest days too frequently

can frustrate consumers to the point that they will withdraw from a direct load control

program during an emergency condition when their services are needed the most (Callaway

and Hiskens, 2011).

Price-based programs offer a dynamic pricing scheme that encourages consumers to

reduce the consumption at peak times. Consumers can receive lower electricity prices
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by using energy outside the peak times. These pricing schemes include (Albadi and El-

Saadany, 2007; Siano, 2014):

• time-of-use (TOU) : TOU scheme sets a different rate for different periods of time.

For example, the simplest TOU has two rates: a higher rate for the peak period (e.g.

7am – 11pm from Monday to Friday), and a lower rate for the off-peak period (e.g.

all the other times). These rates reflect the average costs of electricity at different

periods, however, they change infrequently in a year.

• critical peak pricing (CPP): CPP is similar to TOU, except that the peak rate is

raised to several times higher than usual on days when the demand is expected to

be exceptionally high relative to available supply. This critical peak rate is usually

called during contingencies or high wholesale electricity prices for a limited number

of days or hours per year (U.S. Department of Energy, 2006).

• real-time pricing (RTP): RTP is a fully dynamic scheme where the rate varies hourly

(or more often) to reflect the actual variations in the system’s marginal electricity

cost in the wholesale market. Participants are informed about the prices on a day-

head, hour-ahead or on a more frequent basis.

These programs allow consumers to reduce their electricity bills by better determining

when they use electricity, making the demand more responsive to changes in system con-

ditions and reducing the costs of satisfying the peak demand.

2.2.2 Challenge

These programs are, however, difficult to implement in practice because: firstly, they can

be challenging and confusing for consumers to monitor and react to a price that changes

during the day (Mohsenian-Rad et al., 2010; Mohsenian-Rad and Leon-Garcia, 2010); and

secondly, when reacting to the same pricing information, multiple consumers may simul-

taneously move their demand from the same expensive time periods to the same cheaper

time periods, increasing the demand at those cheap time periods instead (Ramchurn et al.,

2011).

These challenges in implementing DR programs have motivated researchers to develop

computer algorithms that automatically suggest or determine DR activities for consumers.

These algorithms can collect pricing and demand information, decide the best time to use
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electricity and/or control electric appliances and devices in response to changes in prices

automatically for consumers based on their needs and objectives. One type of computer

algorithm that has attracted significant interest from the literature is optimisation, which

finds the best times to use appliances in ways that maximise consumers’ benefits and

minimise their costs. This thesis investigates such algorithms for automating the DR

activities under RTP for consumers.

2.3 Literature Review

A significant amount of research has investigated the application of optimisation algo-

rithms to various DR problems under RTP (Deng, Yang, Chow and Chen, 2015; Vardakas

et al., 2015; Scott, 2016; Bayram and Ustun, 2017). Generally, the existing works study

a DR problem where devices, such as household appliances or batteries, are scheduled

against a pricing scheme to minimise costs or maximise benefits of consumers. A solution

to a DR problem includes the best start time and/or the best operation mode for each

appliance, and the best charge/discharge decisions for each battery if applicable.

This thesis calls these DR problems as DSPs and the algorithms for solving these

problems as demand scheduling methods/algorithms. This section presents the state-of-

the-arts in modelling and solving DSPs. First, we introduce a fundamental glossary of

terms that are commonly used for modelling a DSP in Section 2.3.1. Second, we discuss

the common DSPs in Section 2.3.2. Third, we analyse the existing demand scheduling

methods in Section 2.3.3. The detailed explanations of optimisation algorithms involved

in existing works are provided in Appendix B.

2.3.1 Preliminary

We broadly categorise the terms commonly used in the literature into time slots, house-

hold appliances, batteries, pricing schemes and cost functions. We clarify the definitions

provided in the literature in terms of our project.

Time Slot

When determining the time horizon for scheduling devices or appliances, a day is divided

into a finite number of time slots. In the literature, time slots are generally used for pricing
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and scheduling, however the frequency can be different for these purposes. For example, a

time slot for pricing can be 30 minutes or 60 minutes long and a time slot for scheduling

can vary from 15 minutes, 20 minutes, 30 minutes to 60 minutes long. Let us define the

time slots for pricing and scheduling as Definition 2.1 and Definition 2.2.

Definition 2.1. A scheduling interval (or interval for short) is a time period when a

device can be scheduled to start at the beginning of it or finished at the end of it.

Definition 2.2. A pricing period (or period for short) is a time period for which a price

is calculated.

Table 2.1: Existing works on timeslot models

Length References

Interval

60m (Conejo et al., 2010; Samadi et al., 2010; Mohsenian-Rad et al., 2010; Yu et al.,
2011; Fan, 2011; Joe-Wong et al., 2012; Chavali et al., 2014; Shi et al., 2015;
Ogwumike et al., 2015; Mhanna et al., 2016; Ma et al., 2016)

30m (Voice et al., 2011)

20m (Lee et al., 2012)

15m (Barbato et al., 2011; Agnetis et al., 2013; Kuschel et al., 2015)

Period
60m (Conejo et al., 2010; Samadi et al., 2010; Mohsenian-Rad et al., 2010; Fan, 2011;

Yu et al., 2011; Chavali et al., 2014; Shi et al., 2015; Ogwumike et al., 2015;
Mhanna et al., 2016; Ma et al., 2016)

30m (Yu et al., 2011; Voice et al., 2011)

Household Appliance

Household appliances are commonly categorised into the following types (Yu et al., 2011;

Adika and Wang, 2012; Joe-Wong et al., 2012; Lee et al., 2012; Van Den Briel et al., 2013;

Agnetis et al., 2013; Sheikhi et al., 2015; Zhang et al., 2015; Anvari-Moghaddam et al.,

2015; Mhanna et al., 2016; Ma et al., 2016; Bharathi et al., 2017):

• non-shiftable (NS): appliances that cannot be scheduled to other times and must be

turned on when needed, such as lighting, cooking and entertaining appliances.

• shiftable: appliances that can be used at a different time of the day without unpleas-

antly affecting a consumer’s lifestyle much.

• power flexible (PF): appliances whose demand can be adjusted without damaging or

affecting the functionality of the appliances, such as heating and cooling.
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While NS appliances are essential in households, researchers in DR often exclude them

in the model because they are inflexible and therefore have no impact on the algorithm

design. However, their total demands are often estimated and included in the experiments

to better evaluate the impacts of demand scheduling on the costs of households and the

peak demand of the power networks.

Shiftable appliances are often further divided into two types: interruptible and non-

interruptible. Shiftable and interruptible (SI) appliances can be safely paused and re-

sumed later to finish the desired jobs, such as swimming pool pumps. Shiftable and

non-interruptible (SNI) appliances must continue running until the full operation cycles

are finished, such as washing machines and dryers.

Some works do not allow PF appliances to be shiftable but can vary their demand rates

over time. Some other works allow PF appliances to alter their operation times in addition

to demand rates. Few works consider PF appliances to have multiple operation modes

and their operation modes can be altered to reduce the peak demand instead. In practice,

a power flexible appliance is often a thermal appliance that controls the temperature of

water or the air in a household.

Appliance Attribute All appliances are modelled by one common attribute, which

is the duration (Mohsenian-Rad and Leon-Garcia, 2010; Barbato et al., 2011; Tsui and

Chan, 2012; Lee et al., 2012; Zhao et al., 2013; Anvari-Moghaddam et al., 2015; Ogwumike

et al., 2015; Ma et al., 2016), explained as follows:

• Duration: The duration is the amount of time required by an appliance to finish

a job. For example, a washing machine may need 45 minutes to finish a wash.

Note that the duration is often a whole number of some time intervals, meaning an

appliance must last for at least one interval and cannot stop before an interval ends.

This assumption may not always be true in practice, however, it approximates the

reality and it is easier for modelling.

Shiftable and NS appliances share one common attribute, which is the demand rate (Ag-

netis et al., 2013; Mohsenian-Rad and Leon-Garcia, 2010; Zhao et al., 2013; Anvari-

Moghaddam et al., 2015; Ogwumike et al., 2015; Mhanna et al., 2016; Ma et al., 2016; Nan

et al., 2018) or demand profile (Lee et al., 2012; Van Den Briel et al., 2013; Agnetis et al.,

2013; Ogwumike et al., 2015). PF appliances do not have fixed demand rates or profiles.
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Instead, they have allowed minimum and maximum demand limits (Mohsenian-Rad and

Leon-Garcia, 2010; Li et al., 2011; Nguyen et al., 2012; Tsui and Chan, 2012; Agnetis

et al., 2013; Shi et al., 2015; Mhanna et al., 2016; Ma et al., 2016; Hussain et al., 2018;

Nan et al., 2018). These attributes are explained as follows:

• Demand Rate/Profile: A demand rate is the amount of power required by an appli-

ance to safely operate per hour. Some appliances require a fixed demand rate such

as lighting. A demand profile is for appliances whose demand rates vary over time

with the operation cycles, such as washing machines.

• Allowed Demand Limits: The allowed demand limit is the maximum or minimum

power rate at which a PF appliance is allowed to operate.

Shiftable and PF appliances share several common attributes, such as the operation

time window (Barbato et al., 2011; Goudarzi et al., 2011; Li et al., 2011; Nguyen et al.,

2012; Lee et al., 2012; Ma et al., 2016; Nan et al., 2018; Mohsenian-Rad and Leon-Garcia,

2010; Barbato et al., 2011; Sou et al., 2011; Tsui and Chan, 2012; Anvari-Moghaddam

et al., 2015; Ma et al., 2016), the preferred start time (PST) (Goudarzi et al., 2011;

Ramchurn et al., 2011; Tsui and Chan, 2012; Van Den Briel et al., 2013; Chavali et al.,

2014; Ogwumike et al., 2015; Anvari-Moghaddam et al., 2015; Mhanna et al., 2016; Nan

et al., 2018), the operation mode and the ideal operation mode (Hatami and Pedram,

2010; Chavali et al., 2014; Mhanna et al., 2016) , and the operation phase (Sou et al.,

2011; Ogwumike et al., 2015), which are explained as follows:

• Operation Time Window : A shiftable appliance typically has an operation time

window that includes an earliest start time (EST) and a latest finish time (LFT).

An EST is the earliest time an appliance can be shifted to and a LFT is the latest

finished an appliance can be delayed to and finished by.

• Preferred Start Time: Some works include a PST for each shiftable appliance to

specify the preferences of a consumer. A consumer may prefer an appliance to be

scheduled at the PSTs and he/she will be dissatisfied if the appliance is scheduled

further away from that time. Few work uses a preference rating for each time slot

to specify the level of satisfaction when an appliance is scheduled at that time slot

instead. For example, a time slot can have a rating from 1 — 5 for an appliance and
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a higher rating means the consumer is happier when the appliance is scheduled at

that time slot.

• Operation Mode: When a demand profile is used, an appliance may also have mul-

tiple operation modes. Each operation mode has a different demand rate and yields

a different output of the appliance. For example, a fridge can have multiple modes

such as the stand-by mode, the de-froze mode, the normal mode and the eco-friendly

mode. Often, an appliance can switch between modes safely, therefore when man-

aging the demand of a household, the consumer can switch the operation mode of

such appliances to reduce the total demand.

• Ideal Operation Mode: A consumer may specify the ideal operation mode for an

appliance at any time interval.

• Operation Phase: When a demand profile is used, an appliance may have multi-

ple operation phases instead of multiple operation modes. Similar to the operation

modes, each operation phase require a different demand rate, however, an operation

phase is an essential part of the operation cycle that an appliance requires to finish

the desired task. For example, a washing machine can have multiple phases such as

the pre-wash phase, the wash phase, the rinse phase and the drain phase. Often, an

appliance must go through its phases in order to complete the desired task. However,

some appliances allow interruptions between phases, therefore when managing the

demand of a household, each phase can be rescheduled at various times to distribute

the consumption over a longer period of time.

Some works see interrupting a SI appliance as running the same appliance multiple

times and each run is followed by a time gap. They model a SI appliance as a set of

SNI “appliance” and each SNI “appliance” is a segment of the SI appliance’s operation,

simplifying the modelling. For example, a swimming pool pump may need to run for three

hours. For demand reduction, it has to be paused twice. Using this pool pump can be

seen as running it three times in a three-hour period and each time is non-interruptible.

SI appliances have some unique attributes, such as the maximum amount of time

a SI appliance can be paused in total (Adika and Wang, 2012; Agnetis et al., 2013) ,

the maximum amount of time this appliance can paused continuously at a time (Agnetis

et al., 2013), the minimum amount of time this appliance must stay on in total (Agnetis
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et al., 2013), the minimum amount of time this appliance must stay on continuously at a

time (Agnetis et al., 2013), and a time window that an appliance is allowed to be off (Ag-

netis et al., 2013). When considering a SI appliance with multiple interruptible phases, a

between-phase delay (Sou et al., 2011; Ogwumike et al., 2015), may be introduced to limit

the time gap between each phase. Each phase may also has its own EST and LFT.

Appliance Constraint Household appliances are often constrained by a set of rules.

We define these rules or constraints as follows:

Definition 2.3. Scheduling time constraints: a constraint that requires an appliance to

start after an EST, last for a given amount of time and finish before a LFT.

Definition 2.4. Sequential constraint : a constraint that requires the operation phases to

execute in a given order if an appliance has multiple operation phases.

Definition 2.5. Between-phase delay constraint : a constraint that limits the maximum

time allowed between (any) two operation phrases if an appliance has multiple operation

phases and an interruption is allowed between phases.

Definition 2.6. Precedence constraint : a constraint that requires an appliance to start

only after a preceding appliance is finished.

Definition 2.7. Preceding delay constraint : a constraint that limits the maximum time

allowed between (any) two dependent appliances.

Definition 2.8. Min-max demand constraint : a constraint that allows an appliance to

vary its energy demand between a minimum level and a maximum level.

Definition 2.9. Min consecutive ON constraint : a constraint that requires an appliance

to run for a minimum number of consecutive time periods before it can be paused or

interrupted if this appliance is interruptible.

Definition 2.10. Max consecutive OFF constraint : a constraint that limits the total

number of consecutive time periods that an appliance is allowed to be paused if this

appliance is interruptible.

Definition 2.11. Max OFF constraint : a constraint that limits the total number of time

periods that an appliance is allowed to be paused if this appliance is interruptible.
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Definition 2.12. Coupling constraint : a constraint that involves more than one appli-

ances such as the precedence constraint, the sequential constraint, the between-phase delay

constraint and the household demand limit constraint.

Job Since an appliance can be used multiple times per day, e.g. a consumer can wash

clothes twice a day. Many studies have defined a task or a job as Definition 2.13. A job

inherits all attributes and constraints of the associated appliance.

Definition 2.13. A job is a single use of any appliance.

Demand Limit

Some works adopt a limit for the maximum demand of all running appliances or jobs in

a household or all households in an area at any time of the day (Samadi et al., 2010;

Goudarzi et al., 2011; Li et al., 2012; Muralitharan et al., 2016; Swalehe and Marungsri,

2018; Nan et al., 2018; Mohsenian-Rad and Leon-Garcia, 2010; Ahmed et al., 2017). This

limit is also defined as the following constraints:

Definition 2.14. Household demand limit constraint : a constraint that limits the total

demand of all running appliances in a household at any time.

Definition 2.15. Area demand limit constraint : a constraint that limits the total demand

of all households served by the same utility company in a given area.

Battery Energy Storage Systems

Models of batteries have been developed to predict the battery output (energy or power)

under specific load conditions over the required time. Many battery models have been

proposed in the literature on battery modelling and dispatches. Generally they can be

divided into two types: empirical models and mechanical models (Beard, 2019a).

Empirical models are early models that use curve-fitting to find general equations

from measured data to describe the empirical relationships between measured parameters

(e.g. voltage and operating temperature) and the remaining battery capacities under

various operating conditions (Muenzel et al., 2015; Beard, 2019a). Mechanical models

are physical-based models that employ universal laws to describe the physical processes

(e.g. the chemical and electrochemical reactions) of individual components in a battery as
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functions of their material properties (Ramadass et al., 2004; Beard, 2019a). Mechanical

models are the most accurate for predicting the battery output, however, developing such

models is complicated and time-consuming due to the vast number of parameters involved

in the electrochemical battery process (Muenzel et al., 2015). Empirical models are widely

used instead in the demand scheduling literature to reduce the model complexity and the

amount of data involved in the optimisation problem.

The level of detail in an empirical model varies with the intended use. For problems

that evaluate the economic impacts of using batteries on energy costs, a fixed model

that includes only fixed battery parameters is often used. For problems that evaluate the

battery lifetime and the impacts of battery health on costs, a variable model that considers

some battery parameters as functions of others is used instead.

Battery Attribute A fixed battery model may includes some or all of the following

parameters:

• Capacity : The amount of energy a battery can store, commonly measured in kWh

however, sometimes in Ah (amp per hour). The capacity of any battery has a

maximum limit and a minimum limit.

• Charge or discharge rate: The amount of energy charge or discharge during a time

interval, commonly measured in kW and sometimes in A. This rate has a maximum

and minimum limit for any battery.

• state-of-charge (SOC) or depth-of-discharge (DOD): The charge or discharge of a

battery (or the percentage of the capacity remaining in the battery). In a fixed

model, the SOC or DOD of a battery at any time step is described as a linear

function of the charge and discharge rates of all times leading to this time step. To

prolong the battery life, a maximum limit and a minimum limit are often imposed

on the SOC or DOD at any time to avoid emptying or overcharging a battery.

• Energy level : The energy remaining in a battery at any give time. Similar to SOC,

a maximum limit and a minimum limit are often imposed to maintain the battery

health. Sometimes, an additional minimum limit is imposed at the beginning and/or

the end of the day to ensure sufficient energy is left to meet the needs of consumers.
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• The charge and discharge efficiencies: The percentage of energy that is actually

absorbed by the battery during charging or the energy that is actually delivered by

the battery during discharging. These efficiencies are assumed to be fixed.

• round-trip efficiency (RTE): Sometimes the charge and discharge efficiencies are not

considered separately but together as a RTE. This efficiency is also fixed in a fixed

model and is generally chosen between 80% and 90%. For example, Pilz et al. (2017)

used 0.918, Pandžić and Bobanac (2019) used 0.81 and 0.866, and Pelzer et al. (2016)

used 0.8.

The references for these parameters are listed in Table 2.2.

Table 2.2: Existing works on fixed battery models

Attribute Citation

Capacity (Barbato et al., 2011; Li et al., 2011; Barbato et al., 2011; Voice et al., 2011;
Nguyen et al., 2012; Tsui and Chan, 2012; Kim and Giannakis, 2013; Agnetis
et al., 2013; Shi et al., 2014, 2015; Kuschel et al., 2015; Anvari-Moghaddam
et al., 2015; Marzband et al., 2017; Nan et al., 2018; Zhou et al., 2018; Li
et al., 2019)

Max charge
or discharge rate

(Barbato et al., 2011; Li et al., 2011; Voice et al., 2011; Barbato et al., 2011;
Tsui and Chan, 2012; Nguyen et al., 2012; Kim and Giannakis, 2013; Shi
et al., 2014, 2015; Kuschel et al., 2015; Anvari-Moghaddam et al., 2015;
Marzband et al., 2017; Zhou et al., 2018; Sperstad and Korp̊as, 2019)

Min charge
or discharge rate

(Barbato et al., 2011; Tsui and Chan, 2012; Anvari-Moghaddam et al., 2015;
Nguyen et al., 2012; Kim and Giannakis, 2013; Shi et al., 2014, 2015; Zhou
et al., 2018; Li et al., 2019)

Min energy
level

(Nguyen et al., 2012; Shi et al., 2014; Barbato et al., 2011; Shi et al., 2015;
Marzband et al., 2017; Li et al., 2019)

Start/End-day
energy level

(Nguyen et al., 2012; Atzeni et al., 2013; Marzband et al., 2017; Nan et al.,
2018; Sperstad and Korp̊as, 2019; Li et al., 2019)

Charge/discharge
efficiency

(Vytelingum et al., 2010; Voice et al., 2011; Kim and Giannakis, 2013; Atzeni
et al., 2013; Zhang et al., 2013; Shi et al., 2015; Kuschel et al., 2015;
Marzband et al., 2017; Sperstad and Korp̊as, 2019; Li et al., 2019)

While fixed battery models are widely used in the demand scheduling literature, some

works argue that using linear models can leads to infeasible results for battery management

and an overestimate of the battery’s economic performance, due to the dynamic and non-

linear nature of the electrochemical battery process (Azuatalam et al., 2019). Therefore,

they are interested in investigating the impacts of including non-linearity in the battery

model on the economic performance of a battery in both the short-term and the long-term.
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A variable battery model may include a variable charge rate, a variable charge/discharge

efficiency and or a battery degradation cost function.

• Variable charge rate: In practice, the charge rate of a battery does not remain

constant in practice and it changes through stages. The charge stages of a lithium-

ion battery and a lead-acid battery are illustrated in Figure 2.1 and Figure 2.2.

A two-stage charging model, called the constant current-constant voltage model, is

commonly used. This model describes the charging current to be fixed when the

voltage is still low and increasing and to drop exponentially when the voltage reaches

a certain level and becomes fixed until the battery is fully charged (Vagropoulos and

Bakirtzis, 2013; Beard, 2019b). Pandžić and Bobanac (2019) took a step further

to consider the non-linearity in the battery’s actual charging ability as a piece-wise

linear function.

• Variable charge/discharge efficiency : In practice, the efficiency of a battery increases

with SOC and decreases with the charge/discharge current (Safoutin et al., 2015;

Azuatalam et al., 2019). Moreover, it is affected by the operating environment of

the battery such as the temperature and the humidity. One way to model a variable

efficiency is to use a lookup table created through observation in a lab environment,

such as the one shown in Table 2.3.

• Battery degradation cost : In practice, a battery loses its capacity over time due to

the charge-discharge cycles and ageing. This process is called battery degradation.

While ageing degradation is inevitable, cycling degradation can be slowed down by

better managing the battery profiles, such as avoiding frequent and large fluctuations

in the charge and discharge activities and keeping the DOD in a health range (above

20% or 50%).

Maintaining the battery health has an affect on cost savings for battery owners. In

the short term, discharging batteries more often can reduce more peak demand and

energy usages, leading to more daily cost savings. However, in the long term, it will

shorten the lifetime of the battery, leading to less accumulated cost savings. Pelzer

et al. (2016) showed a case study where a newly purchased battery of 20 kWh would

lost 21% — 34% of its capacity after one year when the battery degradation was

neglected during the scheduling process but only 1% — 2% when the degradation
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was considered. Abdulla et al. (2018) showed another case study where a battery

of 5 kWh would last 3.8 years (160%) longer when the battery degradation was

considered.

The simplest way to model the degradation cost is to consider it as a linear function

of the charge rate and assume the charge rate to be fixed (Abdulla et al., 2018). Some

studies also include other battery parameters, such as the investment costs, the end-

of-life capacity and the state-of-charge in the degradation cost function (Muenzel

et al., 2015; Pelzer et al., 2016; Wankmüller et al., 2017; Abdulla et al., 2018; Hossain

et al., 2019).

Table 2.3: The average charge efficiencies sampled in (Safoutin et al., 2015)

SOC
Charging Current

12A 30A 60A 90A 120A

90% 0.993 0.986 0.977 0.968 0.961
70% 0.993 0.986 0.976 0.968 0.960
50% 0.993 0.986 0.976 0.968 0.960
30% 0.993 0.986 0.976 0.967 0.960
10% 0.993 0.985 0.976 0.967 0.960

Battery Constraint A battery’s charge and discharge behaviours are governed by a

set of rules, defined as follows:

Definition 2.16. Battery charge and discharge constraints: constraints that limit a bat-

tery to either charge or discharge under the maximum power rate at any time.

Definition 2.17. Battery capacity constraint : a constraint that limits the energy level

of a battery to be below the maximum allowed capacity and above the minimum allowed

capacity at any time.

Definition 2.18. Battery SOC constraints: constraints that depict the change of energy

level over time between any two consecutive time periods.

Electricity Pricing

Commonly used pricing schemes in the demand scheduling literature include TOU, CPP

and real-time RTP. All of these pricing schemes are time varying, however, TOU is the
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Figure 2.1: Charge states of a lithium-ion battery provided in (Battery University, 2018)

Figure 2.2: Charge states of a lead-acid battery provided in (Battery University, 2019)



26 CHAPTER 2. BACKGROUND

most stable, CPP is semi-dynamic and RTP is the most dynamic. The references of these

pricing schemes are listed in Table 2.4.

• Time-of-Use: The TOU pricing scheme divides a day into a few time-blocks and

sets a fixed price for each of these time blocks.

• Critical Peak Pricing : The CPP pricing scheme can be considered as a TOU scheme

with an additional dynamic price. On a day with usual demand, the CPP prices are

the same as the TOU prices. On a day with higher than usual demand, the CPP

scheme replaces the price at the peak period with a dynamic price that reflects the

new peak demand. This dynamic price may be set a day head or in real ti me based

on the expected or actual demand.

• Real-time Pricing : The RTP pricing scheme is the most dynamic as it offers a price

that varies with the demand every (half an) hour. These prices may be set a day

ahead based on the expected demand or in real time based on the actual demand.

RTP has been widely recognised as the most effective at incentivising consumers

to participate in DR (Ramchurn et al., 2011; Hongbo Zhu, 2018). Consequently,

RTP has been adopted by many works to develop demand scheduling algorithms for

reducing the costs for consumers and/or suppliers. Commonly, the RTP scheme is

modelled as day-ahead prices for the next 24 hours or a pricing function for any time

period. When scheduling the demand of a single household, the day-ahead prices are

used for scheduling appliances or devices for the next 24 hours. When considering

the demand of a wider community, the pricing function is used to decide the price for

all households based on the actual demand at every time slot. The pricing function

is typically a quadratic function or a step-wise function that is strictly increasing.

Cost

The goal of solving a DSP is to minimise some costs. The most popular costs considered

in the literature are the monetary cost and the inconvenience cost. Some other cost-like

measurements have also been considered such as the peak demand, peak-to-average ratio

(PAR), the load difference and power loss. The references for theses costs or cost-like

measurements are provided in Table 2.5.
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Table 2.4: Existing works on pricing schemes

Pricing Citation

TOU (Hatami and Pedram, 2010; Barbato et al., 2011; Swalehe and Marungsri, 2018;
Nan et al., 2018)

CPP (Hussain et al., 2018; Nan et al., 2018)

Day-ahead
RTP

(Barbato et al., 2011; Goudarzi et al., 2011; Voice et al., 2011; Atzeni et al., 2012;
Ogwumike et al., 2015; Ma et al., 2016,?; Hussain et al., 2018; Nan et al., 2018)

RTP
function

(Samadi et al., 2010; Mohsenian-Rad et al., 2010; Caron and Kesidis, 2010;
Goudarzi et al., 2011; Li et al., 2011; Ramchurn et al., 2011; Nguyen et al., 2012;
Kim and Giannakis, 2013; Chavali et al., 2014; Veit et al., 2014; Zhang et al., 2015;
Shi et al., 2015; Vardakas et al., 2015; Kuschel et al., 2015; Mhanna et al., 2016)

• Monetary Cost : The monetary cost is paid by consumers or the utility companies to

consume or produce electricity. For clarity, we call the cost paid by consumers the

consumption cost and the cost paid by utility companies the supply cost. Commonly,

the consumption cost is calculated as a product of demands and prices while the

supply cost is modelled by a function that is strictly increasing and convex, such as

a quadratic function or a piece-wise linear function (Atzeni et al., 2013).

• Inconvenience Cost : The inconvenience cost, also known as the discomfort or dis-

satisfaction in the literature, is a penalty that occurs when changing the demand

patterns of consumers to reduce the peak demand. Two types of inconvenience costs

have been widely considered in the literature:

– Start-time related : a start-time related inconvenience cost is a penalty cost for

moving appliances away from their usual consumption times. When calculating

such costs, the PSTs are often involved — this cost may increase linearly or

exponentially with the distance between the actual start times and the PSTs

of appliances.

– Consumption related : a consumption related inconvenience cost is the penalty

for varying the total consumption of an appliance or a household. When cal-

culating such costs, a measurement called utility is used to evaluate the satis-

faction received by the consumers from consuming a good or service. In the

context of electricity consumption, the less access and inconvenience to elec-

tricity, the less satisfied he/she is. Another way to calculate the convenience



28 CHAPTER 2. BACKGROUND

Table 2.5: Existing works on costs

Cost Citation

Monetary cost (Conejo et al., 2010; Hatami and Pedram, 2010; Samadi et al.,
2010; Mohsenian-Rad et al., 2010; Chen et al., 2011; Goudarzi
et al., 2011; Ramchurn et al., 2011; Voice et al., 2011;
Mohsenian-Rad and Leon-Garcia, 2010; Barbato et al., 2011;
Ren et al., 2011; Tsui and Chan, 2012; Li et al., 2012; Atzeni
et al., 2012; Maharjan et al., 2013; Agnetis et al., 2013; Zhao
et al., 2013; Chavali et al., 2014; Song et al., 2014; Veit et al.,
2014; Sheikhi et al., 2015; Zhang et al., 2015; Kuschel et al.,
2015; Ogwumike et al., 2015; Anvari-Moghaddam et al., 2015;
Ma et al., 2016; Mhanna et al., 2016; Muralitharan et al., 2016;
Rasheed et al., 2016; Jovanovic et al., 2016; Ma et al., 2016;
Fioretto et al., 2017; Bharathi et al., 2017; Hussain et al., 2018;
Swalehe and Marungsri, 2018)

Inconvenience
cost

Start time
related

(Mohsenian-Rad and Leon-Garcia, 2010; Chen et al., 2011;
Goudarzi et al., 2011; Ramchurn et al., 2011; Adika and Wang,
2012; Tsui and Chan, 2012; Agnetis et al., 2013; Zhao et al.,
2013; Chavali et al., 2014; Shi et al., 2015; Anvari-Moghaddam
et al., 2015; Ma et al., 2016; Muralitharan et al., 2016; Mhanna
et al., 2016; Jovanovic et al., 2016; Longe et al., 2017; Bharathi
et al., 2017; Hussain et al., 2018)

Consumption
related

(Conejo et al., 2010; Samadi et al., 2010; Fan, 2011; Kim and
Giannakis, 2013; Maharjan et al., 2013; Rahbari-Asr et al., 2014;
Zhang et al., 2015; Longe et al., 2017)

Device
cost

Battery
cost

(Vytelingum et al., 2010; Li et al., 2011; Zhang et al., 2013; Shi
et al., 2014, 2015; Yang et al., 2015; Zhou et al., 2018)

On-site
generation

(Atzeni et al., 2013; Chaouachi et al., 2013; Shi et al., 2014)

Others

PAR (Mohsenian-Rad et al., 2010; Nguyen et al., 2012; Ren et al.,
2011)

Peak
demand

(Barbato et al., 2011; Nguyen et al., 2012; Lee et al., 2012)

Load
difference

(Logenthiran et al., 2012,?; Van Den Briel et al., 2013)

Power loss (Shi et al., 2014)

cost is through comparing the actual operation modes of appliances and their

ideal operation modes.

• Operation Cost : Device costs refer to the costs occur for installing, maintaining

and operating devices, including household appliances, distributed on-site generators

(e.g. diesel generators, combined heat and power systems and fuel cells) and energy

storage systems. While they do assist in peak demand reductions and monetary cost

reductions, it is important to consider their capital and maintenance costs.
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• Other Costs: Cost-like measurements refer to measurement that reflects the costs

required for operating and maintaining the power systems, such as the PAR, the

peak demand, the load difference and power loss. PAR is the ratio of the peak

demand and the average demand over a period of time. The peak demand is the

maximum demand of all households across a region over a period of time (e.g. a

day). The load difference refers to the difference between the actual load profile of

consumers and the ideal load profile expected from the utility companies. The power

loss is the loss of energy due to (over)heated power lines. A high value for any of

these measurements indicates a higher cost for operating and maintaining the power

systems.

• Combined Cost : Various types of costs are often considered at the same time to

balance the needs of consumers for different purposes. For example, consumers may

want to reduce their consumption cost but not increase their inconvenience/dis-

comfort too much, thus they may want to find a balance between reducing the

consumption cost the inconvenience cost instead of just minimising one or maximis-

ing the other. A popular way of finding such balances is through multi-objective

optimisation (Mohsenian-Rad and Leon-Garcia, 2010; Ramchurn et al., 2011; Chen

et al., 2011; Li et al., 2011; Yu et al., 2011; Kim and Giannakis, 2013; Rahbari-Asr

et al., 2014; Barbato and Capone, 2014; Deng, Yang, Hou, Chow and Chen, 2015;

Anvari-Moghaddam et al., 2015; Vardakas et al., 2015).

Multi-objective optimisation is a discipline in optimisation that deals with optimising

multiple conflicting objectives at the same time. The most common way to optimise

multiple conflicting objectives is by combing them in a new objective using the weighted

sum (WS) method and optimise the new objective instead. In the context of demand

scheduling, all considered costs can be summed up together into a new cost function and

each original cost can be multiplied by a weight that indicates the importance of this cost

among all costs. This new cost function is then used for evaluating the best consumption

times or levels for appliances. Note that finding the suitable weight for each original cost

is important for achieving the desired balance between multiple needs. However, this

thesis does not carry out extended experiments on evaluating the impacts of varying the
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choices of weights on the problem solutions, as our focus in on the algorithm design and

development and the choices of weights do not affect our algorithm choice.

2.3.2 Demand Scheduling Problem

The existing DSPs can be categorised based on the number of users involved in the prob-

lem, such as demand scheduling problems for a single household (DSP-SHs) and demand

scheduling problems for multiple households (DSP-MHs). First, we introduce the elements

of a typical DSP-SH. Then, we present the elements of a typical DSP-MH.

Demand Scheduling Problem for a Single Household

A typical DSP-SH includes three essential elements: a household demand model, a pricing

model and objectives. The models of these elements vary across different research works.

Household Demand Model A household demand model can include a job model, a

battery model and/or other device model such as an on-site generator model.

Job Model A household job has been modelled:

1. using a forecast demand profile that does not change over time (Vytelingum et al.,

2010; Voice et al., 2011; Atzeni et al., 2013; Worthmann et al., 2015) when batteries

are considered,

2. using a minimum and a maximum demand limit of the household for any time

interval with no job details (Samadi et al., 2010; Kou et al., 2020), or

3. using a set of jobs that have their attributes and constraints (Chavali et al., 2014;

Mhanna et al., 2016).

A job can be NS, shiftable or PF as discussed in Section 2.3.1. A job model consists

of attributes and constraints, which is described as follows:

• Attributes: The widely considered attributes of a job include a fixed demand rate,

a duration, an EST and a LFT (Mohsenian-Rad and Leon-Garcia, 2010; Lee et al.,

2012; Zhao et al., 2013; Van Den Briel et al., 2013; Anvari-Moghaddam et al., 2015;

Ma et al., 2016; Manzoor et al., 2017). Some works have expanded the job to include

multiple operation phases and each phase has a different demand rate (Barbato et al.,
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2011; Sou et al., 2011; Ogwumike et al., 2015). Some other works have added a PST

for each job, so consumers can specify their ideal times to run those jobs (Goudarzi

et al., 2011; Agnetis et al., 2013; Anvari-Moghaddam et al., 2015). A few works have

allowed the demand rate to be adjustable and a maximum and a minimum demand

limits are set for any time of the scheduling horizon (Sou et al., 2011; Agnetis et al.,

2013; Ma et al., 2016; Manzoor et al., 2017).

• Constraints: The scheduling time constraints are essential for all jobs. The sequential

constraint is considered when a job has multiple operation phases (Barbato et al.,

2011; Agnetis et al., 2013). Sometimes the between-phase delay constraint is used

together with the sequential constraint (Sou et al., 2011; Anvari-Moghaddam et al.,

2015; Ogwumike et al., 2015). The precedence constraint and the preceding delay

constraint are considered when some jobs need to run in a given order (Sou et al.,

2011; Anvari-Moghaddam et al., 2015; Ogwumike et al., 2015). The min-max demand

constraint is used when a job is PF and its demand rate is adjustable (Sou et al.,

2011; Agnetis et al., 2013; Ma et al., 2016; Manzoor et al., 2017). The min consecutive

ON constraint, the max consecutive OFF constraint and the max OFF constraint

are included when a job is interruptible (Agnetis et al., 2013).

Note that, the precedence constraint, the preceding delay constraint, sequential con-

straint, between-phase delay constraint and household demand limit constraint are con-

sidered as coupling constraints because they involve more than one job in a constraint.

These constraints couple multiple jobs together, preventing them from being scheduled

independently from each other and increasing the difficulties of scheduling.

In addition to constraints for job, the household demand limit constraint is sometimes

adopted when the total demand of running jobs cannot exceed a given threshold at any

time (Samadi et al., 2010; Mohsenian-Rad and Leon-Garcia, 2010; Goudarzi et al., 2011;

Sou et al., 2011; Lee et al., 2012; Agnetis et al., 2013; Ogwumike et al., 2015; Hussain

et al., 2018).

Battery Model A battery model also includes a set of attributes and constraints.

The constraints of a battery have been discussed in Section 2.3.1.

The common attributes of a battery model include a charge or discharge efficiency,

a minimum and a maximum charge or discharge rate, a maximum capacity (Vytelingum
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et al., 2010; Voice et al., 2011; Atzeni et al., 2013; Zhang et al., 2013; Worthmann et al.,

2015; Yang et al., 2015; Pelzer et al., 2016; Ghazvini et al., 2017; He et al., 2019; Hos-

sain et al., 2019; Couraud et al., 2020). Some works include additional attributes such

as a minimum capacity or a minimum initial capacity (at the start of the scheduling

horizon) (Atzeni et al., 2013; Yang et al., 2015; He et al., 2019), and an energy leakage

rate (Atzeni et al., 2013). A few works consider a running cost rate (Vytelingum et al.,

2010; Voice et al., 2011; Couraud et al., 2020), a storage cost rate (Zhang et al., 2013) or

a battery loss rate (Yang et al., 2015) to measure the loss of battery capacity over time

due to the charges and discharges.

Other studies consider a more advanced battery model where some attributes are

dynamic (Hossain et al., 2019; Pandžić and Bobanac, 2019; Sui and Song, 2020). For

example, Pilz et al. (2017) modelled the charging process as a two-stage process. First, the

stored energy increased linearly when the battery was on charge. Second, when the battery

cell voltage was beyond a terminal voltage, the charging current dropped off exponentially

and the stored energy levelled off exponentially accordingly. This work also considered

two types of discharging: normal discharging (when the battery was being discharged)

and self-discharging (when the battery was not being used). During self-discharging, the

stored energy decreased exponentially over time.

Other Device Model Some studies include on-site generators such as photovoltaic

(PV) panels, fuel cell co-generation systems and micro combined head and power sys-

tems (Mohsenian-Rad and Leon-Garcia, 2010; Barbato et al., 2011; Agnetis et al., 2013;

Anvari-Moghaddam et al., 2015; Hossain et al., 2019) in their DSP-SHs. The simplest

model for a PV panel is a forecast of energy outputs for the next day (Barbato et al., 2011;

Anvari-Moghaddam et al., 2015). A more complex model for a PV panel may include a

forecast of solar irradiation, an overall efficiency, the area of the panel, the temperature

around the panels and a temperature coefficient of the maximum output power (Hossain

et al., 2019). The models for other fossil fuelled on-site generations can include a fuel

consumption rate, an efficiency, a minimum and a maximum power output capacity and

a ramping up/down rate (Agnetis et al., 2013; Anvari-Moghaddam et al., 2015).

Pricing Model The prices for DSP-SHs are often assumed to be known or forecasted

by most works. The commonly used pricing scheme is the day ahead pricing or RTP called
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by some works (Mohsenian-Rad and Leon-Garcia, 2010; Goudarzi et al., 2011; Barbato

et al., 2011; Sou et al., 2011; Zhang et al., 2013; Anvari-Moghaddam et al., 2015; Yang

et al., 2015; Ma et al., 2016; Manzoor et al., 2017; Hussain et al., 2018; Couraud et al.,

2020), followed by TOU (Agnetis et al., 2013; Zhao et al., 2013), which are all forecasted

or given a day ahead. However, few works do not require prices for scheduling (Lee et al.,

2012; Van Den Briel et al., 2013; Ogwumike et al., 2015).

Objective The most common objective of solving a DSP-SH is minimisation of the daily

consumption cost (Mohsenian-Rad and Leon-Garcia, 2010; Goudarzi et al., 2011; Barbato

et al., 2011; Sou et al., 2011; Agnetis et al., 2013; Zhao et al., 2013; Anvari-Moghaddam

et al., 2015; Ogwumike et al., 2015; Ma et al., 2016; Manzoor et al., 2017; Pilz et al.,

2017; Hussain et al., 2018) , followed by minimisation of inconvenience or dissatisfac-

tion (Vytelingum et al., 2010; Voice et al., 2011; Mohsenian-Rad and Leon-Garcia, 2010;

Goudarzi et al., 2011; Agnetis et al., 2013; Zhao et al., 2013; Anvari-Moghaddam et al.,

2015; Yang et al., 2015; Ma et al., 2016; Bharathi et al., 2017; Manzoor et al., 2017; Hussain

et al., 2018; He et al., 2019; Hossain et al., 2019; Couraud et al., 2020). The inconvenience

or dissatisfaction is usually considered as a penalty cost that is calculated based on dif-

ferences between preferred and actual start times/temperatures/operation modes. Some

works consider minimisation of the battery loss (Vytelingum et al., 2010; Voice et al.,

2011; Zhang et al., 2013; Yang et al., 2015; He et al., 2019; Hossain et al., 2019; Couraud

et al., 2020). Some other works include minimisation of the maximum/peak demand or

PAR (Barbato et al., 2011; Lee et al., 2012; Pilz et al., 2017). A few works consider min-

imisation of operation and maintenance costs when on-site generators and batteries are

included (Zhang et al., 2013; Anvari-Moghaddam et al., 2015; Bharathi et al., 2017).

Analysis In summary, we have found from our review of literature on DSP-SHs that:

1. Household demand model: A household demand may include jobs, a battery and

other devices such as on-site generators.

(a) Job model: The simplest household job model is a fixed demand profile, or

a variable demand profile that can be adjusted over time. More advanced

job models include a set of essential attributes and non-coupling constraints.

Complex job models have more attributes and coupling constraints.
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(b) Battery model: The simplest battery model is a fixed model where attributes

are all fixed. More advanced battery models have variable attributes and even

battery operation or degradation costs.

(c) Other device model: Sometimes, additional on-site generators are included in

the problem model.

2. Pricing model: Generally, DSP-SHs use price forecasts under various pricing schemes

instead of pricing functions where the price changes dynamically with the demand

in real time.

3. Objective: The most common objectives are consumption and inconvenience cost.

Sometimes, battery costs, peak demand, PAR or operation and maintenance costs

of on-site generators are also included.

The household job model can be continuous and linear when a demand profile is

considered, or mixed-integer and linear when shiftable jobs are considered. The battery

model can be linear when a fixed model is used, or non-linear when a variable model

is adopted. The pricing model is non-linear when a dynamic pricing function is used.

The objective functions can be linear or non-linear depending on the design of each cost

function. Overall, a DSP-SH can be a continuous and linear problem or a mixed-integer

non-linear problem depending on the problem models.

Demand Scheduling Problem for Multiple Households

Same as DSP-SHs, DSP-MHs include three key elements: a household job model, a pricing

model and objectives. The models of these elements vary across different research works.

Household Demand, Battery and Other Device Models The household demand

model is the same as those in DSP-SHs, except that an additional area demand limit

constraint is sometimes used for restricting the total demand of all households at any

time (Samadi et al., 2010).

Definition 2.19. Area demand limit constraint : a constraint that limits the total demand

of all households served by the same utility company in a given area.
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Pricing Model Different fromDSP-SHs, the prices for DSP-MHs are commonly deter-

mined by a pricing function which calculates the prices based on the actual demand A

pricing function can be a generic convex and increasing quadratic function (Samadi et al.,

2010; Mohsenian-Rad et al., 2010; Voice et al., 2011; Atzeni et al., 2013; Chavali et al.,

2014; Mhanna et al., 2016; Ghazvini et al., 2017; Pilz et al., 2017; He et al., 2019; Kou

et al., 2020), or a piece-wise linear convex function (Li et al., 2011; Kim and Giannakis,

2013). However, some studies still assume the prices are given a day ahead (Vytelingum

et al., 2010; Ramchurn et al., 2011; Zhang et al., 2013; Worthmann et al., 2015; Yang

et al., 2015; Fioretto et al., 2017; Couraud et al., 2020). Few works require no prices for

scheduling (Van Den Briel et al., 2013).

Objective The objectives of a DSP-MH are the same as those in DSP-SHs except that

the objective values are calculated from (the total demand profile of) all households instead

of from one single household

Analysis In summary, we have identified the following findings from our review of lit-

erature on problem formulations for demand scheduling problems for multiple households

with batteries (DSP-MBs):

1. The model of a DSP-MH is developed based on the model of a DSP-SH. The house-

hold demand model and objectives are the same as those in a DSP-SH, however,

an additional constraint that limits the total demand of all households may be con-

sidered and the objective values are calculated based on the total costs or the total

demand profile of all households.

2. The electricity price is generally calculated using a quadratic, piece-wise linear or

step pricing function. However, price forecasts are still used in some works.

DSP-MHs with or without batteries are generally non-linear because of the pricing

function, however, they can be continuous when jobs are modelled by demand profiles, or

mixed-integer when jobs include a set of attributes and constraints.

2.3.3 Demand Scheduling Method

The existing demand scheduling methods for DSPs can be broadly divided into two types:

centralised methods and distributed methods. Centralised methods refer to methods whose
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the computations are carried out on a single computation unit, while distributed methods

refer to those whose computations are distributed to various computation units. Cen-

tralised methods can be used for solving DSP-SHs and small-scale DSP-MHs. Distributed

methods are more efficient for solving large-scale DSP-MHs.

Centralised Method

Typically, centralised methods collect the full knowledge of appliances in households, com-

pute the optimal schedule for these appliances on a single computation unit, and send back

the schedule to each household. Most centralised methods are designed for solving DSP-

SHs. However, some studies also adopt centralised methods for solving small DSP-MH.

For example, Mohsenian-Rad and Leon-Garcia (2010) studied a DSP-SH where mul-

tiple shiftable and non-interruptible jobs (SNIJs) and an EV was scheduled to minimise

the daily consumption cost of all jobs and the delay of starting each job given a price

forecast. Goudarzi et al. (2011) investigated a DSP-SH where multiple SNIJs were sched-

uled under two pricing schemes: the day ahead pricing scheme and the RTP scheme to

minimise the daily consumption cost of all jobs and the inconvenience to consumers. Sou

et al. (2011) investigated a DSP-SH where multiple SNIJs and shiftable and interruptible

jobs (SIJs) were scheduled against known prices to minimise the daily consumption cost

of all jobs. Barbato et al. (2011) studied a DSP-SH where multiple SNIJs, a battery and

PVs were managed to minimise the daily consumption cost and the peak demand of all

jobs against a price forecast. Van Den Briel et al. (2013) investigated a DSP-SH where

SNIJs were scheduled to fit a desired load profile given by an utility company. Zhao

et al. (2013) studied a DSP-SH where multiple SNIJs/SIJs (rice cookers, air conditioners,

electric radiators, water heaters, dishwashers, kettles, humidifiers and clothes dryers) and

non-shiftable jobs (NSJs) (lights, computers, cleaners, TVs, irons, hair dryers and fans)

were scheduled against given prices to reduce the daily consumption cost of all jobs and the

wait time of using each job. Agnetis et al. (2013) investigated a DSP-SH where multiple

NSJs, SNIJs, thermal jobs (TJs) (water heaters or air conditioners (ACs)), SIJs, a battery

and On-site generators (OGs) such as micro-CHPs and PV were managed to minimise the

daily consumption cost and the deviations between the PSTs and the actual start times

(ASTs) of all jobs and the climate discomfort of the household under the TOU pricing

scheme. Anvari-Moghaddam et al. (2015) considered a DSP-SH where multiple SNIJs,
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TJs, PVs and a battery were managed against given prices to minimise the cost of pur-

chasing electricity from the main power system, the costs of operating the co-generation

generation system and the battery, and the inconvenience to consumers. Ogwumike et al.

(2015) considered a DSP-SH where four SNIJs (a washing machine, a dryer, a dish washer

and an electric vehicle) and two NSJs (a heater and a TV) were scheduled to reduce the

daily consumption cost of all jobs. Pelzer et al. (2016) studied a DSP-SH where a battery

was scheduled for energy arbitrage to maximise revenues from discharging back to power

systems, and minimising costs of purchasing energy from power systems and the degra-

dation cost from charging/discharging the battery. Ma et al. (2016) studied a DSP-SH

where NSJs, SNIJs, and power flexible jobs (PFJs) were managed to minimise the daily

consumption cost of all jobs and the discomfort/inconvenience to consumers against give

prices. Manzoor et al. (2017) investigated a DSP-SH where three NSJs (a kettle, a toaster

and a fridge), one SNIJ (a washing machine) and two PFJs flexible jobs (lights and a

heating, ventilation, and air conditioning (HVAC)) were scheduled against given prices to

reduce the daily consumption cost of all jobs and the discomfort/inconvenience to con-

sumers. Marzband et al. (2017) investigated a DSP-SH where a household managed its

distributed generators (DGs), batteries and jobs to reduce energy costs and protect the

stability of its power supply from sudden changes in the demand or supply. Pandžić and

Bobanac (2019) worked on a DSP-SH for a single battery to evaluate revenues earned from

energy arbitrage using different battery charging models. Hossain et al. (2019) studied

a DSP-SH in a microgrid to evaluate the impacts of including the battery degradation

cost on energy costs when uncertainties in renewable energy resources, household jobs and

electricity prices were considered. Couraud et al. (2020) investigated a demand scheduling

problem for a single battery (DSP-SB) for a microgrid to evaluate cost savings and the

battery depreciation when the battery lifespan was considered.

Adika and Wang (2014) worked on a DSP-MH where households allowed an aggregator

to manage jobs and batteries, in order to reduce the total energy cost. Longe et al. (2017)

studied a DSP-MH where households allowed a controller (e.g. the utility company or

an aggregator) to compute the best schedules for their jobs and batteries, in order to

minimise the total consumption cost and the total inconvenience cost (dissatisfaction cost).

Pooranian et al. (2018) investigated a DSP-MH where a smart building scheduled the jobs

of multiple homes, a solar panel and a battery to minimise the total cost of buying/selling
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power from/to the main power system, the cost of maintaining and operating the solar

panels and the battery, and the cost of the peak demand charge. Zhou et al. (2018)

considered a DSP-MH where batteries and controllable jobs of consumers were managed

in ways to minimise the cost of purchasing energy from the power systems and the cost of

operating the cloud energy storage, and to maximise the revenues from sharing energies

between consumers.

Solving Technique The techniques that have been widely used in centralised meth-

ods are mixed-integer programming (MIP) methods, (meta)heuristic algorithms (MHAs)

(e.g. genetic algorithms and evolutionary algorithms) and constraint programming (CP)

methods. More explanations of these techniques are provided in Appendix B.3.

MIP methods have been widely used in early works. These methods involve implement-

ing problems in a modelling language such as AMPL (Fourer et al., 1989), YALMIP (Lof-

berg, 2004) or GAMS (Bussieck and Meeraus, 2004), and sending these models to a MIP

solver such as Gurobi or CPLEX to retrieve the optimal solutions (Mohsenian-Rad and

Leon-Garcia, 2010; Barbato et al., 2011; Sou et al., 2011; Agnetis et al., 2013; Anvari-

Moghaddam et al., 2015). Few works have considered CP methods (Fioretto et al., 2017).

Similar to MIP methods, CP methods also involve implementing problems in a mod-

elling language, however, CP methods send the models to a CP solver such as Gecode

and Chuffed instead. Recent years have seen increasing interests in using MHAs such as

evolutionary algorithms (Zhao et al., 2013; Manzoor et al., 2017; Bharathi et al., 2017;

Hussain et al., 2018), probability distributions (Van Den Briel et al., 2013), and variants

of searching algorithms (Ogwumike et al., 2015; Ma et al., 2016). After investigating each

type of method, we have found that:

• MIP methods: MIP methods are mature optimisation methods that have been used

in industrial applications for decades. They offer powerful modelling capacities,

however, their computation costs are exponential and therefore these methods do

not scale well in practice.

• heuristic algorithms: heuristics algorithms are widely used techniques that scarify

optimality for computation speed. However, their capacity to incorporate coupling

constraints is limited.
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• CP methods: similar to MIP methods, CP methods provide powerful modelling

capacities and optimality. However, CP and MIP methods are based on different

principles. CP methods are based on search and inference while MIP methods are

based on mathematical structures of the problems. More details on the differences

between CP and MIP methods have been presented in Chapter B. CP methods have

proven to be more efficient at solving some scheduling problems (Kelareva et al.,

2012; e Silva de Oliveira and de C. Ribeiro, 2015; Maleck et al., 2018; Li and van der

Linden, 2018; Laborie, 2018), however, limited studies have been done on applying

CP methods in demand scheduling problems.

The strengths and weaknesses of each type of methods are summarised in Table 2.6.

Table 2.6: Strengths and weaknesses of MIP, CP and heuristic algorithms

Strengths Weaknesses

MIP
- well-known techniques
- powerful modelling capacities
- guarantee optimality

- exponential complexity and
therefore do not scale well

CP
- powerful modelling capacities
- guarantee optimality

- exponential complexity and
therefore do not scale well
- limited studies available

Heuristic
- widely used techniques
- polynomial complexity and
therefore faster

- does not guarantee optimality
- less powerful modelling capacities

Analysis While centralised methods are effective for scheduling devices including jobs,

batteries and on-site generators in ways to minimise some total costs while satisfying a

given set of constraints, our review of literature has informed us that these methods are

widely considered impractical at a large scale by many works (Samadi et al., 2010; Voice

et al., 2011; Ramchurn et al., 2011; Tsui and Chan, 2012; Logenthiran et al., 2012; Van

Den Briel et al., 2013; Shi et al., 2014; Chavali et al., 2014; Wang et al., 2014; Deng, Yang,

Hou, Chow and Chen, 2015; Zhang et al., 2015).

Firstly, centralised methods require complete knowledge of appliances and consumption

requirements/preferences across all consumers in advance, which is itself impractical and

even a privacy concern to many people.
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Secondly, centralised methods do not scale well with the number of consumers or

households as the computational complexity often increases exponentially with the prob-

lem size (Sou et al., 2011; Van Den Briel et al., 2013; Kim and Giannakis, 2013; Shi et al.,

2014; Wang et al., 2014; Mhanna et al., 2016), especially when coupling constraints and a

pricing function (when the price depends on the demand in real-time) are used. Ramchurn

et al. (2011) tested solving a DSP-MH using the IBM ILOG CPLEX solver on a 64-bit

machine with 12GB of RAM. A pricing function was used and no coupling constraint was

considered for each household. Their computer could only model and solve a DSP-MH

of up to 75 households with up to three SNIJs each and no other coupling constraints.

Mhanna et al. (2016) tested solving a DSP-MH using the Gurobi 6.0.5 solver on a 64-bit

machine with an Intel R© 4.7GHz Core i7 and 128GB of RAM. Their problem included

1280 households with up to ten appliances each. A pricing function was used and a cou-

pling constraint was set for all households. Their computation time was three days. Kou

et al. (2020) tested solving a DSP-MH using the CPLEX solver on a laptop with Intel R©

CoreTM i7-8650U 1.90GHz CPU, and 16.00GB RAM. Their problem included 35 house-

holds with an air-conditioner, an electric hot water heater, a battery and some jobs each.

Their machine could not reach a solution within an hour.

Distributed Method

The drawbacks of the centralised scheduling methods have driven researchers to look

for alternative methods that are more scalable, efficient and practical. The distributed

scheduling methods are such alternative methods, which allow households to schedule ap-

pliances or devices independently and be coordinated through smart pricing. Households

do not need to share their detailed consumption needs, addressing the privacy and prac-

ticality issue of the centralised scheduling methods; and the computation of scheduling is

distributed to each household, addressing the scalability issue.

Coordination of household is a key component of distributed methods, without which

will cause load synchronization or a rebound peak where the peak demand increases above

normal levels at the cheaper/cheapest time intervals. For example, consider when house-

holds schedule appliances independently against the same set of prices without any coordi-

nation, which is often the case in practice, households are likely to move consumption to-

wards the same cheaper/cheapest time intervals, causing load synchronisation or a rebound



2.3. LITERATURE REVIEW 41

peak (Mohsenian-Rad and Leon-Garcia, 2010; Mohsenian-Rad et al., 2010; Vytelingum

et al., 2010; Goudarzi et al., 2011; Ramchurn et al., 2011; Voice et al., 2011; Chen et al.,

2011; Nguyen et al., 2012; Li and Trayer, 2012; Li et al., 2012; Van Den Briel et al.,

2013; Veit et al., 2014). Some form of coordination is essential for enabling the significant

benefits of managing demand for a large population.

Three types of coordination methods have been proposed in existing works. We have

named them the one-way coordination methods (OWCMs), the interactive coordination

methods (ICMs) and the third-party coordination methods (TPCMs). OWCMs reply on

information passed from utility companies to households without communication between

households or feedback from households to the companies. ICMs use information iter-

atively broadcasted among households. TPCMs employ a third-party entity, such as a

utility company or a demand response service provider (DRSP), to produce pricing sig-

nals based demand profiles of households sent from households.

One-way Coordination Method One-way coordination methods (OWCMs) include

distributed scheduling methods that coordinate households through information passed

from the utility company to households, such as day-ahead pricing signals (Ramchurn

et al., 2011) or ideal shiftable load profiles (Van Den Briel et al., 2013). Only once-off

communication is required between households and the utility company each day.

Vytelingum et al. (2010) studied a DSP-MB where households learnt to choose the

best battery capacities for themselves. Each household was considered as an agent that

selfishly scheduled its battery against predicted prices of the next day in ways to minimise

its own energy cost. At the beginning of each day, each agent calculated a better battery

capacity and a new storage profile. More specifically, each agent performed the following

actions at the beginning of the day:

1. calculated a desired battery capacity (regardless of its own battery capacity) that

would minimise its energy cost given the predicted prices,

2. applied a learning rate to update (increase) its current battery capacity towards the

desired battery capacity,

3. scheduled the battery using the updated capacity, and
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4. applied another learning rate to decide whether this agent would exercise the new

battery schedule in practice.

Their method was tested with simulated households created from typical UK load profiles.

Their results showed that when 38% of the simulated population were equipped with a

battery, the algorithm would converge to the best desired battery capacity (3.55 kWh on

average at which the market prices were flatten to the minimum values) after around two

months. This method took months to converge because each agent rescheduled its battery

once per day. Moreover, it did not consider dynamic pricing where the price varied with the

actual demand, and it assumed household demands to be the same every day. Thirdly, the

learning rate required manual tuning to ensure convergence. For example, both learning

rates needed to be small enough, e.g. between 0.05 to 0.2, to ensure convergence.

Ramchurn et al. (2011) solved a DSP-MH using pricing signals to coordinate house-

holds and an adaptive mechanism to avoid load synchronization each day. This method

scheduled households jobs against day-prices before a day starts, and used an adaptive

mechanism to determine how to execute the schedules during the day. This adaptive

mechanism included a learning rate and a probability. The learning rate was designed

for moving jobs towards their scheduled time intervals part of the way instead of all the

way through. The value of the learning rate affects how close jobs would be moved to

their scheduled times. The probability was used for deciding whether the heater would

execute the pre-calculated schedule at all. Both the learning rate and the probability were

given by the utility company and the same for all households. Their method was tested

on a population of 5000 households. Each household had two jobs and 7% to 25% of

these households had an electric heater. When the learning rate and the probability were

small enough, for example when the probability was 0.05, their method achieved the best

schedules for households after 100 days under the assumption that the household demands

remained more or less the same during the whole period. The peak demand was reduced

by 17% when 7% of the population owned a heater and 22% when 25% of the population

owned a heater. However, they assumed the consumption requirements and preferences

of all households were more or less the same for all those days.

Voice et al. (2011) investigated a DSP-MB where households were guided through

expected market prices to maximise the benefits. Each household was considered as an

agent that selfishly scheduled its battery to minimise its own energy cost given the expected
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market prices from the suppliers. This work proposed a scheduling method that is repeated

once every day (each day was an iteration), which is described as follows:

1. The supplier calculated the optimal amount of electricity to purchase for the next day

by minimising the expected market costs given the total expected demand profile.

Then the supplier calculated new market prices based on that optimal amount of

electricity, and passed the market prices to households.

2. Each household scheduled battery against the prices given by the supplier to min-

imise its energy cost, battery running cost and a penalty cost imposed by the supplier

to avoid the storage profile changing greatly between days. Note that the household

demand was assumed to be fixed everyday.

The penalty cost imposed for each household was the key for achieving the equilibrium.

This cost included a coefficient that needed to be small but greater than a minimum

number calculated by the Lyapunov function. This work proved that the use of penalty

cost guaranteed convergence and the supplier would make a profit everyday. Their method

was tested with 1000 simulated households. The battery capacity of each household was

on average 10 kWh. Their results showed that the unique equilibrium was achieved after

a number of trading days and the wholesale cost for the supplier was reduced by 16%.

Although this work employed a dynamic pricing function, it again required days to achieve

convergence. Moreover, the demand was assumed to fixed.

Van Den Briel et al. (2013) solved a DSP-MH using an ideal shiftable load profile to

coordinate households and a probabilistic mechanism to avoid load synchronisation. This

ideal shiftable load profile is the total shiftable load desired by the utility company at

each time interval. This method scheduled household jobs by generating a probability

distribution based on the ideal load profile. A probability distribution was calculated for

each job based on its EST, LFT and the ideal shiftable load profile. The actual start

time of a job was randomly selected using its probability distribution. Their experiment

results showed that the actual shiftable load profile of all households approximated the

ideal shiftable load profile to a great extent when millions of jobs were scheduled using

their probability distributions. Their method was fast to run and easy to use. However,

the utility company needed to financially motivate consumers to choose ESTs and LFTs

for their SNIJs in ways that were more likely to match the ideal shiftable load profile.
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These methods provide guidances for households to move appliances or devices in ways

that avoid load synchronisation, and have a relatively low computation cost. However,

they assumed that the demand does not change over time, did not consider inconvenience

to consumers and excluded coupling constraints on appliances. It is unclear that how these

methods would incorporate changes in demands and coupling constraints in practice.

Interactive Coordination Method Interactive coordination methods (ICMs) refer to

distributed scheduling methods that coordinate households through iterative communi-

cation among households. Common ICMs include cooperative game theoretic methods

and multiagent methods. ICMs follow a general solving framework, which is described as

follows:

1. Initialisation: Each household schedules appliances and broadcasts its demand pro-

file to all other households.

2. Rescheduling : Upon receiving demand profiles from others, each household resched-

ules appliances to minimise its cost, assuming the schedules of others were fixed.

Then households again broadcast their demand profiles to others.

3. Iteration: Households iteratively reschedule appliances based on demand profiles of

others and broadcast demand profiles to others.

4. Convergence: The iteration continues until they reach a stopping condition, which

can be the Nash equilibrium (NE) where no household can reschedule appliances

to reduce its cost or some termination conditions (e.g. a timeout or a maximum

number of iterations) are met.

The problem solved by each household at the rescheduling step is in fact a DSP-SH that

can be solved by the methods introduced in Chapter ??.

Mohsenian-Rad et al. (2010) proposed a cooperative game theoretic method that re-

duced the total cost of households. Each household was considered as a player and they

played a game together to find the NE. First, this work formulated the DSP-MH as two sep-

arate problems: a PAR minimisation problem and a cost minimisation problem. Second,

this work solved each problem following the solving framework of ICMs. At the reschedul-

ing and iteration step, households used the interior-point method (IPM) to reschedule
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appliances. Only one household was allowed to reschedule and broadcast at one time,

otherwise the NE will not be reached. The order of households at each iteration was

determined by an ordering heuristic algorithm. Their method was tested on up to ten

consumers each of which had 10–20 shiftable jobs and 10–20 non-shiftable jobs. The re-

sults showed that only minimising the total consumption cost was sufficient to reduce the

PAR effectively, however only minimising the PAR did not reduce the total consumption

cost effectively. When minimising the total consumption cost, this method converged in

22 iterations, which was 2 iteration per household, and achieved 17% PAR reduction and

18% cost reduction. This work proved that using a convex and strictly increasing function

as the cost function was essential for the algorithm to reach the desired NE. Moreover,

proportionally charging households would incentivise consumers to participate truthfully

as they would not gain benefits from cheating.

Pilz et al. (2017) studied a DSP-MB to evaluate the impacts of considering efficiencies

in the battery models on the overall cost reduction and the PAR reduction for multiple

households. Each household was considered as an agent that determined the battery

operation at each scheduling interval. The possible operations for each battery included

charging for the whole or half of the scheduling interval, discharging or doing nothing.

The goal of each agent was to satisfy the demand of its loads in ways to minimise the

cost of purchasing energy from the main power system and to maximise the earning of

selling excessive energy back to the power system. This work applied a best-response

algorithm (Shoham and Leyton-Brown, 2008) to solve the problem in an iterative fashion.

A maximum number of iterations was imposed to ensure the algorithm terminated within

a reasonable time frame and at least a good enough solution could be found. This work

applied their method on 25 simulated households created from the openei dataset (U.S.

Department of Energy, 2013). They compared the impacts of including and neglecting the

charge and discharge efficiencies on cost and PAR reductions. The results showed that the

efficiencies affected the battery schedules and the reductions. The PAR reduction was 14%

when the efficiencies were considered and 36% otherwise, and cost reduction was between

6 7% when the efficiencies were considered and 7 9% otherwise. This method required

broadcasting information to all consumers iteratively, imposing extra work loads on the

communication networks. Moreover, consumers were not allowed to update their battery
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schedules at the same time, which means only one or few consumers could update their

schedules per iteration, limiting the scalability of these methods.

Fioretto et al. (2017) proposed a multiagent method that reduced both the peak de-

mand and the total cost of all households. Each household was seen as an agent that

acted independently and selfishly based on the information received from other agents.

All agents repeated selfishly rescheduled their jobs to reduce its own cost and broadcast

information to others until no agent could further reduce its own cost. Their method

followed the general solving framework of ICMs and some adjustments were made at each

step. At the initialisation step, households scheduled actuators to minimise the consump-

tion costs using a CP solver. At the rescheduling step and the iteration step, households

calculated the peak demand and the consumption cost their new schedules would save after

rescheduling the actuators, and broadcast both the new demand profiles and the savings

to all other households. Although after all households had rescheduled and broadcast at a

iteration, only the household with the biggest saving would execute the new schedule and

all other households would use their previous schedule. If more than one household had

the biggest saving, then the household with the smaller identity number would execute its

new schedule. At the convergence step, households stopped rescheduling and broadcasting

when the biggest saving was zero or a termination threshold, e.g. the maximum time or

iterations, was reached.

While ICMs offer households independence and the power to collectively reduce the

overall cost and the peak demand, they introduce a large communication burden on com-

munication networks as a result of the constant data exchange among households (Mhanna

et al., 2016; Yu et al., 2011; Joe-Wong et al., 2012). Households must reschedule and

broadcast one by one at each iteration otherwise the method will not converge, which can

result in a long computation time especially when the population is large. Furthermore,

some works argue that sharing demand profiles with all other households is still a privacy

concern (Deng, Yang, Hou, Chow and Chen, 2015; Sheikhi et al., 2015).

Third-party Coordination Method Third-party coordination methods (TPCMs) re-

fer to distributed scheduling methods that coordinate households through a third-party

entity. This third-party entity can be the utility company or a DRSP. Let us call this

third-party entity a DRSP for convenience. The main idea of these methods is that a
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DRSP iteratively communicates with households to jointly find the best schedule through

smart pricing (Chavali et al., 2014; Li et al., 2011; Mhanna et al., 2016; Chen et al., 2010;

Samadi et al., 2010; Wang et al., 2014; Fan, 2011; Veit et al., 2014; Shi et al., 2015). The

general solving framework of TPCMs can be described as follows:

1. Initialisation: Households independently schedule appliances and report the demand

profiles to the DRSP.

2. Pricing : Upon receiving demand profiles from households, the DRSP calculates new

pricing signals and sends them back to households.

3. Rescheduling : Upon receiving pricing signals, households independently reschedule

their appliances to reduce their own consumption costs and report the updated

demand profiles back to the DRSP.

4. Iteration: Then, as in the case of ICMs, households and the DRSP iteratively com-

municates with each other.

5. Convergence: The iteration continues until no consumer can reschedule appliances to

receive lower prices from the DRSP or some termination conditions (e.g. a timeout

or a maximum number of iterations) are met.

Decomposition TPCMs involve decomposing a DSP-MH into a master problem

and a subproblem. The master problem is solved by the DRSP at the pricing step. The

subproblem is solved by each household at the rescheduling step. Let us rename the master

problem as the pricing master problem and the subproblem as the household scheduling

subproblem. The pricing signals sent by the DRSP can be artificial prices that are solely

for coordinating households or actual prices that reflect the true cost of electricity supply

for all households.

Coupling Constraint A challenge in decomposing DSP-MHs is the handling of cou-

pling constraints, such as the area demand limit constraint. Dual decomposition handled

the coupling constraints by incorporating them into the objective function of the original

problem as a constraint violation cost and the dual variables can be seen as the ”prices”

for violating those coupling constraints. Once decomposed, the subproblem can be con-

sidered as the original problem without the coupling constraints and the master problem
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minimises the prices for violating the coupling constraints based on the solution of the

subproblem. A step size is often used for updating the dual variables at each iteration

in order to find the optimal solution. More details on decomposition are presented in

Section B.3.6 of Chapter B.

Convergence Another challenge of TPCMs is converging to the global optimal solu-

tion that truly minimises the total cost of households. Many TPCMs include a parameter,

such as a step size, a coefficient or a scaling factor, that controls the number of iterations

required for convergence (Chen et al., 2010; Samadi et al., 2010; Li et al., 2011; Sheikhi

et al., 2015; Zhang et al., 2015; Shi et al., 2015; Mhanna et al., 2016; Kou et al., 2020).

Generally this parameter needs to be small enough to guarantee convergence. However,

when this parameter is too small, it can lead to more iterations or even oscillation where

no convergence will be reached. When this parameter is not small enough, it can lead

to premature convergence where the converged solution is sub-optimal. The value of this

parameter needs to be chosen carefully and the best value of this parameter can vary

from method to method and even problem instance to problem instance. Furthermore, an

additional penalty cost is sometimes used to guarantee convergence (Chavali et al., 2014;

Mhanna et al., 2016; He et al., 2019). This additional penalty cost is added to the objec-

tive of the household sub-problem, penalising the difference between the demand profiles

of any two consecutive iterations. The value of this penalty cost may increase proportional

to the number of iterations, or inversely proportional to the consumption cost or demand

of a household. For example, it may be smaller in early iterations and larger in later

iteration, or smaller when the cost or demand is lower and larger otherwise.

Existing TPCMs work on two levels of DSPs: the demand level and the job level.

Demand Level Method The demand level DSPs are concerned with finding the

best aggregate demand level per time interval for households, ignoring the details of any

appliances or jobs and assuming the demand level varies in a continuous fashion.

Samadi et al. (2010) decomposed a DSP-MH using the dual decomposition, and coordi-

nated households using the dual variables as artificial prices. The dual decomposition was

applied to incorporate coupling constraints into the original objective function, and obtain

a pricing master problem and a household scheduling subproblem. The gradient projection
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method was used for solving the master problem and the subproblem At each iteration, the

master problem updated the dual variables given the solutions of the subproblem and the

subproblem maximised its social welfare given the dual variables updated by the master

problem. A step size was used in updating the dual variables and it needed to be tuned

manually to guarantee convergence. Their method was tested on 10 households over 24

hourly time intervals.

Atzeni et al. (2013) investigated a DSP-MB where households were equipped with

DGs and/or batteries, and coordinated by an aggregator to minimise the overall supply

cost. Households were divided into two groups: passive and active households. Passive

households consumed electricity as usual without active demand management. Active

users engaged in active demand management by using DGs and/or batteries. This work

developed a day-ahead optimisation process to schedule DGs and batteries to minimise the

total supply-side cost of all households. The proposed method used the proximal decom-

position method to formulate the optimisation problem as a Nash game where households

communicated with the aggregator iteratively to find the equilibrium together. At each

iteration, each household minimised its own energy cost and a penalty cost. This penalty

cost included a parameter that required manual tuning to ensure the equilibrium of the

Nash game was found. The detailed optimisation process is described as follows:

1. Aggregator broadcasted the supply-side cost function, the grid coefficients and rele-

vant parameters to all households.

2. Each household selected an initial schedule for DGs and batteries arbitrarily, and

reported the demand profile (a result of the load profile minus the energy production

profile plus the battery storage profile) back to the aggregator.

3. Aggregator calculated the total demand profile of all households and broadcast it to

all households.

4. Each household calculated the total demand profile of other households at the previ-

ous iteration using the total demand profile of all households sent by the aggregator,

rescheduled DGs and batteries to minimise the total supply-side cost and the penalty

cost assuming the total demand profile of all other households were unchanged, and

reported the updated demand profile back to the aggregator.
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5. The aggregator and households repeated the above steps until the total demand

profiles of any two consecutive iterations were (nearly) the same.

Their method was tested with 1000 simulated households where 18% of those were active

households and the rest were passive. Their method converged in ten iterations, reducing

around 12.6% of the average supply price. They also changed the percentage of active users

to 6%, 12% and 24% of the population and found the more active users yielded a flatter

total demand profile and therefore a more uniform supply price per unit of electricity.

Although a dynamic pricing function and DGs are included in the problem, the household

demand was assumed to be fixed. Moreover, a parameter required manual tuning to ensure

the equilibrium was found and the desired results were achieved.

Worthmann et al. (2015) studied a DSP-MB where households either independently

scheduled their batteries against prices given by an aggregator (named as a market maker

in this work) to minimise their costs, or were coordinated by the aggregator taking into

the account the local generation from solar panels. Four methods were proposed to solve

their problem, which are described as follows:

1. Simple controller: This method simply charged the battery when the local generation

exceeded the demand and discharged otherwise.

2. Centralised method: The aggregator collected the demands, local generation and

battery information from all households, scheduled the batteries centrally and sent

the optimal decisions back to households.

3. Decentralised method: Each household scheduled its battery independently without

communicating with each other.

4. Distributed method: All households communicated with the aggregator iteratively

to find the best schedules for the batteries without needing to communicate with

each other. The convergence was achieved by the pricing setting method used by

the aggregator.

Their methods were tested with a group of 20 simulated households and another group

of 300 simulated households created from the real demand data obtained from Ausgrid

(an Australian electricity distribution company). The results showed that the simple
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controller method performed the worst among the four methods, followed by the decen-

tralised method. The distributed method was better than the decentralised method. The

centralised method had the best result, although it was not scalable. It could not find a

solution for 300 households due to the significant computation cost of a problem at that

size. They assumed both prices and household demands were fixed and inflexible.

Kou et al. (2020) decomposed the DSP-MH using a method called the alternating

direction method of multipliers (ADMM) (Boyd et al., 2011). Households were coordi-

nated using the primal variables and the dual variables introduced during decomposition

method as artificial prices. The ADMM was applied to obtain a pricing master problem

and a household scheduling subproblem. The coupling constraint was incorporated to

the objective functions of the master problem and the subproblem. This decomposition

method introduced two types of ancillary variables called the primal residuals and the

dual variables. Same as the dual decomposition, the dual variables in ADMM were used

for minimising the violation of the coupling constraint. The primal residuals were used for

updating the demand levels of households. At each iteration, the pricing master problem

updated the primal residuals and the dual variables using the CPLEX solver, and the

household scheduling subproblem adjusted the demand levels given the updated primal

residuals and and the dual variables using the BARON and SCIP solvers. A scaling factor,

called the penalty factor, was involved in solving the household scheduling subproblem and

updating the dual variables in the pricing master problem. The value of this factor needed

manual tuning to guarantee convergence. Their method was tested on 605 households on

a scheduling horizon of 96 15-minute intervals. The method converged after 23 iterations

in about 188s. The speed of convergence depended on the penalty factor, meaning that a

smaller value could yield better results but led to more iterations or no convergence while

a larger factor might be quick to converge but gave a sub-optimal solution.

Job Level Method The job level DSPs focus on finding the best start time and/or

the demand rate for each job per time interval, considering the (coupling) constraints of

jobs, and inconvenience to consumers.

Li et al. (2011) decomposed the DSP-MH using the primal decomposition. Households

were coordinated using the marginal cost of supplying electricity as the pricing signals.

The primal decomposition was applied to obtain a pricing master problem and a household
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scheduling subproblem. The pricing master problem calculated the prices for households

from the supply cost function. The household scheduling subproblem was solved by a gra-

dient descent algorithm and a step size was used in to update the schedules of households at

each iteration. The step size needed manual tuning to ensure convergence. Their method

was tested on up to 24 households each of which had up to six appliances on a scheduling

horizon of 24 hourly time intervals. No data on convergence speed was provided.

Similar to (Li et al., 2011), Chavali et al. (2014) decomposed a DSP-MH using the

primal decomposition. Households were coordinated using the marginal cost of supplying

electricity to all households as the pricing signals. The primal decomposition was applied

to obtain a pricing master problem and a household scheduling subproblem. The pricing

master problem computed the prices for households based on the supply cost function.

The household scheduling subproblem was solved by a greedy algorithm. An additional

penalty cost was added to the household scheduling subproblem to achieve convergence.

This penalty cost varied inversely proportional to the consumption cost of a household

and proportional to number of iteration, which means households with higher consump-

tion costs had smaller penalty costs particularly in early iterations while households with

smaller costs incurred larger penalty costs especially in later iterations. A coefficient that

required manual tuning was included in the penalty cost to guarantee convergence. Their

method was tested on 100 households each of which had 10 jobs. They applied a game

theoretic method (GTM) to their DSP-MH and compared the results of the game theoretic

method with those of their methods. On average, their method converged to a solution

that was very close to that of the GTM in about 30 iterations. Although the implemen-

tation of their method was much easier and cheaper than the GTM since no optimisation

solver was needed in the computation.

Zhang et al. (2013) investigated a DSP-MB where a microgrid managed several conven-

tional generators (CGs) (e.g. fossil fuel powered generators), renewable energy generators

(REGs) (e.g. wind farms), DGs or batteries, and jobs to minimise the cost of running the

CGs and batteries, and the worst-case transaction cost. The worst-case transaction cost

was for determining the amount of energy to buy from or sell to the main power system

based on predicted outputs of REGs. This work proposed an iterative and distributed

algorithm, which is described as follows:
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1. The dual decomposition and Lagrangian relaxation was applied to decompose the

original problem into a master problem and a subproblem. The master problem

updated the Lagrangian multiplier using the subgradient method. The subproblem

scheduled jobs, batteries, CGs of each household using general linear programming

or quadratic programming methods, and determined the amount of energy to buy

or sell using the bundle method and the vertex enumerating algorithm.

2. The master problem and subproblems were solved iteratively until convergence.

Their linear programming model was implemented in CVX (Grant and Boyd, 2014) and

solved by the MOSEK solver. Their method was applied on a simulated microgrid with

three CGs, ten shiftable or flexible jobs, three batteries, and two REGs. The inelastic jobs

were modified from the real load data provided by Midcontinent Independent System Op-

erator (Fderal Energy Regulatory Commission, n.d.) in America in 2012. The maximum

capacity of the batteries was 30kWh. The results showed that their proposed method

worked as expected. The outputs of CGs increased with the total demand of inelastic jobs

over time, the microgrid always purchased power from the main system when the purchase

price is lower than the marginal cost of running CGs and selling activities were the most

active during times with the highest selling prices. Although this work considered both

flexible and inflexible demand, it assumed the prices to be fixed and known in advance.

Moreover, optimising against the worst-case transaction cost would lead to very conser-

vative battery behaviour, missing more opportunities to save money. Furthermore, a step

size used in the subgradient method required manual tuning to ensure convergence.

Yang et al. (2015) focused on a DSP-MB where a building scheduled multiple appliances

and batteries to minimise the total energy cost, the total battery loss cost and the total

dissatisfaction cost (inconvenience cost) against the prices given by a central controller,

such as the utility company. This work proposed a hybrid of Lagrangian relaxation and

Benders decomposition to solve their problem in a distributed and iterative manner. Their

proposed involved two step sizes that required manual tuning to ensure the convergence

of the iterative process. Their method was tested with a simulated building of 5, 60

and 100 shiftable appliances. The number of batteries in the building increased with

the appliances. The results showed that the number of iterations before convergence was

almost the same when the appliance and battery ratio was kept the same. Although



54 CHAPTER 2. BACKGROUND

this work has incorporated flexibility in household appliances for scheduling, it assumed

the prices were known. Moreover, two parameters required manual tunings to ensure the

effectiveness of the proposed method.

Different from other works, Mhanna et al. (2016) aimed to achieve a near-optimal solu-

tion in exchange for a higher scalability and a shorter computation time. They smoothed

the dual problem of the DSP-MH and decomposed the smoothed dual problem. House-

holds were coordinated using multiple parameters introduced in the smoothing and the

decomposition processes as artificial prices. They solved the problem in two stages:

• Stage one: First they applied the Lagrangian relaxation to obtain the dual problem

of the original DSP-MH. Second, they applied a double smoothing technique to the

dual problem and decomposed the double smoothed dual problem into a pricing

master problem and a household scheduling subproblem. Third, they used a fast

gradient algorithm to solve the master problem and the subproblem iteratively for

a fixed number of iterations to obtain the suitable values for some key parameters

including the smoothing parameters, the step size and the Lagrange multipliers.

• Stage two: First, they applied a single smoothing technique on the dual problem

again, added a penalty term to the single smoothed dual problem, and decomposed

this augmented single smoothed dual problem into a pricing master problem and a

household scheduling subproblem. The penalty term was added to guarantee conver-

gence. Second, they solved the new master problem and subproblem iteratively with

the pre-computed smoothing parameters, the step size and the Lagrange multipliers

using the fast gradient algorithm for 60 iterations. The number of iterations in the

second step might be tuned in practice based on the problem instance.

A parameter used in the double smoothing technique required manual tuning to ensure

the double smoothed dual problem was as close to the original dual problem as possi-

ble. A couple of other parameters could be tuned to further reduce the gap between the

near-optimal solution and the optimal solution. Their method was tested on up to 2560

simulated households each of which had up to ten appliances on average. Their scheduling

horizon included 24 hourly time slots. The compared the results of their methods with

those of the centralised method (the Gurobi solver). They claimed that their method could

find a near-optimal solution that was on average less than 0.5% worse than the optimal
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solution. The optimal solution was found by the solver in three days and the near optimal

solution was found by the proposed method in 9 seconds (assuming all households solved

the subproblems in parallel at each iteration), although it is unclear that how much time

was needed to solve the master problem. Moreover, the smoothing parameters, the step

size and the Lagrange multipliers needed to be pre-computed in stage one to boost the

performance in stage two, which means those pre-computed parameters may not suit dif-

ferent problem instances and additional time was required to complete the whole solving

process besides those 60 iterations.

He et al. (2019) decomposed the DSP-MH using the primal decomposition. Households

were coordinated using the marginal cost of supplying electricity to all households as the

pricing signals. Different from other works which only ran the iterative process once at

the beginning of the day, this work employed a model predictive control (MPC) framework

that repeated the iterative process at every time interval, incorporating changes during

the day in near real time. The primal decomposition was applied to obtain the pricing

master problem and the household scheduling subproblem. The pricing master problem

simply updated the selling and purchasing prices. The household scheduling subproblem

was solved by a CPLEX solver. An additional penalty cost was added to the household

scheduling subproblem to achieve convergence. This penalty cost varied proportionably

to the number of iteration and inversely proportional to the demand of a household. A

penalty coefficient was included in the penalty cost that required manual tuning to guaran-

tee convergence. Different from other TPCMs, this method employed a MPC framework

where the iteration between the DRSP and households repeated at every time interval.

Only the decision for the next time interval would be carried out in practice. This way,

changes during the day, such as output from REGs and consumption requirements of

households, could be incorporated timely, balancing the demand and supply in real time.

Their method was tested on four households each of which had wind and PV generators,

a battery and eight appliances of various types. The scheduling horizon had 24 hourly

intervals. The outputs of REGs were predicted using the historical data of NSJs, wind

and PV generation collected and modified from Belgium’s transmission system. Similar

to (Li et al., 2011), they implemented the cooperative GTM proposed by (Mohsenian-Rad

et al., 2010) and compared the results of that method with the results of the GTM. Their
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method managed to converge in 12 iterations while the GTM converged after 44 iteration

in total (11 iterations per household).

Third-party entity (TPE) methods require minimum changes to the communication

networks as only pricing signals and demand profiles are exchanged between households

and the TPE, which already exists in places where smart meters are installed (see Ap-

pendix A.3 for details of smart meters). However, some existing works consider only the

aggregate demands of households and ignore all details of jobs. Other methods incorporate

details of jobs, however, require at least one parameter to be tuned manually to ensure

convergence. Otherwise, a method can converge prematurely to a sub-optimal solution or

lead to oscillation where no optimal solutions can be achieved. Moreover, the best values

of these parameters can vary from problem (instance) to problem (instance), making these

methods less general.

Analysis In summary, we have identified the following findings from our review of lit-

erature on distributed methods for DSPs:

• One-way coordination methods: Their methods move appliances in ways that benefit

households and the utility company, and avoid load synchronisation at a relatively

lower computation cost, however, they exhibit limitations in achieving optimality,

incorporating changes in demands or introducing coupling constraints on appliances.

• Interactive coordination methods: These methods find the best schedules for house-

holds without interventions from any third-party entity. However, they can be time-

consuming for a large population since only one household is allowed to reschedule

and broadcast at each iteration. Furthermore, these methods introduce large work-

loads on the communication networks as households broadcast information to all

others iteratively. Some works argue that sharing demand profiles with all other

households is a privacy concern to some consumers, therefore, these methods are

not considered as practical. An optimisation solver is required for each household

to schedule appliances.

• Third-party coordination methods: These methods find the best schedules for house-

holds with the help of a TPE. They are more scalable as each household can schedule



2.3. LITERATURE REVIEW 57

appliances independently and simultaneously without interaction with other house-

holds. However, some existing works consider only the aggregate demands of house-

holds and ignore all the details of jobs. Other methods incorporate details of jobs,

however, convergence can be a challenge for these methods as at least one parame-

ter requires manual tuning to guarantee convergence. Moreover, the best values of

these parameters can vary from problem (instance) to problem (instance), making

the methods less general.

Moreover, when batteries are considered, existing works often assume the consumer de-

mands are fixed and known in advance, ignoring the flexibility in consumers’ energy needs.

2.3.4 Summary and Analysis

We summary our findings from the review of literature on demand scheduling problem

models and solving methods, and the key limitations and areas to extend as follows:

Problem Model

A typical DSP includes three essential elements: a household demand model, a pricing

model and objectives. The models of these elements vary across different research works.

A household demand model can include a job model, a battery model and/or other device

model such as an on-site generator model.

The simplest household job model is a fixed demand profile, or a variable demand

profile that can be adjusted over time. More advanced job models include a set of essential

attributes and non-coupling constraints. Complex job models have more attributes and

coupling constraints. The simplest battery model is a fixed model where attributes are all

fixed. More advanced battery models have variable attributes and even battery operation

or degradation costs. Generally, a demand scheduling problem for a single household (DSP-

SH) uses price forecasts instead of pricing functions where the price changes dynamically

with the demand in real time. The most common objectives are the electricity cost and

the inconvenience value. Sometimes, battery costs, the peak demand, the peak-to-average

ratio (PAR) and/or the operation and maintenance costs of on-site generators are also

included.

The DSP-MH model is developed based on the DSP-SH model. The household demand

model and objectives are the same as those in a DSP-SH, however, an additional constraint
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that limits the total demand of all households may be considered and the objective values

are calculated based on the total costs or the total demand profile of all households.

Moreover, the electricity price is generally calculated using a pricing function instead of

using a forecast. However, forecasts are still used in some works.

Both DSP-SHs and DSP-MHs (with or without batteries) can be continuous and linear,

or mixed-integer and non-linear depending on the design of the demand model, pricing

function and objective functions.

Solving Method

A significant amount of research has investigated the application of optimisation algo-

rithms to various DR problems under RTP (Deng, Yang, Chow and Chen, 2015; Vardakas

et al., 2015; Bayram and Ustun, 2017), however, there are limitations in existing works.

Many existing studies apply centralised methods to solve DSPs (Adika and Wang,

2014; Longe et al., 2017; Pooranian et al., 2018). However, these algorithms do not scale

well with the number of households (Van Den Briel et al., 2013; Zhang et al., 2015; Kou

et al., 2020), making them impractical for solving problems for hundreds and/or thousands

of consumers, such as the size of a major city suburb in Australia.

Some other works develop distributed methods that allocate computation cost into

each household and coordinate households in ways to flatten the total demand profile of

all households as much as possible (Mhanna et al., 2016; He et al., 2019). However, some

of these works assume demands or prices are fixed and known in advance (Vytelingum

et al., 2010; Atzeni et al., 2013; Worthmann et al., 2015), limiting the flexibility of their

methods. Some other works incorporate a dynamic pricing scheme and shiftable jobs in

their problems. However, they either require broadcasting information to all households

sequentially and iteratively (Mohsenian-Rad et al., 2010; Pilz et al., 2017), imposing extra

burdens on communication networks and limiting the scalability of their methods; or

manually tuning some parameters to ensure the optimal solutions will be reached (Yang

et al., 2015; He et al., 2019), making their methods not general to all problem instances.

Some studies prioritise scalability of their DR algorithms, however, sacrifice the optimality

of solutions, and consumer preferences and requirements (Manzoor et al., 2017; Hussain

et al., 2018). Table 2.7 summarises the strengths and weaknesses of these methods.
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Table 2.7: Strengths and weaknesses of existing works for solving demand scheduling
problem for multiple households with batteries

Method Strength Weakness

Centralised scheduling Optimal, feasible Do not scale well

One-way coordination Fast Near optimal, may not be feasible

Interactive coordination Optimal Time consuming for large
populations, privacy concern,
Large workloads on the
communication networks

Thirty-party coordination More scalable Convergence can be challenging,
manual parameter tuning is
required.

Limitations in Existing Works

Our review of literature on demand scheduling problems and solving methods have in-

formed us that the DSP-MHs are challenging to solve because:

C.1 The prices and demand schedules are coupled together: The optimal schedules of

households depend on the prices, and the prices are calculated based on the schedules.

C.2 The DSP-MHs are mixed-integer non-linear problems with coupling constraints and

multiple objectives when shiftable jobs are considered. These problems are NP-hard,

which means they very hard to solve especially at a large scale.

Many works did not address both challenges at the same time or only considered

particular aspects of the problems. For example, many works have assumed that the

prices or the demands are known and fixed in advance, missing the correlation between

the prices and the demands. Some other works exclude integer variables by modelling

the household demand as a demand profile or ignore coupling constraints, removing some

of the complexity. Some studies have addressed both challenges, however, they consider

only job scheduling or battery scheduling, and/or require manual parameter tuning or

information broadcasting to achieve convergence. Moreover, most studies schedule jobs

or batteries over a sparsely granulated time horizon, e.g. 24 hourly or 48 thirty-minute

periods, offering limited flexibility in scheduling.

In summary, none of the existing works has achieved all of the followings:

1. scheduling jobs with coupling constraints and batteries,
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2. balancing the cost of electricity supply, the energy need of consumers, the inconve-

nience to consumers and constraints on household appliances,

3. coordinating households using dynamic pricing without iterative and sequential in-

teractions among households,

4. requiring minimum parameter tuning to achieve convergence for any problem in-

stance,

5. is optimised for speed so that it can be used in real time to incorporate changes in

energy requirements and constraints during the day,

6. providing a finer granulated scheduling horizon and therefore more flexibility in

scheduling appliances.

In addition, very limited works have investigated the application of CP on DSPs while

CP has been shown to be effective and efficient for solving combinatorial problems such

as scheduling problems (see Appendix B.3.4 for more details). There are opportunities for

designing a new algorithm that will address all of the above challenges and limitations, and

investigating the impacts of incorporating CP into such an algorithm. These opportunities

constitute the work of this thesis.



Chapter 3

Problem Model

3.1 Introduction

This chapter presents the detailed model of the demand scheduling problem for multiple

households with batteries (DSP-MB) of this thesis. We introduce the scheduling and

pricing time horizon in Section 3.2, the household demand model including the job model

and the battery energy storage system (battery) model in Section 3.3, the pricing model

in Section 3.4, the objective function in Section 3.5 and the formal problem formulation

in Section 3.6.

3.2 Time Horizon

This thesis have chosen 144 ten-minute intervals per day for scheduling and 48 thirty-

minute periods for pricing. The ten-minute interval is shorter than the intervals chosen

in many existing works. We believe that a shorter interval provides more flexibility for

scheduling appliances. The thirty-minute periods are adopted to match the trading fre-

quency currently in the Australian electricity wholesale market. Let us write a period and

an interval as the following:

• m ∈ [1,M ] ∩ Z>0: the index of an interval and M = 144,

• n ∈ [1, N ] ∩ Z>0: the index of a period and N = 48.

61
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3.3 Household Demand

This thesis considers two types of demands: household jobs and batteries. The job model

is presented in Section 3.3.1, the battery model in Section 3.3.2 and the demand profiles

and limits in Section 3.3.3.

3.3.1 Household Job

This subsection presents the attributes and constraints for a job model. Detailed expla-

nations of each attribute and constraint are provided in Section 2.3.1 of Chapter 2.

Job Attribute

We have adopted shiftable appliances or jobs (see Definition 2.13 in Section 2.3.1 of Chap-

ter 2) including interruptible and non-interruptible ones, and modelled them with the

following attributes:

1. demand rate: a flat demand rate measured in KW

2. duration: the amount of time required from the start to finish, measured in the

number of scheduling interval

3. actual start time (AST): the actual start time

4. earliest start time (EST): the earliest time an appliance can start running

5. latest finish time (LFT): the latest time an appliance must finish running

6. preferred start time (PST): the time that a consumer prefers this appliance to start

7. care factor (CF): the level of inconvenience to a consumer rated by the consumer

when an appliance doesn’t start at its PST, ranging from 0 to 10 (0 meaning highly

satisfied to 10 highly dissatisfied)

8. predecessors: the device or the set of devices that must finish running before using

this appliance

9. maximum succeeding delay (MSD): the maximum amount time allowed after the

predecessors are finished before this appliance starts
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The best AST of each job is the decision variable that our demand scheduling method

needs to calculate. We denote a job with the followings:

• h ∈ [1, H] ∩ Z>0: the index of a household,

• d ∈ [1, Dh] ∩ Z>0: the index of a job inside the hth household.

• eh,d ∈ R>0: the power of a device in KW,

• tdurationh,d ∈ [1,M ] ∩ Z>0: the duration,

• tactual−starth,d ∈ [1,M ] ∩ Z>0: the actual scheduled start time (AST),

• tpreferred−starth,d ∈ [1,M ] ∩ Z>0: the preferred start time (PST),

• tearliest−starth,d ∈ [1,M ] ∩ Z>0: the earliest start time (EST),

• tlatest−finishh,d ∈ [1,M ] ∩ Z>0: the latest finish time (LFT),

• wcare−factorh,d ∈ [0, 10] ∩ R>0: the care factor (CF),

• ρprech,d ∈ [1, Dh] ∩ Z>0: the index of job preceding the job with the index d,

• tmax−delayh,d ∩ Z>0: the maximum succeeding delay (MSD).

In experiments, we assume that the EST, LFT, PST, CF, predecessors and MSD are

provided by consumers. In practice, these data can be learned from historical data using

machine learning methods (Siebert et al., 2017; Varghese et al., 2018; Jiang et al., 2019;

Sharda et al., 2021). The care factor indicates the flexibility of a job where 0 means this

job has full flexiblity can be scheduled to any time within the operation window and 10

means this job is the least flexible. The MSD for a job can be zero if this job has no

preceding job.

Note that power flexible appliances are excluded from this thesis because they com-

monly refer to thermal appliances that are very hard to model. Their models depend on

the design of the appliances and factors vary from household to household, such as the

the structure of the house, the total mass of air inside the house, the behaviour of its

occupiers and so on. Moreover, the data for supporting such modelling is very difficult to

get if available. Most importantly, the absence of PF appliances do not affect the design

of algorithms developed in this thesis. Therefore, we have decided not the include them

in this thesis but in the future work instead.
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Job constraint

For each household h, we have adopted the following constraints for each job:

• Scheduling Time Constraint A job d of any household h must run after its EST

tearliest−starth,d and finish before its LFT tlatest−finishh,d , which is described as follows:

∀h, ∀d ∈ [1, Dh] ∩ Z>0, t
earliest−start
h,d ≤ tactual−starth,d ≤ tlatest−finishh,d − tdurationh,d + 1

(3.1)

• Precedence Constraint and Preceding Delay Constraint If a job d has a preceding

job ρprech,d , this job must run after the preceding job is finished and the delay between

these two jobs must be smaller than the MSD tmax−delayh,d . The sequential and MSD

constraints can be described as follows:

i = ρprech,d (3.2)

∀h, ∀d ∈ [1, Dh] ∩ Z>0, (3.3)

tearliest−starth,i + tdurationh,i − 1 < tactual−starth,d < tactual−starth,i + tdurationh,i − 1 + tmax−delayh,i

(3.4)

The scheduling time constraint is non-coupling as it involves one job only. The precedence

constraint and the preceding delay constraint are coupling as they involve multiple jobs.

More explanations of these constraints are provided in Section 2.3.1 of Chapter 2.

3.3.2 Household Battery

This subsection presents the attributes and constraints of a battery model. Detailed

explanations of each attribute and constraint are provided in Section 2.3.1 of Chapter 2.

Battery Attribute

We model a battery using a fixed model with a fixed maximum capacity (in kW), a fixed

maximum charge or discharge rate (in kW/h), a fixed round-trip efficiency and a linear
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state-of-charge (SOC) function. The charge rate and the discharge rate are assumed to be

same. As a simplified assumption, we do not consider variable models in this thesis.

This thesis assumes that each household can have at most one battery. Let us write

the battery of the hth household as follows:

• b̄powerh : the maximum power rate (charge or discharge rate),

• b̄caph : the maximum capacity,

• ηh: the round-trip efficiency,

• bsoch,m: the SOC at the mth time period.

Additionally, we define a battery profile as the following:

Definition 3.1. A battery charge/discharge profile includes the amount of electricity

charged/discharged at each time period of the day.

Definition 3.2. A battery activity profile is the sum of the charge and the discharge

profiles of a battery.

We write these battery profiles as the following:

• b+
h = {b+h,m | m ∈ [1,M ] ∩ Z>0}: the charge profile, where b+h,m is the amount of

electricity charged at the mth period,

• b−h = {b−h,m | m ∈ [1,M ] ∩ Z>0}: the discharge profile, where b−h,m is the amount of

electricity discharged at the mth period.

• bph = {bph,m | m ∈ [1,M ]∩Z>0}: the battery activity profile, where bph,m = b+h,m−b
−
h,m.

The best charge and discharge profiles of each battery are the other decision variables that

our demand scheduling method needs to compute.

Battery Constraint

For each household h, the battery is limited by the following constraints:

• Charge and discharge constraints: require the battery to either charge or discharge

below the maximum power rate at any time, which are written as Equation 3.5 and

Equation 3.6.
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∀m ∈ [1,M ] ∩ Z>0, 0 ≤ b+h,m ≤ b̄
power
h (3.5)

∀m ∈ [1,M ] ∩ Z>0, − b̄powerh ≤ b−h,m ≤ 0 (3.6)

∀m ∈ [1,M ] ∩ Z>0, b
+
h,m × b

−
h,m = 0 (3.7)

• Capacity constraint : requires a battery to maintain its energy level below the max-

imum capacity at all times, which is written as Equation 3.8.

∀m ∈ [1,M ] ∩ Z>0, 0 ≤ bsoch,m ≤ b̄
cap
h (3.8)

• SOC constraints: describe the change of energy level over time, which are written

as Equation 3.9 and Equation 3.10.

∀m ∈ [2,M ] ∩ Z>0, b
soc
h,m = bsoch,m−1 + b+h,m−1 + b−h,m−1 (3.9)

bsoch, 1 = bsoch, M + b+h,M + b−h,M (3.10)

These constraints are non-coupling as they involve individual batteries only. More expla-

nations of these constraints are provided in Section 2.3.1 of Chapter 2.

3.3.3 Demand Profile and Limit

This subsection defines the battery profiles, demand profiles and demand limit constraints

defined in this thesis.

Demand Profile

We define a demand profile as the following:

Definition 3.3. A demand profile is a set of demands at at every interval/period.

We write a demand profile as the following:
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• ljob−sh,d = {ljob−sh,d,m | m ∈ [1,M ] ∩ Z>0}: the demand profile of job d at the granularity

of scheduling intervals, where ljob−sh,d,m = eh,d means the job is running at the mth

scheduling interval and ljob−sh,d,m = 0 otherwise.

• lhouse−sh = {lhouse−sh,m | m ∈ [1,M ] ∩ Z>0}: the demand profile of a household h

without batteries at the granularity of M scheduling intervals, where lhouse−sh,m is the

total demand of jobs at the mth scheduling interval and calculated as follows:

∀h, ∀m, lhouse−sh,m =

Dh∑
d=1

{eh,d if tactual−starth,d ≤ m ≤ tactual−starth,d +tdurationh,d −1} (3.11)

• lhouse−battery−sh = {lhouse−battery−sh,m | m ∈ [1,M ] ∩ Z>0}: the demand profile of a

household h with batteries at the granularity of M scheduling intervals, where

lhouse−battery−sh,m is the total demand of jobs and the battery at the mth scheduling

interval and calculated as follows:

∀h, ∀m, lhouse−battery−sh,m = b+h,m/ηh + b−h,m × ηh + lhouse−sh,m (3.12)

• lhouse−ph = {lhouse−ph,n | n ∈ [1, N ] ∩ Z>0}: the demand profile of a household h at the

granularity of N pricing periods, where lhouse−ph,n is the total demand of all jobs at

the nth pricing period and calculated as follows:

∀h, ∀n, lhouse−ph,n =
n×3∑

m=n×3−2

lhouse−sh,m (3.13)

• Ltotal−s = {Ltotal−sm | m ∈ [1,M ]∩Z>0}: the demand profile of all households, where

Ltotal−sm is the total demand of all households at the mth scheduling interval and

calculated as follows:

∀m, Ltotal−sm =

H∑
h=1

lhouse−sh,m (3.14)

• Ltotal−p = {Ltotal−pn | n ∈ [1, N ] ∩ Z>0}: the demand profile of a household h at the

granularity of N pricing period, where Ltotal−pn is the total demand of all households

at the nth period and calculated as follows:



68 CHAPTER 3. PROBLEM MODEL

∀n, Ltotal−pn =

n×3∑
m=n×3−2

Ltotal−sm (3.15)

Demand Limit and Constraint

We denote the demand limit for every household h at any time as Ēhouseh and the total

demand limit for all households as Ētotal. These constraints are written as follows:

• Household demand limit constraint : The total demand of household h at time inter-

val m: lhouse−sh,m without batteries or lhouse−battery−sh,m with batteries cannot exceed the

given demand limit Ēhouseh , which is described as Equation 3.16.

∀m ∈ [1,M ] ∩ Z>0, l
house−s
h,m or lhouse−battery−sh,m ≤ Ēhouseh (3.16)

• Area demand limit constraint : The total demand of all households at any time

interval m cannot exceed the given demand limit Ētotal, which is described as Equa-

tion 3.17.

∀m ∈ [1,M ] ∩ Z>0,
H∑
h=1

lhouse−sh,m or
H∑
h=1

lhouse−battery−sh,m ≤ Ētotal (3.17)

These constraints are coupling as they involve all jobs and batteries of one or all households.

More explanations of these constraints are provided in Section 2.3.1 of Chapter 2.

3.4 Electricity Pricing

This thesis has adopted the real-time pricing (RTP) to incentivise consumers to shift

demand. Two different models are used for single households and multiple households.

• For single households: we have adopted the day-ahead prices.

• For multiple households: we have adopted a pricing function to calculate the price

based on the total consumption of all households.

Existing works often use a generic quadratic function to calculate the prices for multiple

households based on the total demand. In this thesis, we have designed a pricing table

created from bid stacks used by the Australian Electricity Market Operator (AEMO) to

calculate the actual prices of electricity in real time.
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3.4.1 Bid Stack

A bid stack is a table that includes generation capacities of participating power generators,

prices they ask for, the actual generation of each dispatched generator and the cumulative

generation of all dispatched generators. Details of a bid stack and the dispatch order are

explained in Appendix A.2.2. An example of such bid stacks is provided in Table 3.1.

Table 3.1: An example of the bid stack

Fuel Type Price Quantity Dispatched Cumulative
($/MWh) (MW) (MW) Generation (MW)

Wind -1000 159 45 45
Wind -1000 130 114 159
Gas 65.69 138 138 1762
Gas 79.99 100 55 1817
Gas 79.99 100 54 1871

1

3.4.2 Pricing Table

We have designed our pricing table based on such bid stacks. This pricing table includes

a list of consumption levels that approximates the cumulative generation, and a price

level for each consumption level that approximates the dispatch price. Similar to a bid

stack, the price level and the marginal cost increase with the consumption level, which

can be understood as when the consumption exceeds another consumption level, a more-

expensive-fuel fired generator is required and therefore the marginal cost and the price

have to increase. Moreover, we allow each time period to have a pricing table with a

different set of consumption levels to better simulate the fact that the generators dispatch

in each time period can vary over time. An example of such a pricing table for one time

period is illustrated in Table 3.2 and Figure 3.1.

This pricing function is essentially a strictly increasing step function. The electricity

cost calculated using this pricing function is piece-wise linear. When setting the price for

a pricing period with this table, a algorithm would calculate the total consumption of all

households in that period, find the lowest consumption level that is higher than the total

consumption and use the price level for that consumption level as the price for households

in that period.

Let us write the pricing table at the nth period as Rn(·) = {(rleveln,k , eleveln,k ) | k ∈

[1,Kn] ∩ Z>0}:
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Table 3.2: An example of the pricing table for a pricing period

Level 1 2 3 4 5 6 7 8

Price (cent/KWh) 14.0 14.1 14.2 14.3 14.4 14.5 14.6 14.8
Consumption (KWh) 102.31 104.32 108.33 112.34 114.35 118.36 122.37 126.38

Level 9 10 11 12 13 14 15 16

Price (cent/KWh) 15.1 15.4 15.8 16.3 17 17.8 18.9 20.3
Consumption (KWh) 128.39 132.4 136.41 138.42 142.43 146.44 148.45 152.46

Level 17 18 19 20 21 22 23 24

Price (cent/KWh) 22.1 24.5 27.5 31.3 36.3 42.7 50.9 61.6
Consumption (KWh) 156.47 160.49 162.49 166.5 170.52 172.52 176.53 180.55

Level 25 26 27 28 29 30

Price (cent/KWh) 75.2 92.8 115.5 144.6 182.1 230.4
Consumption (KWh) 182.55 186.56 190.58 194.59 196.59 200.61

Figure 3.1: An example of the pricing function

• rleveln,k : the kth price level in period n,

• eleveln,k : the kth consumption level in period n,

• k ∈ [1,Kn] ∩ Z>0 : the index of a price or consumption level in period n.

• Kn : the total number of levels in period n.

The pricing function at the nth period: rn can be written as Equation 3.18.

rn =


rleveln,1 , if Ltotal−pn ≤ eleveln,1

rleveln,k , if eleveln,k −1 < Ltotal−pn ≤ eleveln,k

rleveln,Kn
, if Ltotal−pn > eleveln,Kn

(3.18)
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Note that, we use the prices given by this table as the prices that consumers pay

for in the algorithms and experiments. However, the design of such a pricing table is a

complicated economic problem that is not investigated in details by this research. The

future work could improve the design of pricing tables so that they indeed reflects the true

value of electricity in the market. Moreover, in practice, these prices can also be seen as

pricing signals that coordinate the demand scheduling of households instead of the actual

prices that consumers receive.

3.4.3 Implicit Area Demand Limit Constraint

The design of our pricing table allows us to incorporate the area demand limit constraint

implicitly by adding an extra consumption level that is the same as this demand limit and

assigning a extremely high price for this consumption level. This way, the demand schedul-

ing method will automatically satisfy this constraint by avoiding this very high price, thus

reducing the problem complexity without changing the original problem. Moreover, this

design allows us to convert this area demand limit constraint into a soft constraint, which

means the violation of this constraint will incur an extremely high cost and a solution will

still be found. Otherwise, no solution will be found if this constraint is violated.

3.5 Objective

We have adopted the widely used costs or cost-like measurements in the literature: the

monetary cost and the inconvenience cost.

3.5.1 Monetary Cost

We compute the supply cost for electricity providers using a piecewise linear function

derived from the pricing table proposed in Section 3.4.2 as follows:

ctotaln =


rleveln,1 × L

total−p
n × 24/N, if Ltotal−pn × 24/N ≤ eleveln,1

p̂1 × eleveln,1 + rleveln,k × (Ltotal−pn × 24/N − eleveln,k −1)

+
∑i=k−2

i=1 [rleveln,k −1 × (eleveln,k −i − eleveln,k −i−1)], if Ltotal−pn × 24/N > eleveln,1

(3.19)
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Ctotal =

N∑
n=1

ctotaln (3.20)

We calculate the consumption cost for a consumer using the household demand profile

and the prices offered by the electricity provider. Let us write Chouse as the cost of the

household h and rn as the price of the pricing period n. The cost for a consumer or

household h is defined as follows:

Chouse =
N∑
n=1

{rn × lhouse−ph,n } × 24/N (3.21)

The price of each scheduling interval is essentially the largest gradient of the supply

cost in that interval.

3.5.2 Inconvenience Cost

We have chosen to model the inconvenience cost for a job as a linear function that increases

with the difference between the PST and actual start time of that job. We believe a linear

function provides sufficient flexibility for distributing some peak demand to other times

of the day. Moreover, we have introduced a care factor for each job (see Section 2.3.2) to

indicate the scale of inconvenience that occurs to the consumer when a job is scheduled

away from its PST. Let us write:

• ujobh,d: the inconvenience cost of the dth job in the hth household,

• Uhouseh : the total inconvenience cost of the hth household,

• U total: the overall inconvenience cost of all households.

The inconvenience costs of a job and a household are calculated as the followings:

ujobh,d = |tpreferred−starth,d − tactual−starth,d | × wcare−factorh,d (3.22)

Uhouseh =

Dh∑
d=1

ujobh,d (3.23)
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3.5.3 Cost Combination

We combine two types of costs together using the weighted sum approach. The details of

this approach are provided in Appendix B.2.1. Let us write:

• λc: the weight of the consumption cost,

• λu: the weight of the inconvenience cost.

The new combined cost function is written as:

f = λcCtotal + λuU total (3.24)

3.6 Problem Formulation

The formal formulation of a demand scheduling problem for a single household (DSP-SH)

can be written as follows:

minimise f = λcChouse + λuUhouseh

subject to (3.1), (3.3), (3.5), (3.6), (3.7), (3.8), (3.9), (3.10),

(3.16)

(3.25)

The formal formulation of a demand scheduling problem for multiple households with

batteries (DSP-MB) can be written as follows:

minimise f = λcCtotal + λuU total

subject to (3.1), (3.3), (3.5), (3.6), (3.7), (3.8), (3.9), (3.10),

(3.16), (3.17).

(3.26)

The decision variables include the best start time of each job tactual−starth,d and the charge

and discharge profiles b+
h and b−h of the battery in each household h. The constraints of

jobs are (3.1) and (3.3). The constraints of batteries are (3.5) , (3.6) , (3.7) , (3.8) , (3.9)

and (3.10). The demand limit constraints of every household and all households are

(3.16) and (3.17), respectively. The demand scheduling problem for multiple households

with batteries (DSP-MB) is a mixed-integer non-linear optimisation problem as the start

times are discrete, the charge and discharge profiles are continuous, the constraints are all
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linear, the supply cost function is increasing piece-wise linear and the inconvenience value

function is linear.

3.7 Summary

This chapter presents our models for household jobs and batteries which compose of the

household demand. We also introduce our method for developing a new pricing function

as a step function that is derived from the bid stacks used by Australian Electricity Market

Operator (AEMO). Then we present the objective functions and the formal formulation

for our demand scheduling problems (DSPs), which will be investigated in later chapters.



Chapter 4

Frank-Wolfe-Based Distributed

Demand Scheduling Method

4.1 Introduction

This chapter presents the method we proposed for solving the demand scheduling prob-

lems (DSPs) introduced in Chapter 3. We call our proposed method Frank-Wolfe-based

distributed demand scheduling method (FW-DDSM). First, this method decomposes the

original demand scheduling problem for multiple households with batteries (DSP-MB) into

two subproblems: a household subproblem and a pricing master problem. The household

subproblem is solved by two optimisation models that schedule jobs and the battery energy

storage system (battery) for each household independently. The pricing master problem

is solved by the Frank-Wolfe algorithm, which is also known as the conditional gradient

descent method. Second, these two problems are solved in a distributed and iterative man-

ner until convergence. The convergence is guaranteed by the Frank-Wolfe algorithm and

minimum parameter tuning is required. Third, once converged, the intermediate results

calculated during the iterative process are used to construct a probability distribution for

choosing the actual schedules of households.

The details of the decomposition and the iterative framework are presented in Sec-

tion 4.2, the optimisation models for solving the household subproblem are introduced in

Section 4.3, the Frank-Wolfe algorithm for solving the pricing master problem is explained

in Section 4.4 and the steps for calculating the probability distribution and finalising the

actual schedules for households are described in Section 4.5.

75
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4.2 Decomposition

4.2.1 Primal Decomposition

Our FW-DDSM applies the primal decomposition to divide our DSP-MB into two sub-

problems: a household subproblem and a pricing master problem. The pricing master

problem involves summing the demand profiles of all households, setting the price per

period using the pricing table based on the total demand profiles of households, and min-

imising the total supply cost and the inconvenience cost of all households. This problem

is solved by an aggregator or a demand response service provider (DRSP). The household

scheduling subproblem involves scheduling jobs and a battery in ways that minimise its

electricity cost and the inconvenience value against the prices given by the DRSP. The

pricing master problem and the household scheduling subproblem are then solved in an

iterative way until convergence.

The primal decomposition we have adopted is different from the dual decomposition

that is commonly used in the literature. The dual decomposition is best for optimisation

problems with coupling constraints (or complicating constraints as called in the optimi-

sation literature) whereas the primal decomposition is best for problems with coupling

variables or complicating variables. In order to solve problems with complicating vari-

ables using the dual decomposition, we need to firstly modify the original problem by

converting the complicating variables into coupling constraints, secondly transform the

modified problem into its dual problem, thirdly decompose the dual problem into sub-

problems and fourthly solve the subproblems in an iterative fashion. However, when using

the primal decomposition, we can decompose the problem based on complicating and non-

complicating variables straight-away without any problem transformation. More detailed

explanations of the complicating constraints and variables, and decomposition methods

are provided in Appendix B.3.6.

The decision variables (the best start times of jobs, and the charge and discharge pro-

files of batteries) are the complicating variables of our DSP-MB, because they are involved

in the objective function (they are used for calculating the demand profiles which are then

used for calculating the prices and the supply cost, and the total inconvenience value of all

households in the objective function). Although our DSP-MB has coupling constraints,

most of these constraints are applied to individual households except for the area demand
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limit constraint which is applied to all households. As discussed in Section 3.4.3 of Chap-

ter 3, the area demand limit constraint can be satisfied implicitly by the pricing table. This

way, our DSP-MB can be considered as an optimisation problem with coupling variables

on the household level. Therefore, applying the primal decomposition on the household

level, which is more straightforward and efficient.

4.2.2 Iteration

We solve the pricing master problem and the household scheduling subproblem iteratively

as follows:

• Initialisation: Households schedule jobs at their preferred start times (PSTs) and

send the resulting demand profiles to the DRSP.

• Pricing : Upon receiving the household demand profiles, the DRSP solves the pricing

master problem and sends prices to households.

• Rescheduling : After receiving the prices, households solve the scheduling subprob-

lems and send the resulting optimal demand profiles to the DRSP again.

• Iteration: Repeats the pricing step and the rescheduling step until convergence.

The iterations are showed in Figure 4.1. The details of each subproblem are presented in

the following sections.

Convergence conditions We consider the convergence is reached when the objective

value (the total consumption cost and the total inconvenience value of all households)

calculated by the pricing master problem does not change, or change within a very small

range (e.g. 0.01), in any two consecutive iterations.

4.3 Household Subproblem

The household subproblem is responsible for finding the best schedules for jobs and the

battery of each household, such that the costs of the consumer are minimised. In the

iterative framework of our FW-DDSM, each household receives prices from the DRSP and

schedules its demand against those prices. This subproblem is equivalent to the demand
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Figure 4.1: Iterations of the Frank-Wolfe-based distributed demand scheduling method

scheduling problem for a single battery (DSP-SB) we have discussed in Section 2.3.2 of

Chapter 2.

These days, our homes are becoming smarter. Recently developed appliances have

the capabilities of being monitored and controlled through wireless networks at any where

and any time. Consumers can install smart scheduling algorithms on a computation

machine that has the ability to communicate with smart appliances through the Internet.

Consumers can express their consumption preferences or requirements to this machine

using some interface. This machine can convert these preferences and requirements into

constraints for the household subproblem, collect the pricing information from the DRSP

through the Internet, calculate the best feasible schedule for their smart appliances using

the scheduling algorithms, and dispatch the control commands to the smart appliances

accordingly. Details of such smart homes can be found in Appendix A.3.2. Our solution

to the household subproblem can be installed on such a computation machine to compute

the best schedules and take advantages of the advanced features of smart appliances.

4.3.1 Subproblem Model

The decision variables of this problem are the start time of each job tactual−starth,d and the

charge and discharge profiles of the battery b+
h and b−h . The constraints of jobs and the

battery have been defined in Equation (3.1) – (3.16) in Section 3.3 of Chapter 3. The
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objective function includes the consumption cost and the inconvenience cost defined as

Equation (3.21) and Equation (3.23) in Section 3.5.

4.3.2 Subproblem Solving Method

We solve the household scheduling subproblem in two steps. First, we schedule the jobs

against the prices to minimise the consumption cost and the inconvenience value of this

household, and calculate the optimised demand profile of this household (the aggregate

demand of jobs per scheduling interval when the jobs start at their best start times).

Second, we schedule the battery given the optimised demand profile to further flatten the

demand profile of this household.

Note that, since the scheduling of jobs and batteries are independent at each iteration

(both jobs and the battery are scheduled against the same prices and the households do

not update prices based on their schedules), scheduling the battery after jobs does not

affect the feasibility nor the optimality of the job schedule. Moreover, scheduling the

battery given the optimised demand profile of jobs can only further improve the objective

value of this household.

Job Scheduling Module

In Section 2.3.3, we have discussed three types of techniques for scheduling jobs in a

demand scheduling problem for a single household (DSP-SH): mixed-integer programming

(MIP), constraint programming (CP) and heuristic methods. Since few exiting works, if

any, has compared the optimality and efficiency of these methods, in order to select the

most efficient method, this research is interested in developing three types of methods for

scheduling jobs of a household with these techniques, and comparing their performances.

Moreover, we will investigate the impacts of using each of these methods on the solutions

to our DSP-MB in Chapter 5.

MIP Optimisation Model First, we have developed a MIP model for scheduling jobs

of a household, depicted in Figure 4.2. This model includes the following elements:

• Model input parameters: We declare the problem parameters from line 3- 27: the

number of time intervals per day (line 4), the number of time intervals per hour

(line 6), the price per time interval (line 8), the number of jobs (line 10), the PSTs
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of all jobs (line 12), the earliest start times (ESTs) (line 13), the latest finish times

(LFTs) (line 14), the durations (line 15), the consumption per interval (line 16),

the care factors (CFs) (line 17), the weight of the inconvenience cost (line 18), the

weight of the electricity cost (line 19), the total number of jobs that have precedences

(line 21), the indices of the preceding jobs (line 23), the index of succeeding job for

each preceding job (line 24) and the maximum succeeding delays (MSDs) between

the preceding and the succeeding jobs (line 25).

• Decisions: We define the decision variables in lines 30-34. The set of variables

actual_starts represent the time interval at which each job is scheduled. For

instance, actual_start[i, 3] = 1 means that the job i is scheduled at the 3rd

time interval while actual_start[i, 4] = 1 means that this job is not scheduled

at the 4th time interval. The second set of variables, run_costs (line 34), represents

the objective value (including the electricity cost and discomfort) of scheduling each

job at each feasible time interval.

• Constraints: The constraints are listed from line 37-50. First, we ensure each job

is scheduled after its EST and will be finished before its LFT (line 40). Second,

we define the succeeding orders for jobs that have precedences (line 47). Third, we

impose the demand limit constraint stating the scheduled jobs must not exceed the

demand limit (line 50).

• Objective: we state the objective (line 54 and line 55).

CP Optimisation Model Second, we have developed a CP model for scheduling jobs

of a household, depicted in Figure 4.3. This CP model is similar to the MIP model except

for the following elements:

• Decisions: While it is more efficient for a MIP model to use binary values as decision

variables, it is better for a CP model to use feasible values instead. Consequently,

we define the decision variable actual_starts as an array where each element rep-

resents the actual start time of a job, instead of a matrix where each element rep-

resents if a job is scheduled at a time interval as in the MIP model. For instance,

actual_start[i] = 3 means that the job i is scheduled at the 3rd time interval.
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Figure 4.2: MIP model for scheduling jobs of a household

1

2 % ---------- input parameters ---------- %

3

4 int: num_intervals;

5 int: num_intervals_hour;

6 set of int: INTERVALS = 1.. num_intervals;

7

8 array[INTERVALS] of int: prices;

9

10 int: num_jobs;

11 set of int: JOBS = 1.. num_jobs;

12 array[JOBS] of int: preferred_starts;

13 array[JOBS] of int: earliest_starts;

14 array[JOBS] of int: latest_ends;

15 array[JOBS] of int: durations;

16 array[JOBS] of int: consumptions;

17 array[JOBS] of int: care_factors;

18 int: inconvenience_weight;

19 int: cost_weight;

20

21 int: num_precedences;

22 set of int: PREC = 1.. num_precedences;

23 array[PREC] of JOBS: predecessors;

24 array[PREC] of JOBS: successors;

25 array[PREC] of int: prec_delays;

26

27 int: max_demand;

28

29 % ---------- Decision variables ---------- %

30

31 array[JOBS , INTERVALS] of var 0..1: actual_starts;

32 array [JOBS , INTERVALS] of int: run_costs = array2d(JOBS ,INTERVALS , [

33 care_factors[d] * abs(s - 1 - preferred_starts[d]) * inconvenience_weight *

num_intervals_hour +

34 sum (t in s..min(s + durations[d] - 1, no_intervals)) (prices[t] * consumptions

[d]) * cost_weight | d in JOBS , s in INTERVALS ]);

35

36 % ---------- Constraints ---------- %

37

38 constraint forall (d in JOBS) (

39 earliest_starts[d] + 1 <= sum(s in INTERVALS) (actual_starts[d,s] * s)

40 /\ sum(s in INTERVALS) (actual_starts[d,s] * s) + durations[d] - 1 <=

latest_ends[d] + 1);

41

42 constraint forall (p in PREC) (

43 let {JOBS: pre = predecessors[p] ;

44 JOBS: succ = successors[p] ;

45 int: d = prec_delays[p]; } in

46 sum(s in INTERVALS) (actual_starts[pre ,s] * s) + durations[pre] <= sum(s in

INTERVALS) (actual_starts[succ ,s] * s)

47 /\ sum(s in INTERVALS) (actual_starts[succ ,s] * s) <= sum(s in INTERVALS) (

actual_starts[pre ,s] * s) + durations[pre] + d);

48

49 constraint forall (s in INTERVALS)

50 (sum(d in JOBS) (actual_starts[d, s] * consumptions[d]) <= max_demand);

51

52 % ---------- Objective and search ---------- %

53 var int: obj= sum (d in JOBS , s in INTERVALS)

54 (run_costs[d, s] * actual_starts[d, s]);

55 solve minimize obj;

56
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• Constraints: A major advantage of CP methods is the use of global constraints.

More explanations of global constraints are provided in Appendix B.3.4. We take

advantage of this benefit by calling the global constraint library (line 1) and replac-

ing the demand limit constraint in the MIP model with a global constraint called

cumulative (line 50) to ensure the accumulated demand is below the household

demand limit at any time interval.

• Search and reasoning strategies: As CP methods reply on search and inference rea-

soning to eliminate infeasible and suboptimal values, choosing which variable to

search and which value to reason next is important for the efficiency of a CP solver.

Users can choose such variable selection strategies and value choice strategies for

a solver to improve its solving time. Common strategies are listed in Table 4.1.

Detailed explanations of these strategies can be found at the MiniZinc. Hand-

book (Stuckey et al., 2018). This CP model uses the first fail and indomain max

strategies (line 54). Section ?? will implement more strategy combinations and

compare their performances.

Table 4.1: Commonly used value choice strategies and selection strategies for CP solvers

Value Choice Strategy Variable Selection Strateg

input order most constrained indomain min indomain max

first fail anti first fail indomain random indomain

smallest largest indomain split indomain reverse split

Note that we have declared all decision variables as integers although in practice prices

and consumptions are floating point numbers. We have multiplied all prices and con-

sumptions by 100 to transform them into integers because CP solvers are most efficient

for integer variables. A sample data file used for both the MIP model and the CP model

is presented in Appendix C.1.

Data Preprocessing Third, we have noticed that the cost of starting each job at each

time interval is independent of any constraints. We can develop a preprocessing algorithm

to pre-computes the run_costs and even eliminate some constraints and parameters in

the model by incorporating them into the precomputed run_costs. For example, we can

incorporate the scheduling time constraints into the run_costs by setting an extremely
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Figure 4.3: CP model for scheduling jobs of a household

1 include "globals.mzn";

2

3 % ---------- input parameters ---------- %

4

5 int: num_intervals;

6 int: num_intervals_hour;

7 set of int: INTERVALS = 1.. num_intervals;

8

9 array[INTERVALS] of int: prices;

10

11 int: num_jobs;

12 set of int: JOBS = 1.. num_jobs;

13 array[JOBS] of int: preferred_starts;

14 array[JOBS] of int: earliest_starts;

15 array[JOBS] of int: latest_ends;

16 array[JOBS] of int: durations;

17 array[JOBS] of int: consumptions;

18 array[JOBS] of int: care_factors;

19 int: inconvenience_weight;

20 int: cost_weight;

21

22 int: num_precedences;

23 set of int: PREC = 1.. num_precedences;

24 array[PREC] of JOBS: predecessors;

25 array[PREC] of JOBS: successors;

26 array[PREC] of int: prec_delays;

27

28 int: max_demand;

29

30 % ---------- Decision variables ---------- %

31

32 array[JOBS] of var INTERVALS: actual_starts;

33 array [JOBS , INTERVALS] of int: run_costs = array2d(JOBS ,INTERVALS , [

34 care_factors[d] * abs(s - 1 - preferred_starts[d]) * inconvenience_weight *

num_intervals_hour+

35 sum (t in s..min(s + durations[d] - 1, num_intervals)) (prices[t] *

consumptions[d]) * cost_weight | d in JOBS , s in INTERVALS ]);

36

37 % ---------- Constraints ---------- %

38

39 constraint forall (d in JOBS) (

40 earliest_starts[d] + 1 <= actual_starts[d]

41 /\ actual_starts[d] + durations[d] - 1 <= latest_ends[d] + 1);

42

43 constraint forall (p in PREC) (

44 let {JOBS: pre = predecessors[p] ;

45 JOBS: succ = successors[p] ;

46 int: d = prec_delays[p]; } in

47 actual_starts[pre] + durations[pre] <= actual_starts[succ]

48 /\ actual_starts[succ] <= actual_starts[pre] + durations[pre] + d);

49

50 constraint cumulative(actual_starts , durations , consumptions , max_demand);

51

52 % ---------- Objective and search ---------- %

53 var int: obj= sum (d in JOBS) (run_costs[d, actual_starts[d]]);

54 solve :: int_search(actual_starts , first_fail , indomain_max , complete)

55 minimize obj;

56



84CHAPTER 4. FRANK-WOLFE-BASED DISTRIBUTEDDEMAND SCHEDULINGMETHOD

high cost for starting a job outside its feasible time intervals. This way, we can further re-

duce the computation time of the model. This preprocessing algorithm is straight forward.

We have included the pseudo code in Appendix 4.

The modified MIP model and CP model used with the preprocessing algorithm are

depicted in Figure 4.4 and Figure 4.5, respectively. These modified models do not require

the ESTs, PSTs, LFTs and CFs parameters. Instead, a new parameter run_costs is used.

However, in the modified MIP model, an additional constraint is required to ensure that

only one start time is selected for each job (line 33). An example of the input data file for

both modified models is provided in Appendix C.2

Optimistic Greedy Search Algorithm Fourth, we have developed a heuristic algo-

rithm based on the greedy algorithm. We call this algorithm the Optimistic Greedy Search

Algorithm (OGSA). Similar to the modified models, this algorithm is used after the run

costs are calculated by the data preprocessing algorithm. The OGSA schedules each job

independently in the following steps:

1. Find the time intervals that satisfy the scheduling time constraints, and the prece-

dence constraint and the preceding delay constraint if a predecessor exists for this

job. This set of intervals is called the feasible interval set.

2. Select the time intervals from the feasible interval set that have the lowest run costs

(precomputed by the data-preprocessing algorithm).

3. Choose a cheapest time interval as the actual start time and calculate the maximum

demand of the household.

4. Check if the maximum demand exceeds the limit:

(a) if no, the chosen interval is the final actual start time.

(b) if yes and the feasible interval set is not empty, remove this interval from the

feasible interval set and go back to Step 2.

(c) if yes and the feasible interval set is empty, choose the removed time interval

that exceeds the limit the least as the final actual start time.

The pseudo code of this algorithm is presented at Appendix 5.
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Battery Scheduling Module

The battery scheduling method is responsible for finding the best time to charge and

discharge a battery given the prices and the demand profile of a household after its jobs

have been scheduled. Different from the job scheduling problem, we use minimisation

of the consumption cost, the maximum demand and the peak-to-average ratio (PAR) of

the household demand profile as the objective, because inconvenience is not applicable to

batteries and we want to flatten the demand profile to the lowest. We have observed from

Figure 4.4: Modified MIP model for scheduling jobs of a household

1

2 % ---------- input parameters ---------- %

3

4 int: num_intervals;

5 set of int: INTERVALS = 1.. num_intervals;

6

7 int: num_jobs;

8 set of int: JOBS = 1.. num_jobs;

9 array[JOBS] of int: durations;

10 array[JOBS] of int: consumptions;

11

12 int: num_precedences;

13 set of int: PREC = 1.. num_precedences;

14 array[PREC] of JOBS: predecessors;

15 array[PREC] of JOBS: successors;

16 array[PREC] of int: prec_delays;

17

18 int: max_demand;

19

20 array [JOBS , INTERVALS] of int: run_costs;

21

22 % ---------- Decision variables ---------- %

23

24 array[JOBS , INTERVALS] of var 0..1: actual_starts;

25

26 % ---------- Objectives ---------- %

27

28 var int: obj= sum (d in JOBS , s in INTERVALS)

29 (run_costs[d, s] * actual_starts[d, s]);

30

31 % ---------- Constraints ---------- %

32

33 constraint forall (d in JOBS) (sum(s in INTERVALS) (actual_starts[d, s]) == 1);

34

35 constraint forall (p in PREC) (

36 let {JOBS: pre = predecessors[p] ;

37 JOBS: succ = successors[p] ;

38 int: d = prec_delays[p]; } in

39 sum(s in INTERVALS) (actual_starts[pre ,s] * s) + durations[pre] <= sum(s in

INTERVALS) (actual_starts[succ ,s] * s)

40 /\ sum(s in INTERVALS) (actual_starts[succ ,s] * s) <= sum(s in INTERVALS) (

actual_starts[pre ,s] * s) + durations[pre] + d);

41

42 constraint forall (s in INTERVALS)

43 (sum(d in JOBS) (actual_starts[d, s] * consumptions[d]) <= max_demand);

44

45 % ---------- Objective and search ---------- %

46 solve minimize obj;

47
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Figure 4.5: Modified CP model for scheduling jobs of a household

1 include "globals.mzn";

2

3 % ---------- input parameters ---------- %

4

5 int: num_intervals;

6 set of int: INTERVALS = 1.. num_intervals;

7

8 int: num_jobs;

9 set of int: JOBS = 1.. num_jobs;

10 array[JOBS] of int: durations;

11 array[JOBS] of int: consumptions;

12

13 int: num_precedences;

14 set of int: PREC = 1.. num_precedences;

15 array[PREC] of JOBS: predecessors;

16 array[PREC] of JOBS: successors;

17 array[PREC] of int: prec_delays;

18

19 int: max_demand;

20

21 array [JOBS , INTERVALS] of int: run_costs;

22

23 % ---------- Decision variables ---------- %

24

25 array[JOBS] of var INTERVALS: actual_starts;

26

27 % ---------- Objectives ---------- %

28 var int: obj= sum (d in JOBS) (run_costs[d, actual_starts[d]]);

29

30 % ---------- Constraints ---------- %

31

32

33 constraint forall (p in PREC) (

34 let {JOBS: pre = predecessors[p] ;

35 JOBS: succ = successors[p] ;

36 int: d = prec_delays[p]; } in

37 actual_starts[pre] + durations[pre] <= actual_starts[succ]

38 /\ actual_starts[succ] <= actual_starts[pre] + durations[pre] + d);

39

40 constraint cumulative(actual_starts , durations , consumptions , max_demand);

41

42 % ---------- Objective and search ---------- %

43 solve :: int_search(actual_starts , first_fail , indomain_max , complete)

44 minimize obj;

45

our experiments that minimising both PAR and the maximum demand yields the flattest

demand profile, compared to simply minimising the PAR or the maximum demand.

However, PAR is a ratio that depends on multiple decision variables. Introducing

this ratio into the objective function has turned the battery scheduling problem into a

fractional linear programming (FIP) problem (Hooker, 2019). Solving such FIP problems

requires transforming the original problem to a linear problem using the Charnes-Cooper

transformation (Charnes and Cooper, 1962).

Charnes-Cooper Transformation Let us write the general form of FIP problems as

Equation 4.1.
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minimise
cx+ c0

dx+ d0

subject to Ax ≥ b

x ≥ 0

(4.1)

The Charnes-Cooper transformation linearises this FIP problem by replacing x = x′/z

and fixing the denominator to 1, showed as Equation 4.2.

minimise cx′ + c0z

subject to Ax′ ≥ bz

dx′ + d0z = 1

x′, z ≥ 0

(4.2)

Particularly for FIP problems whose objective value is a relative maximum value, showed

as Equation 4.3, the problems are linearised as Equation 4.4.

minimise
umax
ū

=
umax

(1/n)
∑

i ui

subject to ∀i, umax ≥ ui

∀i, ui = aixi, 0 ≤ xi ≤ bi∑
i

xi = B

(4.3)

minimise umax

subject to ∀i, umax ≥ u′i

∀i, u′i = aix
′
i, 0 ≤ x′i ≤ biζ∑

i

x′i = Bζ

(1/n)
∑
i

u′i = 1

ζ ≥ 0

∀i, u′i ≥ 0

(4.4)

Battery Scheduling Subproblem Linearisation Using Charnes-Cooper transforma-

tion, the battery scheduling subproblem is linearised in the following steps:
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1. Reformulate the PAR minimisation objective for our battery scheduling subproblem

in the form of Equation 4.3 as the following:

minimise PARhouseh =
MAXhouse

h
¯

lhouse−battery−sh

=
MAXhouse

h

(1/M)
∑

m l
house−battery−s
h,m

subject to ∀m, MAXhouse
h ≥ lhouse−battery−sh,m

(4.5)

2. Linearise the PAR minimisation objective in the form of 4.6 as the following:

minimise PARhouse−lh = MAX ′h

subject to ∀m, MAX ′h ≥ l′h,m

∀m, l′h,m = ζ × lh,m

(1/M)
∑
m

l′h,m = 1

ζ ≥ 0

(4.6)

3. Let us remove the division in the Equation 4.6 by replacing l′h,m = l′′h,m ×M , and

rewrite the linearised PAR minimisation objective as the following:

minimise PARhouse−lh = MAX ′h

subject to ∀m, MAX ′h ≥ l′′h,m ×M

∀m, l′′h,m = ζ ′ × lh,m∑
m

l′′h,m = 1

0 ≤ ζ ′ = ζ/M ≤ 1

(4.7)

4. Reformulate the battery scheduling subproblem as Equation 4.8. The differences

between the transformed problem and the original problem are highlighted in bold.

minimise yh = λcChouse + λmaxMAXhouse
h + λparPARhouse−lh

subject to (3.5), (3.6), (3.8), (3.9), (3.10), (3.16), (4.7)

(4.8)

The reformulated battery scheduling subproblem is a linear programming problem where

the decision variables are continuous, and the constraints and the objective functions are

linear. This problem can be solved by a linear programming (LP) optimisation model.
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We do not use CP solve this subproblem because the battery charge and discharge rates

are continuous instead of discrete, and LP is the best solving method for optimisation

problems with continuous variables.

LP Optimisation Model Figure 4.6 shows the LP model developed for the battery

scheduling problem, including elements which are described as follows:

• Input parameters from line 3 to line 18:

– The time related parameters: the number of intervals per day (line 3) and the

number of intervals per hour (line 4)

– The battery related parameters: the minimum energy capacity (line 8), the

maximum energy capacity (line 9), the maximum power rate (line 10) and the

efficiency (line 11) of the battery

– The demands and prices related parameters: the optimised demand profile of

jobs (line 14), the limit of the total demand at any time (line 15) and the price

per interval (line 18).

• Decision variables from line 21 to line 34:

– The original decision variables: battery_soc represent the state-of-charge (SOC)

of the battery at each interval, battery_charge (or battery_discharge)represent

the amount of electricity charged (or discharged) per interval, and demand rep-

resent the optimised demand profile of the household after the battery is sched-

uled.

– The additional variables for linearising the PAR objective: z, maxz, minz,

battery_soc2, battery_discharge2 and demand2.

• Objectives from line 37 to line 41.

– The weight of the original PAR objective: par_weight.

– The linearised PAR objective: PAR.

– The maximum demand: max_demand.

– the consumption cost: cost
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Figure 4.6: LP model for scheduling the battery of a household

1

2 % ------ time intervals ----- %

3 int: num_intervals;

4 int: num_intervals_hour;

5 set of int: INTERVALS = 1.. num_intervals;

6

7 % ------ battery specifications ------ %

8 float: min_energy_capacity;

9 float: max_energy_capacity;

10 float: max_power;

11 float: efficiency;

12

13 % ------ demands ------ %

14 array[INTERVALS] of float: existing_demands;

15 float: demand_limit = 9999999999.9;

16

17 % ------ prices ------ %

18 array[INTERVALS] of float: prices;

19

20 % ------ decision variables ------ %

21 array[INTERVALS] of var min_energy_capacity .. max_energy_capacity: battery_soc;

22 array[INTERVALS] of var 0.. max_power: battery_charge;

23 array[INTERVALS] of var -max_power ..0: battery_discharge;

24 array[INTERVALS] of var 0.. demand_limit: demand = array1d ([ existing_demands[i]

25 + (battery_charge[i] / efficiency) + (battery_discharge[i] * efficiency) | i

in INTERVALS ]);

26

27 % ------ additional variables for PAR linearisation ------ %

28 float: minz = 0 ;

29 float: maxz = 1 ;

30 var float: z;

31 array[INTERVALS] of var minz * min_energy_capacity ..maxz * max_energy_capacity:

battery_soc2;

32 array[INTERVALS] of var 0.. maxz * max_power: battery_charge2;

33 array[INTERVALS] of var -maxz * max_power ..0: battery_discharge2;

34 array[INTERVALS] of var 0.. maxz * demand_limit: demand2 = array1d ([z *

existing_demands[i] + (battery_charge2[i] / efficiency) + (battery_discharge2[i

] * efficiency) | i in INTERVALS ]);

35

36 % ------ objectives ------ %

37 int: par_weight;

38 var float: max_demand;

39 var float: PAR = max(demand2) * num_intervals ;

40 var float: cost = sum (i in INTERVALS) (demand[i] * prices[i]);

41 var float: obj = cost + par_weight * PAR + max_demand;

42

43 % ------ constraints for the original decision variables ------ %

44 constraint forall(i in INTERVALS)(battery_soc[i] <= max_energy_capacity);

45 constraint forall(i in INTERVALS)(battery_soc[i] >= min_energy_capacity);

46 constraint forall (i in 2.. num_intervals) (battery_soc[i] * num_intervals_hour

- battery_soc[i - 1] * num_intervals_hour = battery_charge[i - 1] +

battery_discharge[i - 1]);

47 constraint battery_soc [1] * num_intervals_hour - battery_soc[num_intervals] *

num_intervals_hour = battery_charge[num_intervals] + battery_discharge[

num_intervals ];

48 constraint forall(i in INTERVALS)(max_demand >= demand[i]);

49

50 % ------ constraints for the additional variables ------ %

51 constraint z >= minz /\ z <= maxz;

52 constraint sum(demand2) = 1;

53 constraint sum(i in INTERVALS)(battery_charge2[i] * battery_discharge2[i]) = 0;

54 constraint forall(i in INTERVALS)(battery_soc2[i] <= max_energy_capacity * z);

55 constraint forall(i in INTERVALS)(battery_soc2[i] >= min_energy_capacity * z);

56 constraint forall (i in 2.. num_intervals) (battery_soc2[i] * num_intervals_hour

- battery_soc2[i - 1] * num_intervals_hour = battery_charge2[i - 1] +

battery_discharge2[i - 1]);

57 constraint battery_soc2 [1] * num_intervals_hour - battery_soc2[num_intervals] *

num_intervals_hour = battery_charge2[num_intervals] + battery_discharge2[

num_intervals ];

58

59 % ------ minimise the objective value ------ %

60 solve minimize obj;

61
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– the objective value: obj

• Constraints from line 44 to line 57.

– The SOC constraints for the original decision variables: line 44 to line 47.

– The maximum demand constraint for the original decision variables: line 48.

– The constraints for the additional variables: line 51 to line 57

4.4 Pricing Master Problem

The pricing master problem is responsible for setting the prices for households, such that

when households respond to these prices in the most selfish way (e.g. in a way that

minimise their own costs), the total demand profile of all households will be flatten as

much as possible and the total cost of all households will be reduced. The prices for

all households are the same. No information needs to be exchanged among households.

During the iterations, only the demand profile of each household is required to be sent to

the DRSP and no information other than prices are sent back to households.

In countries where smart meters have been widely adopted (see Appendix A.3.2 for

explanations of smart meters), electricity network operators have already recorded house-

hold consumptions at a higher frequency (e.g. every seconds or minutes) remotely using

the wireless communication features of these meters. These meters have the capabilities

of receiving information from network operators through the Internet. Our solution to the

pricing master problem can be applied to a retailer or a network operator with minimum

changes to the existing network infrastructure.

4.4.1 Naive Approach

First, we have used the simplest way to calculate prices: at each iteration, we calculate

the total demand profile of all households from the optimised demand profiles sent by

households, and compute the prices from the total demand profile using the pricing table.

Oscillations However, this naive approach cannot achieve convergence at all. We have

observed from experiments that at one iteration, households would schedule most demands

to the cheapest time intervals, making them very expensive for the next iteration; and at
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the next iteration, households would schedule very little demands in the those time inter-

vals due to their high prices, making them very cheap again. Figure 4.7 and Figure 4.8

show the experimental results of this naive approach. This experiment was conducted

with 90 simulated households over 48 thirty-minute time periods. At each iteration, the

households scheduled devices against the prices given by the DRSP in the previous iter-

ation, and the DRSP updated the prices based on the total demand profile of the same

iteration. The figures show the total consumption of households per period and the total

costs for 20 iterations. We can observe that the oscillation started just after iteration 3.

Figure 4.7: Oscillations of Consumptions as a Result From the Naive Approach

Figure 4.8: Oscillations of Costs as a Result From the Naive Approach



4.4. PRICING MASTER PROBLEM 93

4.4.2 Averaging Approach

Second, we have adopted the traditional mechanism for achieving convergence while reduc-

ing the objective value: averaging (Chapman et al., 2011). At each iteration, we calculate

the prices based on the demand profiles found at the current iteration and the average

demand profiles from all previous iterations. Let us write the total demand profile of all

households, calculated from the optimised demand profiles of all households, at iteration

z as Ltotal−itr−pz . The averaged total demand profile of all iterations up to iteration z

Ltotal−itr−avgz can be calculated as follows:

Ltotal−itr−avgz = (1− α) ∗ Ltotal−itr−avgz−1 + α ∗ Ltotal−itr−pz , where α = 1/z (4.9)

The prices are then calculated using Ltotal−itr−avgz and the pricing table. We illustrate the

iterations of the primal decomposition with this averaging approach as Figure 4.9.

Figure 4.9: Iterations between the DRSP and households with the averaging method
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Total Expected Demand Profile and Probability

This approach can be understood as calculating prices based on partial demand profiles

from all iterations, or the expected demand profiles of households at each iteration. The

form of Equation 4.9 allows us to interpret Ltotal−itr−avgz as the total expected demand

profile of all households at iteration z, where 1 − α is the weight of the average total

demand profile at iteration z − 1: Ltotal−itr−avgz−1 , and α is the weight of the total demand

profile at iteration z: Ltotal−itr−pz . Alternative, we can understand α as the probability for

households to switch to their optimal schedules found at iteration z from the schedules

at iteration z − 1; or the probability for a job to start and a battery to charge/discharge

according to the optimal schedules of its household at iteration z.

Oscillations and Convergence

Calculating the prices from the total expected demand profile allows the pricing master

problem to consider the possible responses of households from all iterations, preventing

prices from swinging with the demands at each iteration. Although this method will

achieve convergence, it is unclear whether it will converge to the global optimal solution

or a local optimal. Moreover, we have observed in experiments that this approach preserves

smaller ranges of oscillations, making the convergence very slow to achieve. Figure 4.10

shows the results of applying the averaging approach to the problem and data discussed in

the naive approach (see Section 4.4.1). We can observe that the small ranges of oscillations

appear just after iteration 3.

4.4.3 Frank-Wolfe Approach

Although the averaging approach is very slow to converge, it has shown the potential of

finding an (local) optimal solution to our DSP-MB using the weighted demand profiles

from all iterations or the total expected demand profile of all households. We believe that

there are opportunities for a more sophisticated algorithm to achieve the optimal solution

in less iterations in a similar way. The Frank-Wolfe (FW) algorithm (Sheffi, 1985; Frank

and Wolfe, 1956), also known as the conditional gradient descent method, is such a method

we have found. Moreover, this algorithm can guarantee that the global optimality of the

solution to a convex optimisation problem.
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Figure 4.10: Cost per Iteration Using the Averaging Approach

Frank-Wolfe Algorithm

The FW algorithm is an optimisation method that solves constrained convex optimisation

problems iteratively using the linear approximations or the first-order Taylor approxima-

tions of the problems at each iteration. It has been successfully applied to scheduling

problems in the traffic assignment domain (Nakamura et al., 2020). In general, the FW

algorithm works as follows:

1. Choosing an initial solution xk (k = 0) to the problem by selecting values for variables

randomly or using some heuristic methods.

2. Calculating the linear approximation of the original problem which is also the gra-

dient at the current solution xk: Fxk(x) = f(xk) + Of(xk)(x− xk).

3. Finding a new feasible solution yk that minimises the objective value of this linear

approximation function subject to the constraints.

4. Calculating the steepest descent direction as the line function that connects the two

newly calculated solutions: dk = yk − xk.

5. Performing a line search on this descent direction to find the point xk+1 that min-

imises the objective value of the original problem. This xk+1 can be written using a

variable called the step size αk and the previous solution as:
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xk+1 = xk + αk ∗ dk where α ∈ [0, 1] (4.10)

Since both xk and dk are known, this step is equivalent to determining the best value

of αk that minimises the objective value.

6. Repeating Step 2 – Step 5 until convergence.

In a multi-dimension problem like our DSP-MB, each point in the solution space has

various descent directions that reduce the value of the objective function. One of these

descent directions reduces the objective value in the fastest way, which is the steepest

descent descent. This steepest descent direction is the linear approximation or the gradient

of the objective function. The FW algorithm searches for solutions along this steepest

descent that reduce the objective value the most (Step 2). In addition, this algorithm

ensures the feasibility of solutions at each iteration by considering the descent direction

within the feasible solution space only (Step 3 and 4).

In more details, at each iteration, the FW algorithm finds a point xk in the solution

space (Step 1) using some optimisation methods, calculates the gradient at this point

Fxk(x) (Step 2) and finds another feasible point yk on the gradient that minimises the

value of this gradient function while satisfying all constraints (Step 3). Then we draw a

line dk between the previous point xk and this new point yk. Since the problem is convex

and both xk and yk are feasible, any points on this line dk is feasible. As yk is found on

the steepest descent direction, all points on this line have reduced objective values. So we

find a point xk+1 on this line that has the lowest objective value of the original problem

(Step 5). This point xk+1 is best solution we can find up to the current iteration. Then

we repeat Step 2 – Step 5 iteratively until xk+n does not have a lower objective value.

The last xk+n is the optimal solution we seek to the optimisation problem. More details

of line search methods, gradients and descent directions can be found in Appendix B.3.5.

Note that the FW algorithm can solve convex problems that are not strictly convex.

When a problem is non-strictly convex, in Step 5, there may be several points on dk that

have the same optimal objective value. We choose one of these points as the best solution

xk+1 up to the current iteration. In other words, although there can be multiple optimal

solutions with the same objective value in a non-strictly convex optimisation problem, we

simply find one of these optimal solutions as the best final solution.
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Relations Between Frank-Wolfe, Averaging, Decomposition and DSP-MB

We have found some relations between the FW algorithm and our DSP-MB, the primal

decomposition and the averaging approach as follows:

• Relations between the FW and our DSP-MB: In our DSP-MB, the linear approxi-

mation of the objective function Fxk(x) is the pricing function. The gradient at any

solution is the prices of that solution.

• Relations between the FW and the primal decomposition: In our household subprob-

lem, we schedule jobs and the battery given the prices from the DRSP, which is

equivalent to finding a new solution given a fixed the gradient in Step 3 of the FW

algorithm. In the pricing master problem, we calculate new prices given the total

demand profile of households, which is equivalent to calculating the new gradient at

a given solution in Step 2.

• Relations between the FW and the averaging approach: Equation 4.10 in Step 5 of

the FW algorithm has the same form as Equation 4.9 in the averaging approach.

This comparison has informed us that:

• Step 1, 2 and 3 of the FW algorithm match with the purposes of the subproblem

and the master problem in our primal decomposition.

• The similarity between Equation 4.10 in the FW algorithm and Equation 4.9 in the

averaging approach allows us to 1) interpret the step size αk in the FW algorithm in

the same way as that in the averaging approach: the probability for each household

to adopt the new schedule yk at iteration z; and 2) integrate Step 4 and 5 of the FW

algorithm in the same way as integrating the averaging approach into our primal

decomposition, which is illustrated as Figure 4.11.

Different from the averaging approach, the FW algorithm re-calculates the step size

αk at each iteration to ensure the objective value is reduced in the fastest way. Moreover,

by adopting this variable step size, we transform our DSP-MB into a continuous convex

optimisation problem whose goal is to find a sequence of step sizes that minimises the

objective function, instead of the exact start times of jobs and charge/discharge profiles

of batteries. The prices and the total objective value optimised by the FW approach will
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Figure 4.11: Iterations between the DRSP and households with the FW algorithm

be guaranteed to be global minimum. We explain this problem transformation in more

details in the following subsection.

Problem Transformation

By integrating the FW algorithm, our pricing master problem at each iteration is now

concerned with calculating prices based on the best step size and the total demand profiles

in the current and previous iterations (Step 2, 4 and 5). Since a step size of the FW

algorithm can be interpreted as the probability of adopting the optimal schedules at an

iteration, the total demand profile used for pricing can also be seen as the total expected

demand profile (see Section 4.4.2 for explanations) of all households. Consequently, the

supply cost is calculated from the total expected demand profile instead of the total

demand profile at any iteration.

Since the step size is optimised per iteration to reduce the objective value in the fastest

way, the total expected demand profile is also optimised to find the lowest possible prices at

each iteration. This means, the solution to our DSP-MB is in fact now the optimal total
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expected demand profile that minimises the objective value; and the decision variables

are now the best step size per iteration instead of the exact start times of jobs and the

charge/discharge profiles of batteries. In other words, we essentially allow a job or a

battery to be used at any time and we optimise the probability of using a job or a battery

at each feasible time interval, so that the total expected objective value is minimum.

Note that, due to the scheduling time constraints of jobs, the probability of starting a job

outside its feasible time intervals is zero.

Although this FW approach optimises the total expected demand profile instead of

the total demand profile at any iteration, we show that we can achieve this optimal total

expected demand profile and the minimum objective value in practice using a probability-

based scheduling method, to be described in Section 4.5.

Since the step size or the probability is continuous, our DSP-MB is now a continuous

convex optimisation problem instead of the mixed-integer non-linear problem discussed

in Section 3.6 of Chapter 3. Therefore, the global optimality of the best solution can be

guaranteed by the FW algorithm. We prove the convexity of this transformed problem in

the following subsection.

Proof of Convexity

Let us write Lax and Lay as two total demand profiles (or demand vectors in mathemat-

ical terms) of households, calculated from different feasible job and battery schedules of

households. Let us consider an arbitrary point Laz on the line joining these two demand

vectors as follows:

Laz = Lax + α(Lay − Lax), where α ∈ [0, 1] (4.11)

Since all constraints of jobs and batteries are linear, Laz is also feasible. To prove that

the objective function is convex, we must show that the objective value of Laz is less than

its linear approximation as follows:

f(Laz) < f(Lax) + α(f(Lay)− f(Lax)) (4.12)

The objective value consists of the supply cost for all households and the total incon-

venience cost. Since the inconvenience cost function is linear, it is sufficient to prove that

the supply cost function satisfies the following:
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Ca(Laz) < Ca(Lax) + α(Ca(Lay)− Ca(Lax)) (4.13)

Since for any demand vectors Lav, the total supply cost is the sum of the cost at each

period n:

Ca(Lav) =
48∑
n=1

Ca(Lav,n) (4.14)

It is sufficient to proof convexity by proving for each period n that:

Ca(Laz,n) ≤ Ca(Lax,n) + α(Ca(Lay,n)− Ca(Lax,n)) (4.15)

With the use of α, we can rewrite this expression as follows:

α(Ca(Lay,n)− Ca(Lax,n))

=α(Ca(Lay,n)− Ca(Laz,n) + Ca(Laz,n)− Ca(Lax,n))

=α(Ca(Lay,n)− Ca(Laz,n)) + Ca(Laz,n)− Ca(Lax,n)− (1− α)(Ca(Laz,n)− Ca(Lax,n))

(4.16)

To complete the proof we need to show that:

Ca(Lax,n) + α(Ca(Lay,n)− Ca(Lax,n))− Ca(Laz,n)

=Ca(Lax,n) + α(Ca(Lay,n)− Ca(Laz,n)) + Ca(Laz,n)− Ca(Lax,n)

− (1− α)(Ca(Laz,n)− Ca(Lax,n))− Ca(Laz,n)

=α(Ca(Lay,n)− Ca(Laz,n))− (1− α)(Ca(Laz,n)− Ca(Lax,n))

≥0

(4.17)

Let δ = Lay,n − Lax,n, then:

Laz,n − Lax,n = δ × α

Lay,n − Laz,n = δ × (1− α)

(4.18)

Case 1: Ca(Lax,n) < Ca(Lay,n) Let p(Lav,n) be the price of any demand vector Lav in

period n. From the price table Tn(·), find the level indexed by ix < iz < iy, with price
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levels p̂n,ix = p(Lax,n), p̂n,iz = p(Laz,n), p̂n,iy = p(Lay,n), and the corresponding consumption

levels ên,ix, ên,iz, ên,iy. Accordingly:

Ca(Laz,n)− Ca(Lax,n)

=p̂ix × (êix − Lax,n) + p̂iz × (Laz,n − êiz−1) +
∑

ix<i<iz

(p̂i × (êi − êi−1))
(4.19)

The proof for this case follows, if we replace higher prices by lower prices in a positive

context, and lower prices by higher prices in a negative context:

α(Ca(Lay,n)− Ca(Laz,n))− (1− α)(Ca(Laz,n)− Ca(Lax,n))

=α× (p̂iz × (êiz − Laz,n) + p̂iy × (Lay,n − êiy−1) +
∑

iz<i<iy

(p̂i × (êi − êi−1))

− (1− α)× (p̂ix × (êix − Lax,n) + p̂iz × (Laz,n − êiz−1) +
∑

ix<i<iz

(p̂i × (êi − êi−1)))

>α× (p̂iz × (êiz − Laz,n) + p̂iz × (Lay,n − êiy−1) +
∑

iz<i<iy

(p̂iz × (êi − êi−1)))

− (1− α)× (p̂iz × (êix − Lax,n) + p̂iz × (Laz,n − êiz−1) +
∑

ix<i<iz

(p̂iz × (êi − êi−1)))

=p̂iz × (α× (Lay,n − Laz,n)− (1− α)× (Laz,n − Lax,n))

=p̂iz × (α× δ × (1− α)− (1− α)× δ × α) = 0

(4.20)

Case 2: Ca(Lax,n) > Ca(Lay,n) In this case the consumption levels are in reverse order,

but the proof is similar.

Case 3: Ca(Lax,n) = Ca(Lay,n) In this case Ca(Laz,n) = Ca(Lax,n) and the linear approxi-

mation is equally Ca(Lax,n).

Q.E.D
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Pricing Master Problem Model and Solving Method

Since our pricing master problem is now concerned with finding the best step size based

on the Step 2, 4 and 5 of the FW algorithm, we can describe the steps of solving this

pricing master problem as follows:

1. Calculate the total demand profile Ltotal−itr−pz of households in the current iteration.

2. Compute the descent direction dz from Ltotal−itr−pz and the total expected demand

profile Ltotal−itr−fwz−1 optimised for pricing in the previous iteration as follows:

dz = Ltotal−itr−pz − Ltotal−itr−fwz−1 (4.21)

Since the demand profiles are calculated by households when the prices are fixed and

the prices comprise the gradient of the objective function, dz is the steepest descent

direction at Ltotal−itr−pz .

3. Compute the best step size αz along dz that minimises fz as follows:

αz = arg min
α∈[0,1]

fz(L
total−itr−fw
z−1 + αdz) (4.22)

= arg min
α∈[0,1]

Ctotal−itrz (Ltotal−itr−fwz−1 + αdz) + U total−itrz (Ltotal−itr−fwz−1 + αdz)

(4.23)

= arg min
α∈[0,1]

[Ltotal−itr−fwz−1 + α(Ltotal−itr−pz − Ltotal−itr−fwz−1 )] (4.24)

×Rn(Ltotal−itr−fwz−1 + α(Ltotal−itr−pz − Ltotal−itr−fwz−1 ))× 24/N (4.25)

+ U total−itrz + α(U total−itrz − U total−fwz−1 ) (4.26)

= arg min
α∈[0,1]

N∑
n=1

[Ltotal−itr−p−fwn,z−1 + α(Ltotal−itr−pn,z − Ltotal−itr−p−fwn,z−1 )]× rn × 24/N

(4.27)

+ [U total−fwz−1 + α(U total−itrz − U total−fwz−1 )]} (4.28)

(4.29)

4. Move Ltotal−itr−fwz−1 to Ltotal−itr−pz along dz by αz as follows:
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Ltotal−itr−fwz = Ltotal−itr−fwz−1 + αz(L
total−itr−p
z − Ltotal−itr−fwz−1 ) (4.30)

5. Calculate new prices from Ltotal−itr−fwz using the pricing table for each period. These

prices are the ones that incorporate the demand profiles and their probabilities from

all previous iterations.

6. Send the new prices back to households for another round of rescheduling as illus-

trated in Figure 4.11.

Solving this pricing problem is straightforward except for Step 3 where a linear opti-

misation problem is required to solve to find the best step size. Since the only constraint

for this problem is that the step size must take a value in [0,1], we can solve this problem

by simply finding the αz at which the gradient of the linear approximation of the objective

function fz(L
total−itr−fw
z −1 +αdz) reaches zero (or turns positive) without using a solver.

The problem in Step 3 can be re-written as follows:

h(α) = ∇fz(Ltotal−itr−fwz−1 + αdz) (4.31)

= ∇{
N∑
n=1

[Ltotal−itr−p−fwn,z−1 + α(Ltotal−itr−pn,z − Ltotal−itr−p−fwn,z−1 )]× rn (4.32)

× 24/N + [U total−fwz−1 + α(U total−itrz − U total−fwz−1 )]} (4.33)

=
N∑
n=1

(Ltotal−itr−pn,z − Ltotal−itr−p−fwn,z−1 )× rn × 24/N (4.34)

+ (U total−itrz − U total−fwz−1 ) (4.35)

= 0 (4.36)

(4.37)

Since the pricing table is a step function, the gradient changes in steps instead of

continuously, therefore the objective value changes only when the total demand of a period

exceeds the next (higher or lower) consumption level of the pricing table for that period.

We propose to find the best step in an iterative manner which is described as follows:

1. Set αz = 0.
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2. For each time period n, move the total expected demand Ltotal−itr−p−fwn,z−1 along the

descent direction dn,z to the next (higher or lower) consumption level eleveln,fw where

the price for that period changes.

3. Calculate the step size αn,z for each time period as follows:

αn,z = (eleveln,fw − L
total−itr−p−fw
n,z−1 )/dn,z (4.38)

4. Calculate the smallest step size αtentz calculated from the step size per period calcu-

lated in Step 3 as follows:

αtentz = min({αn,z | n ∈ [1, N ])} (4.39)

This αtentz is the smallest distance that the total expected demand Ltotal−itr−p−fwn,z−1

needs to move along the descent direction to change the price and reduce the objec-

tive value.

5. Update αz using the smallest step size found in Step 4 as follows:

αz = αz + αtentz (4.40)

6. Use the updated αz to update the total expected demand profile as follows:

∀n ∈ [1, N ], Ltotal−itr−p−fwn,z = Ltotal−itr−p−fwn,z−1 + αz ∗ dn,z (4.41)

7. Calculate the gradient of the linear approximation function at the updated total

expected demand profile h(α) = ∇fz(Ltotal−itr−fwz−1 + αdz) = ∇fz(Ltotal−itr−fwz ):

• If the gradient is less than zero: h(α) < 0, repeat Step 2 — 7.

• If the gradient is greater than zero: h(α) > 0, we remove the last αtentz from αz

as follows:

αz = αz − αtentz (4.42)
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This αz is the optimal step size we seek for the pricing master problem at

iteration z. We remove the last αtentz to ensure the total expected demand

profile calculated in the next step will not increase the objective value at all.

• If the gradient is zero: h(α) = 0, we make no change to αz and use it as the

optimal step size.

Convergence Rate

Two types of iterations are involved in our FW approach: 1) the outer iterations between

the household subproblem and the pricing master problem for finding a sequence of step

sizes that minimises the objective value, and 2) the inner iterations within the pricing

master problem for calculating the best step size at each iteration. We do not consider

the iterations involved in the solvers as those information are often unknown to users

especially when using commercial solvers. We have analysed the convergence rates for

these iterations as follows:

• Outer iterations: The details of jobs and batteries are handled by the household

subproblem. The pricing master problem needs only the total demand profile and

the total inconvenience value of households to calculate the objective value. This

means, the number of iterations required for finding a sequence of step sizes are

affected by the total demand profile and the total inconvenience value, and the

number of time intervals in a demand profile is fixed regardless of the number of

households. In other words, increasing or decreasing the number of households in

the DSP-MB changes the values of the total demand profile and the inconvenience

value, however, it has very limited impacts on the number of iterations required

for convergence. We demonstrate that the convergence speed for various number of

households is near constant in the experimental results in Section 5.5.3 of Chapter 5.

• Inner iterations: The best step size is found by iteratively moving the total expected

demand per period to the nearest consumption level until the gradient of the linear

approximation function reaches zero or turns positive. This means, the number of

iterations depend on the number of pricing levels and the distances between the total

expected demands and the consumption levels. We have observed in the experiments

that the number of inner iterations is high in the early outer iterations, however,
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reduces significantly as the objective value reduces in the later outer iterations.

Nevertheless, the computation time for the pricing master problem is very small.

The experimental results show that the computation time is close to zero.

4.5 Probability-Based Scheduling

Since we optimise the total expected demand profile of all households to achieve the lowest

possible prices and the minimum objective value, we cannot simply use the prices or the

job and battery schedules in the last iteration as the optimal solutions. However, we need

to achieve the optimal total expected demand profile and its minimum objective value

using a probability-based scheduling method. This probability-based scheduling method

calculates a probability distribution using the best step size calculated at each iteration

and selects the actual schedules for households uses this probability distribution.

4.5.1 Probability Distribution

As the optimal step size at a iteration is considered as the probability for households to

adopt their new schedules calculated at that iteration, when the iterations converge, we

can obtain an accumulated probability for each iteration z. Let us expand the formulation

of the optimal total expected demand profile (or the probability-weighted total demand

profile) at the last iteration Z: Ltotal−itr−fwZ as Equation 4.43.
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Ltotal−itr−fwZ =Ltotal−itr−fwZ−1 + αZ ∗ dZ (4.43)

=Ltotal−itr−fwZ−1 + αZ ∗ (Ltotal−itr−pZ − Ltotal−itr−fwZ−1 ) (4.44)

=(1− αZ) ∗ Ltotal−itr−fwZ−1 + αZ ∗ Ltotal−itr−pZ (4.45)

=(1− αZ) ∗ [(1− αZ−1) ∗ Ltotal−itr−fwZ−2 + αZ−1 ∗ Ltotal−itr−pZ−1 ] (4.46)

+ αZ ∗ Ltotal−itr−pZ (4.47)

=(1− αZ) ∗ (1− αZ−1) ∗ Ltotal−itr−fwZ−2 (4.48)

+ (1− αZ) ∗ αZ−1 ∗ Ltotal−itr−pZ−1 + αZ ∗ Ltotal−itr−pZ (4.49)

=

Z∏
z=1

(1− αz) ∗ Ltotal−itr−p0 + (4.50)

Z−1∑
z=1

(

Z∏
i=z+1

(1− αi) ∗ αz ∗ Ltotal−itr−pz ) + αZ ∗ Ltotal−itr−pZ (4.51)

(4.52)

Ltotal−itr−p0 is calculated before the iterations start when jobs are assumed to start at their

PSTs and no batteries are required.

The accumulated probability per iteration probz is the coefficient of Ltotal−itr−pz for

z = 0...Z in Equation 4.43. This accumulated probability is the weight of the tentative

optimal total expected demand profile at each iteration, or the chance for households to

adopt their optimal schedules calculated at each iteration to be their final schedules. Let

us rewrite the accumulated probability per iteration z as Equation 4.53.

probz =


∏Z
i=1(1− αi) if z = 0

αz
∏Z
i=z+1(1− αi), if 1 < z < Z

αZ if z = Z

(4.53)

Note that the accumulated probability per iteration is the same for all households as these

probabilities are calculated from step sizes which are independent of any consumption

details within households.

These accumulated probabilities comprise a probability distribution of the tentative

optimal schedules of households at each iteration. We can use this probability distribution
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to choose the actual job schedule and battery charge/discharge profile for each household.

We describe the steps for choosing the actual schedules in the following subsection.

4.5.2 Actual Household Schedule

The steps for choosing the actual schedules for each household using this probability

distribution is straightforward as follows:

1. Each household independently selects a number i from 0 to Z (the total number of

iterations) using the probability distribution.

2. Each household independently chooses the optimal job and the battery schedules

calculated at iteration i during the FW-DDSM iterations as its actual schedules.

According to the law of large numbers (LLN) and the central limit theorem (CLT),

when we choose schedules for a large number of households independently using a proba-

bility distribution in this way, the resulting total demand profile of all households approx-

imates the optimal total expected demand profile with a very high probability. Moreover,

the schedules chosen by each household enforce the constraints of jobs and batteries, main-

taining the feasibility of the final solutions. We explain the effectiveness of the LLN and

the CLT in our probability-based scheduling method in the following subsection.

4.5.3 Law of Large Numbers and Central Limit Theorem

The key to the effectiveness of this probability-based scheduling method lies in LLN (Evans

and Rosenthal, 2009) and the CLT (Central Limit Theorem, 2008).

The LLN states that the average of random variables in a sample converges to the

true mean of the population when the sample size is large and each variable has a finite

expected value. In our DSP-MB, the random variables are the schedules or the demand

profiles of households. The expected demand profile of each household is finite. Let us

write the total actual demand profile of all households as Ltotal−actual, the optimal total

expected demand profile as Ltotal−expected, and the total number of households as H. The

sample average is Ltotal−actual/H and the true mean of the population is Ltotal−expected/H.

The LLN states that:

P ( lim
H→∞

Ltotal−actual/H = Ltotal−expected/H) = 1 (4.54)
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The CLT states that the sum of a large number of random variables will always have

approximately a normal distribution with the mean of this normal distribution being the

true mean of the population. In other words, the sample average approximates the true

mean of the population with a high probability when the sample size is large. Generally,

a sample size of 30 is considered sufficiently large.

Considering the statements of LLN and CLT, we claim that when a large number of

households sample schedules or demand profiles using this probability distribution cal-

culated from the sequence of step sizes that lead to the optimal total expected demand

profile, the resulting total actual demand profile of all households approximates the op-

timal total expected demand profile with a high probability. In other words, we can

achieve the optimal solution calculated by the FW approach using this probability-based

scheduling method. The effectiveness of such a probabilistic scheduling method has been

demonstrated by Van Den Briel et al. (2013). We will demonstrate the effectiveness of our

scheduling method in Section 5.5.4 of Chapter 5.

4.6 Summary

This chapter proposes a novel distributed and iterative scheduling algorithm called Frank-

Wolfe-based distributed demand scheduling method (FW-DDSM) for solving a demand

scheduling problem for multiple households with batteries (DSP-MB). This algorithm uses

primal decomposition, the Frank-Wolfe (FW) algorithm, a job scheduling module and a

battery scheduling module.

The FW-DDSM decomposes the DSP-MB using the primal decomposition into a house-

hold subproblem and a pricing master problem. The method for solving the household

subproblem include a job scheduling module and a battery scheduling module. We have

proposed three types of solutions for the job scheduling module: a mixed-integer pro-

gramming optimisation model, a constraint programming optimisation model and the

Optimistic Greedy Search Algorithm. Each optimisation model has two versions: one

with a data preprocessing algorithm and one without. The battery scheduling model is

a linear programming optimisation model that includes Charnes-Cooper transformation.

The method for solving the pricing master problem is based on the FW algorithm. The

subproblem and the master problem are solved in an iterative manner until the objective
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value calculated by the pricing master problem does not reduce any more (or reduce no

more than 0.01) in any two consecutive iterations.

After the iterations converge, the best step size calculated by the pricing master prob-

lem at each iteration is used to construct a probability distribution for sampling the actual

schedules for households. We call this method the probability-based scheduling method. The

law of large numbers and the central limit theorem have showed that by independently

choosing schedules for a large number of households using this probability distribution,

we will achieve the optimal total expected demand profile calculated by the FW-DDSM

that has the minimum objective value in the last iteration.

There are a number of benefits of using our FW-DDSM to solve DSP-MBs:

1. The primal decomposition method decomposes a DSP-MB in a straightforward way

without the additional transformation steps as in the dual decomposition, simplifying

the solving process.

2. The decomposition allows households to schedule demands independently in par-

allel, eliminating the needs for iteratively broadcasting information to households

sequentially.

3. To the best our knowledge, the FW-DDSM is the first method that applies the FW

algorithm to solve DSPs, which is the key to achieve high efficiency and scalability

with minimum manual parameter tuning.

4. The combination of the primal decomposition and the FW algorithm achieves a

distributed and iterative algorithm whose convergence speed is minimally affected

by the number of households, jobs and batteries.

5. The probability-based scheduling method allows households to choose from multiple

feasible schedules using a probability distribution while causing very limited impacts

on the optimality of the results, offering more flexibility for consumers.



Chapter 5

Experimental Result

This chapter presents the results that demonstrate the effectiveness of our Frank-Wolfe-

based distributed demand scheduling method (FW-DDSM) proposed in Chapter 4 for solv-

ing demand scheduling problems for multiple households with batteries (DSP-MBs). First,

we define a list of terms that are used to describe the variations of our FW-DDSM and to

name the results in Section 5.1. Second, we present the experiment environment and our

methods for generating the experiment data in Section 5.2 and Section 5.3, respectively.

Third, we compare the mixed-integer programming (MIP), constraint programming (CP)

and Optimistic Greedy Search Algorithm (OGSA) we have proposed for solving the house-

hold subproblem in Section 5.4. Fourth, we demonstrate the scalability and efficiency of

our FW-DDSM, and the effectiveness of our probability-based scheduling method in Sec-

tion 5.5. Fifth, we evaluate the impacts of various problem parameters on the solutions

and the scalability of our FW-DDSM in Section 5.6.

5.1 Preliminary

Let us define a list of terms for describing the variations of methods and naming the results

this chapter.

Definition 5.1. FW-DDSM-CP: the FW-DDSM that uses the modified CP model and

the date preprocessing algorithm as the method for solving the household subproblem.

Definition 5.2. FW-DDSM-OGSA: the FW-DDSM that uses OGSA as the method for

solving the household subproblem.

111
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Definition 5.3. total demand profile (TDP) : the total demand of all households per time

period/interval.

Definition 5.4. Preferred total demand profile (preferred TDP): the total demand profile

of all households where jobs are scheduled at their preferred start times before FW-DDSM

is applied.

Definition 5.5. optimal total demand profile (optimal TDP): the total expected demand

profile of all households computed at the last iteration of FW-DDSM-CP.

Definition 5.6. improved total demand profile (improved TDP): the total expected de-

mand profile of all households computed at the last iteration of FW-DDSM-OGSA.

Definition 5.7. peak-to-average ratio (PAR): the ratio of the peak demand to the average

demand of the entire scheduling horizon (e.g. 24 hours in our experiments).

5.2 Experiment Environment

This section presents our experiment environment. All optimisation models were im-

plemented in MiniZinc 2.2.3 (Nethercote et al., 2007). The MIP models were solved by

Gurobi (Gurobi Optimization, LLC, 2021) 7.5.2 and the CP models were by Gecode (Gecode

Team, 2017) 6.1.1. The experiments were performed on a virtual machine with 32 vir-

tual CPUs and 64GB memory, provided by the NCRIS-funded Australian Research Data

Commons (Department of Education, Skills and Employment, n.d.).

5.3 Data Generation Method

This section introduces our methods for generating time horizons, jobs, battery energy

storage systems (batteries) and pricing data. Similar to existing works (Mhanna et al.,

2016; Van Den Briel et al., 2013), this work synthetically generated data based on real-

world data.

5.3.1 Time Horizon

We scheduled jobs on a time horizon of 144 ten-minute scheduling intervals and 48 thirty-

minute pricing periods in all experiments. This design is different from the majority
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of existing works where 48 half-hourly periods or 24 hourly periods are used for both

scheduling and pricing. Using a finer granulated scheduling horizon increases the number

of decision variables in the DSP-MB, making it more time consuming to solve, however,

it also offers more flexibility for consumers to use their devices. Moreover, our FW-

DDSM can efficiently find the optimal solution to a DSP-MB despite the granularity of

the scheduling horizon.

5.3.2 Household Demand Data

Each household had five to ten jobs, of which up to nine were sequential. The size of the

battery in each household was assumed to be the same, however, varied in each experiment.

Each job of a household was generated in the following steps:

1. used the average working-day demand profile of Victoria, Australia in 2018 obtained

from the Australian Electricity Market Operator (AEMO) website to generate a

probability distribution that describes the probability of a job being set to turn on

by a consumer at each time interval,

2. sampled the preferred start time (PST) using the above probability distribution,

3. sampled the duration using the Rayleigh distribution,

4. sampled the power rate from a list of commonly used appliances obtained from the

Ausgrid website (Ausgrid, n.d.),

5. sampled the earliest start time (EST) and the latest finish time (LFT) using the

uniform distribution,

6. sampled the care factor (CF) between 1 and 10 using the uniform distribution,

7. selected from 0 and 1 randomly to decide if this job had a predecessor. If 1 (yes),

then selected a predecessor and the maximum succeeding delay (MSD) using the

uniform distribution.

According to the law of large numbers (LLN), when a large number of jobs were sched-

uled at their PSTs using the probability distribution generated in Step 1, the resulting

preferred TDP would approximate the demand profile used for generating this probability

distribution. Figure 5.1 demonstrates the effectiveness of this method by showing the

preferred TDP of 10000 synthetically generated households, and the average working-day
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demand profile used for computing the probability distribution to sample the PSTs of jobs

in these households. For simplicity, this work set the household demand limit as the total

demand of all jobs, and used the Rayleigh distribution to sample durations as it provided

a good approximation to empirically observed durations.

Figure 5.1: Average working-day demand profile obtained from AEMO for generating job
and household data, and the preferred TDP of 10000 synthetic households

Demand Wrapping Around We allow each job to start from a time interval from

the previous day and finish by another time interval the next day. When calculating the

demand profile of a household, the demand of a job that occurred yesterday would be

added to the end of today, and the demand that occurred tomorrow would be added to
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the start of today. We call this method the demand wrapping around method, which is

illustrated in Figure 5.2. We used this method to generate a more realistic total demand

profile, otherwise very little demand would appear at the beginning and the end of a day.

(a) Append the job demand from yesterday to the
end of today

(b) Wrap the job demand from tomorrow to the start
of today

Figure 5.2: Demand wrapping around method

5.3.3 Price Data

We generated fixed prices for evaluating the three types of solving methods for the house-

hold subproblem, and pricing tables for evaluating the FW-DDSM for the DSP-MB.

Fixed Prices

Twelve average monthly price profiles of Victoria, Australia in 2018 obtained from AEMO

were used as the fixed prices for solving the household subproblem without the iterations

of FW-DDSM, which is illustrated in Figure 5.3.

Pricing Table

A pricing table was created from a supply curve that was derived from one year of historical

data from the Australian National Energy Market (NEM) where we used the average

relationship between the wholesale market spot price and the total supply. The detailed

steps are described as follows:

1. We downloaded a year of wholesale market spot prices1, the metered demand of

the whole NEM and the available electricity generation of the whole NEM from the

AEMO website.

2. We calculated the percentage of the metered demand in the available electricity gen-

eration for every thirty-minute period. We called these percentages the normalised

demands.
1The market spot price was the price that paid by all electricity retailers for all the bulk purchases they

make on behalf of their retail customers, and all power station operators earn for power generated in the
same half hour. The metered demand is the total demand of all consumers in the NEM. The available
generation is total capacity of available generators. The data was recorded in thirty-minute intervals.
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Figure 5.3: Twelve monthly average working-day price profiles of Victoria, Australia in
2018 used in the experiments

3. We derived a curve from the spot prices and the normalised demands, called the

supply curve.

4. We discretised the supply curve evenly to retrieve a set of price levels and the cor-

responding normalised consumption levels.

5. We compiled a normalised pricing table from those pricing levels and the normalised

consumption levels.

6. We rescaled the normalised pricing table according to the maximum demand of the

preferred TDP in each problem instance as follows:

(a) We calculated the maximum demand of the preferred TDP.

(b) We computed new consumption levels for this problem instance by multiplying

all normalised consumption levels by the maximum demand.
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(c) We multiplied the new consumption levels with a scaler, such as 0.8, 1 or 1.2,

to reduce or increase the consumption level for each price level. We called this

scaler the pricing table multiplier.

For example, assuming there are 200 households to be scheduled, the highest or the

second highest consumption level of the pricing table at each time period would be

the maximum demand of the preferred TDP of those 200 households.

Implicit Area Demand Limit Constraint As discussed in Section 3.4.3 of Chapter 3,

the design of our pricing table allows us to incorporate the area demand limit constraint

implicitly by adding an extra consumption level that is the same as this demand limit and

assigning a extremely high price for this consumption level. This implicit constraint was

achieved in Step 6 where we rescaled the normalised pricing table to ensure the highest

consumption level matched with the area demand limit.

5.4 Comparison of Job Scheduling Methods

This section presents the results of comparing the three types of methods (proposed in

Section 4.3.2 of Chapter 4) to schedules jobs for households. Recall that in Section 2.3.4 of

Chapter 2, we have discussed that few exiting works, if any, have compared the optimality

and efficiency of the MIP, CP and heuristic methods for solving the demand scheduling

problems for a single battery (DSP-SBs). Moreover, very limited works have investigated

the application of CP on demand scheduling problems (DSPs) despite that CP has been

shown to be effective and efficient for solving combinatorial problems such as scheduling

problems (see Appendix B.3.4 for more details). We therefore have proposed two MIP

models, two CP models, a data preprocessing algorithm and a heuristic approach (OGSA)

for scheduling jobs per household in Section 4.3.2. This set of experiments first compared

the run times of these optimisation models (MIP or CP) with and without the data pre-

processing algorithm and the run times of the OGSA, and second compared the solutions

of these three types of methods.
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5.4.1 Problem Instance and Parameter Setting

For this set of experiments, we defined a problem instance as a set of synthetic jobs and

a price profile for one household. In total, we created 1200 problem instances using 100

households and twelve monthly price profiles. We fixed the electricity cost weight to be

1: λc = 1 and the inconvenience value weight to be 900: λu = 900. We have chosen these

weights because we observed from experiments that they are sufficiently large to produce

the desired balance between these two objectives.

5.4.2 Evaluation of Run times

This experiment investigates the impacts of the data preprocessing algorithm on the run

times of the optimisation models, and compares the run times of the optimisation models

and those of the OGSA.

Impact of the Data Preprocessing Algorithm

• Criteria: In order to evaluate the impacts of the preprocessing algorithm on the

optimisation models, we defined a model run time ratio as follows:

Definition 5.8. Model run time ratio is the ratio of the initial model’s run time to

the modified model’s run time, which is calculated as Equation 5.1. This ratio rep-

resents the number of times the initial MIP/CP model are slower than the modified

MIP/CP model. A higher ratio means the modified model is faster.

model run time ratio =
run time of the initial model

run time of the modified model
(5.1)

• Results: The model run time ratios of the 1200 problem instances are illustrated in

Figure 5.4. The aggregate model run time ratios such as the maximum, the minimum

and the average ratios, and the standard deviations are presented in Table 5.1.

Table 5.1: Aggregate model run time ratios, initial models vs. modified models

Result Type
Run time ratio

Mean Std. Min 25% 50% 75% Max

Ratios of the CP models 1.13 0.12 0.5 1 1.17 1.2 2
Ratios of the MIP models 1.29 0.16 0.69 1.22 1.25 1.38 2.78

Note: N% means N% of the problem instances.
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Figure 5.4: Model run time ratios, initial models vs. modified models

Note: the legend Gurobi refers to the model run time ratios of the initial and modified MIP models, and

Gecode refers to the model run time ratios of the CP models.
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• Analysis: The results demonstrate that using the data preprocessing algorithm with

the modified models were faster than using the models alone in most problem in-

stances. Table 5.1 shows that the model run time ratios for the CP and MIP models

were above 1.13 while the standard deviation is less than 0.2, which means the modi-

fied models with preprocessing were faster than the initial models in most instances.

In the worst case, the run time of the modified CP model with preprocessing was

0.5 of the initial CP model, and the run time of the modified MIP model was 0.69

of the initial MIP model.

Comparison of MIP and CP Models

• Criteria: In order to evaluate the impacts of the optimisation techniques (MIP or

CP) on run times, we defined a solver run time ratio as follows:

Definition 5.9. Solver run time ratio is the run time of the MIP model to the run

time of the CP model ratio, calculated as Equation 5.2. This ratio represents the

number of times the initial/modified MIP model are slower than the initial/modified

CP model. A higher ratio means the CP model is faster.

solver run time ratio =
run time of Gurobi

run time of Gecode
(5.2)

• Results: The solver run time ratios of the 1200 problem instances are illustrated in

Figure 5.5. The aggregate solver run time ratios such as the maximum, the minimum

and the average ratios, the standard deviations are presented in Table 5.2.

Table 5.2: Aggregate solver run time ratios, CP models vs. MIP models

Model type
Solver run time ratio

Mean Std. Min 25% 50% 75% Max

Initial CP/MIP 1.87 0.37 1.08 1.67 1.83 2 4.86
Modified CP/MIP 1.64 0.28 0.75 1.5 1.6 1.8 3.17

Note: N% means N% of the problem instances.

• Analysis: The results show that the CP models were faster than the MIP models

in most problem instances. Table 5.2 shows that the solver run time ratios for the

initial and the modified models were above 1.5 while the standard deviation is less

than 0.5, which means the CP models were faster in most instances. The initial CP



5.4. COMPARISON OF JOB SCHEDULING METHODS 121

Figure 5.5: Solver run time ratios, CP models vs. MIP models

Note: the legend Initial refers to the solver run time ratios of the initial MIP and CP models, and Modified

refers to the solver run time ratios of the modified MIP and CP models.
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model was faster than the initial MIP in all problem instances. The run time of the

modified CP model was 0.75 of the modified MIP in the worst case.

Comparison of the Optimisation Models and the Heuristic Method

• Criteria: We simply compared the run times of the heuristic method OGSA with

those of the modified optimisation models with the data preprocessing algorithm.

• Results: The run times of the modified optimisation models with preprocessing, and

OGSA are illustrated in Figure 5.6. The aggregate run times including the maxi-

mum, the minimum and the average values, and standard deviations are presented

in Table 5.3.

Table 5.3: Aggregate run times of the modified CP/MIP models and OGSA

Method
Run time (ms)

Mean Std. Min 25% 50% 75% Max

Modified CP model 58.98 8.41 50 50 60 60 140
Modified MIP 83.88 15.85 60 70 80 90 250
OGSA 0.00022 5.00E-05 0.00017 0.0002 0.00021 0.00022 0.00077

Note: N% means N% of the problem instances.

• Analysis: The results show that OGSA was at least four orders of magnitude faster

than any optimisation models in all instances. Table 5.3 shows that the maximum

run time of OGSA was 0.00077ms while the minimum run time of the modified CP

mode was 50ms and the minimum run time of the modified MIP model was 60ms.

Finding from the Evaluation of Run times

From the experimental results of evaluating the run times of three types of job scheduling

methods, we have validated our hypothesis that CP methods can be more efficient than

MIP methods when solving demand scheduling problems for a single household (DSP-SHs).

Using a data preprocessing algorithm with a modified CP models can further reduce the

run times. OGSA is extremely fast as expected for a heuristic method.

5.4.3 Evaluation of Solutions

This experiment presents the results of comparing the solutions of the modified optimisa-

tion models (MIP or CP) with the data preprocessing algorithm and those of the OGSA.
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Figure 5.6: Run times of the modified CP/MIP models and OGSA

Note: the legend Gurobi refers to the run times of the modified MIP models, and Gecode refers to the run

times of the modified CP models.
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• Criteria: We compared the solutions of the optimisation models and the OGSA by

evaluating their objective values. We defined an objective ratio as follows:

Definition 5.10. Objective ratio is the ratio of the improved objective value found

by OGSA and the optimal objective value found by the modified (CP or MIP)

model, calculated as Equation 5.3. This ratio represents the number of times that

the OGSA solution is worse than the modified model solution. A higher ratio means

the objective value of the modified model is better.

objective ratio =
suboptimal objective calculated by OGSA

optimal objective calculated by a solver
(5.3)

• Results: The original objective values of the problem, the optimal objective values

calculated by the optimisation models and the improved objective values computed

by the OGSA are illustrated in Figure 5.8. The objective ratio of each problem

instance is illustrated in Figure 5.7. The aggregate objective ratios such as the max-

imum, the minimum and the average ratios, the standard deviations are presented in

Table 5.4. The average cost reductions for each method are presented in Table 5.5.

Table 5.4: Aggregate objective ratios for the OGSA and optimisation models

Ratio Type Mean Std. Min 25% 50% 75% Max

Objective ratio 1.05 0.16 1 1 1 1.01 4.17

Note: N% means N% of the problem instances.

Table 5.5: Average daily consumption cost reductions of the MIP, CP and OGSA solutions

Month of
Method

the Price Profile OGSA CP/MIP Difference

1 48% 48% 0%
2 35% 35% 0%
3 17% 17% 0%
4 22% 22% 0%
5 39% 39% 0%
6 38% 39% 1%
7 49% 51% 2%
8 53% 55% 2%
9 33% 34% 0%
10 24% 25% 1%
11 19% 19% 0%
12 31% 32% 1%
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Figure 5.7: Objective ratios of the OGSA and optimisation models
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Figure 5.8: Objective values of the MIP, CP and OGSA solutions

Note: the legend Gurobi refers to the run times of the modified MIP models, and Gecode refers to the run

times of the modified CP models. A number of CP solutions are identical to MIP solutions and therefore

not visible
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• Analysis: The results demonstrate that the improved solutions of the OGSA were

close to the optimal solutions of the optimisation models in many instances. Table 5.4

shows that the objective ratio was within 1.01 in 75% of the instances, the average

objective ratio was 1.05 and the standard deviation was 0.16, which means the OGSA

solutions were close to the optimal solutions (less than 1.21 times worse) in most

instances. Moreover, Table 5.5 shows that the OGSA solutions achieved the same

average cost reductions for seven price profiles as those of the optimal solutions, and

were at most 2% worse than the optimal solutions for other price profiles.

Finding from the Evaluation of Solutions

The results have informed us that the OGSA was very fast and its solutions were close

to the optimal solutions in many instances. Moreover, the OGSA is simple to implement

without the needs of a solver, it can be used in practice when good solutions are sufficient

and computation resources are limited.

5.4.4 Summary of Findings

We have summarised our main findings in experiments from comparisons of the job

scheduling methods as follows:

1. The modified CP model with the data preprocessing algorithm was faster than the

initial MIP and CP models, and the modified MIP model with the preprocessing.

2. The heuristic method OGSA was significantly faster than any MIP and CP models,

and it can find good or near-optimal solutions in many instances.

5.5 Demonstration of Scalability and Optimality

This section demonstrates the scalability and optimality of our FW-DDSM including the

effectiveness of our probability-based scheduling method. We tested two versions of our

FW-DDSM: the version with the modified CP model and the preprocessing algorithm as

the job scheduling method (FW-DDSM-CP), and the version with the OGSA as the job

scheduling method (FW-DDSM-OGSA), because we were interested in investigating the

trade-off between an optimal approach and a heuristic approach. Moreover, we evaluated
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the scalability and optimality of our FW-DDSM using problem instances with and with-

out batteries, because we were interested in studying the impacts of using batteries on

the optimality and the scalability of FW-DDSM. Note that when solving the instances

without batteries, we simply deactivated the battery scheduling module (see Section 4.3.2

of Chapter 4 for explanations) in the household subproblem during the FW-DDSM itera-

tions.

5.5.1 Problem Instance and Parameter Setting

For this set of experiments, we defined a problem instance as a number of households

(e.g. 1000 households) and a pricing table rescaled based on the preferred TDP of these

households. We created one set of instances without batteries and another with.

5.5.2 Convergence Condition

The condition for our FW-DDSM to converge to the optimal solutions is when the objective

value calculated by the pricing master problem reduced within 0.01 in any two consecutive

iterations.

Instances without batteries For the set of instances without batteries, we set the

electricity cost weight at λc = 1, the inconvenience value weight at λu = 5, the EST of

each job to be 0, and the LFT to be the last time interval of the day (144). In total, we

generated five sets of problem instances for 50, 100, 500, 1000, 1500, 2000, 4000, 6000,

8000, and 10000 households, where each household had ten jobs. The pricing table was

rescaled according to the preferred TDP of all households in each problem instance.

Instances with batteries For the set of instances with batteries, we set electricity

cost weight at λc = 1, however, increased inconvenience value weight to be 10, in order

to better illustrate the impacts of batteries on the total inconvenience value. We set the

maximum capacity of the battery in each household at 3 kWh, the minimum capacity at

0 kWh and the maximum power rate at 3 kW. For simplicity, we assumed the efficiency

to be 1. In total, we generated ten sets of problem instances for 200, 400, 800, 1000,

2000, 4000, 6000, 8000, and 10000 households. For comparison, five of these ten sets had

batteries in households and the other five did not. Each problem instance had the same
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number of households and the same number of jobs per household. The pricing table was

rescaled based on the preferred TDP of all households in each problem instance.

5.5.3 Demonstration of Scalability

This experiment demonstrates the scalability of our FW-DDSM for DSPs for multiple

households with and without batteries.

Criteria

We evaluated the scalability of our FW-DDSM by showing the number of iterations for

the FW-DDSM to converge to the optimal solutions and the run times of the household

subproblem and the pricing master problem.

For Instances without Batteries

We applied both the FW-DDSM-CP and FW-DDSM-OGSA on each problem instance.

• Results: Table 5.6 presents the aggregate run times and the numbers of iterations,

including the maximum, the minimum and the average values, which are calculated

from problem instances of all numbers of households. Figure 5.9 shows the average

scheduling/pricing time per iteration and the average number of iterations before

convergence for each number of households.

Table 5.6: Run times and No. of iterations of the FW-DDSM-CP and FW-DDSM-OGSA

Method Results Mean Min Max

FW-DDSM-CP Number of iterations 25.09 20.60 30.00
FW-DDSM-OGSA Number of iterations 24.67 20.20 29.60
FW-DDSM-CP Pricing time 0.01s 0.01s 0.01s
FW-DDSM-OGSA Pricing time 0.01s 0.01s 0.01s
FW-DDSM-CP Scheduling time 1,758.91s 19.68s 5,321.29s
FW-DDSM-OGSA Scheduling time 6.63s 0.10s 19.92s
FW-DDSM-CP Scheduling time/household 0.46s 0.39s 0.53s
FW-DDSM-OGSA Scheduling time/household 0.00s 0.00s 0.00s

• Analysis: The results demonstrate that:

1. The number of iterations before convergence was on average 25 for any number

of households and any version of FW-DDSM.
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Figure 5.9: Average run times and No. of iterations of FW-DDSM-CP and FW-DDSM-
OGSA for varying numbers of households
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2. The average scheduling time of all households per iteration increased (almost)

linearly with the number of households, which means the number of households

had little impact on the scheduling time per household per iteration. The

scheduling time per iteration per household of FW-DDSM-CP was on average

0.45 second for any number of household, however, that average scheduling time

of FW-DDSM-OGSA was close to zero.

3. The average pricing time per iteration was less than 0.01 second for any number

of households and any version of FW-DDSM.

For Instances with Batteries

We applied the FW-DDSM-CP on each problem instance to investigate the impacts of

including batteries on the scalability.

• Results: Figure 5.10 shows the average number of iterations for convergence and the

average time for solving the household subproblem per iteration for each number of

households.

• Analysis: The results demonstrate that:

1. The average number of iterations were under 20 for all numbers of households

(with or without batteries). Less than 15 iterations were required when there

were more than 2000 households.

2. The average run times per household per iteration were a little higher for in-

stances with batteries, although on average they were less than 0.12 second.

Findings from the Evaluation of Scalability

We have identified the following findings from the evaluation of the scalability of FW-

DDSM:

1. High scalability : The FW-DDSM is highly scalable. Regardless of the choice of the

job scheduling methods, the total scheduling time per household increased almost

linearly with the number of households and the number of iterations for convergence

was independent of the number of households. Moreover, the inclusion of batteries

in households had minimum impacts on the scalability of our FW-DDSM.
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Figure 5.10: Average no. of iterations and scheduling times of the FW-DDSM for varying
numbers of households.
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2. Low computation time: Households can reschedule jobs in parallel in practice, which

means the total run time (including pricing time and scheduling time) of FW-DDSM

can be less than 10 seconds, making it suitable for real-time application.

Comparison with Existing Works

Our FW-DDSM converges to the optimal solutions in about 20 iterations for less than

10000 households with both appliances and batteries, while existing works achieved their

optimal solutions in:

• 100 iterations for 5000 batteries (Ramchurn et al., 2011).

• 30 iterations for 100 users with only appliances (Chavali et al., 2014).

• 60 iterations for 2560 households with only appliances (Mhanna et al., 2016).

• 12 iterations for 4 users with appliances, batteries and small wind/solar genera-

tors (He et al., 2019).

• 23 iterations for 35 households with appliances and batteries (Kou et al., 2020).

5.5.4 Demonstration of Optimality

This experiment demonstrates the optimality of our FW-DDSM by showing the peak-to-

average ratios (PARs), the maximum demands, the total inconvenience values and the total

supply costs of the optimal TDPs (calculated from the FW-DDSM-CP iterations) and the

improved TDPs (calculated from the FW-DDSM-OGSA iterations) for all instances.

We then show the effectiveness of our probability-based scheduling (proposed in Sec-

tion 4.5 of Chapter 4) by comparing the cost reductions (CRs), the maximum demand re-

ductions (DRds) and the PARs of the optimal and improved TDPs with those of the actual

TDPs (computed from the probability-based scheduling method after the FW-DDSM-CP

or FW-DDSM-OGSA iterations) for each problem instance. Note that for each problem,

we have used the probability-based scheduling to generate five actual TDPs, in order to

evaluate the average reductions of these actual TDPs.
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Criteria

We defined the followings to evaluate the quality of the optimal, improved and the actual

TDPs, and the differences in these three types of solutions:

1. CR: the cost reduction of the optimal or improved TDP of all households,

2. CR-D: the distance between the cost reduction of an actual TDP and that of the

optimal or improved TDP, which is defined as Equation 5.4.

CR-D = CR of the optimal or improved TDP− CR of the actual TDP (5.4)

3. DRd: the maximum demand reduction of the optimal or improved TDP,

4. DRd-D: the distance between the maximum demand reduction of an actual TDP

and that of the optimal or improved TDP, which is defined as Equation 5.5.

DRd-D = DRd of the optimal or improved TDP− DRd of the actual TDP (5.5)

5. PAR-D: the distance between the PAR of an actual TDP and that of the optimal or

improved TDP, which is defined as Equation 5.6.

PAR-D = PAR of the actual TDP− PAR of the optimal or improved TDP (5.6)

For Instances without Batteries

We applied both the FW-DDSM-CP and FW-DDSM-OGSA on each problem instance.

• Results: Figure 5.11 illustrates the PARs, the cost reductions and the maximum

demand reductions of the optimal and improved TDPs. Figure 5.11 and Figure 5.11

demonstrate the preferred, the optimal or improved and the actual TDPs of each

problem instance. Table 5.7, 5.8 and 5.9 present the PAR, the PAR distance (PAR-

D), the cost reductions (CR), the cost reduction distances (CR-D), the demand
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reductions (DRd) and the demand reduction distances (DRd-D) of the actual and

optimal or improved TDPs.

Figure 5.11: Average PARs and cost/demand reductions of the optimal and improved
TDPs for varying numbers of households
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Figure 5.11: Preferred, optimal and actual TDPs of FW-DDSM-CP for varying numbers
of households

Note: legend 1/2/3/4/5 represents five actual TDPs generated after the FW-DDSM-CP iterations
using the probability-based scheduling method
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Figure 5.11: Preferred, improved and actual TDPs of FW-DDSM-OGSA for varying num-
bers of households

Note: legend 1/2/3/4/5 represents five actual TDPs generated after the FW-DDSM-OGSA itera-
tions using the probability-based scheduling method
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Table 5.7: PARs and differences in PARs of the FW-DDSM-CP and FW-DDSM-
OGSA solutions for varying numbers of households

#House- Result TDP FW-DDSM-CP FW-DDSM-OGSA

holds Min Median Max Min Median Max

50 PAR Preferred 1.79 1.79 1.79 1.79 1.79 1.79

50 PAR Optimal 1.02 1.02 1.02 1.01 1.01 1.01

50 PAR Actual 1.72 1.99 2.55 1.61 1.72 1.85

50 PAR-D Actual -0.7 -0.97 -1.53 -0.60 -0.71 -0.84

100 PAR Preferred 1.96 1.96 1.96 1.96 1.96 1.96

100 PAR Optimal 1.03 1.03 1.03 1.03 1.03 1.03

100 PAR Actual 1.4 1.82 2.07 1.42 1.57 1.69

100 PAR-D Actual -0.37 -0.79 -1.04 -0.39 -0.54 -0.66

500 PAR Preferred 1.31 1.31 1.31 1.31 1.31 1.31

500 PAR Optimal 1.06 1.06 1.06 1.06 1.06 1.06

500 PAR Actual 1.21 1.25 1.32 1.15 1.44 1.48

500 PAR-D Actual -0.15 -0.19 -0.26 -0.09 -0.38 -0.42

1000 PAR Preferred 1.36 1.36 1.36 1.36 1.36 1.36

1000 PAR Optimal 1.11 1.11 1.11 1.1 1.1 1.1

1000 PAR Actual 1.18 1.19 1.22 1.14 1.15 1.19

1000 PAR-D Actual -0.07 -0.08 -0.11 -0.04 -0.05 -0.09

2000 PAR Preferred 1.26 1.26 1.26 1.26 1.26 1.26

2000 PAR Optimal 1.1 1.1 1.1 1.1 1.1 1.1

2000 PAR Actual 1.1 1.12 1.14 1.1 1.12 1.13

2000 PAR-D Actual 0 -0.02 -0.04 -0 -0.02 -0.03

4000 PAR Preferred 1.18 1.18 1.18 1.18 1.18 1.18

4000 PAR Optimal 1.03 1.03 1.03 1.03 1.03 1.03

4000 PAR Actual 1.05 1.06 1.07 1.06 1.07 1.13

4000 PAR-D Actual -0.02 -0.03 -0.04 -0.03 -0.04 -0.10

6000 PAR Preferred 1.21 1.21 1.21 1.21 1.21 1.21

6000 PAR Optimal 1.05 1.05 1.05 1.05 1.05 1.05

6000 PAR Actual 1.05 1.05 1.08 1.06 1.08 1.12

6000 PAR-D Actual 0 0 -0.03 -0.01 -0.03 -0.07

Continued on next page
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Table 5.7: PARs and differences in PARs of the FW-DDSM-CP and FW-DDSM-
OGSA solutions for varying numbers of households

#House- Result TDP FW-DDSM-CP FW-DDSM-OGSA

holds Min Median Max Min Median Max

8000 PAR Preferred 1.21 1.21 1.21 1.21 1.21 1.21

8000 PAR Optimal 1.08 1.08 1.08 1.09 1.09 1.09

8000 PAR Actual 1.07 1.09 1.11 1.07 1.08 1.09

8000 PAR-D Actual -0.01 -0.01 -0.03 0 -0.01 -0.02

10000 PAR Preferred 1.16 1.16 1.16 1.16 1.16 1.16

10000 PAR Optimal 1.04 1.04 1.04 1.04 1.04 1.04

10000 PAR Actual 1.03 1.05 1.06 1.04 1.04 1.1

10000 PAR-D Actual 0 -0.01 -0.02 0 0 -0.06

0%

Table 5.8: Demand reductions and differences in demand reductions of the FW-
DDSM-CP and FW-DDSM-OGSA solutions for varying numbers of households

#House- Result TDP FW-DDSM-CP FW-DDSM-OGSA

holds Min Median Max Min Median Max

50 DRd Optimal 43% 43% 43% 43% 43% 43%

50 DRd Actual -43% -12% 4% -4% 4% 10%

50 DRd-D Actual 86% 55% 39% 47% 39% 33%

100 DRd Optimal 47% 47% 47% 47% 47% 47%

100 DRd Actual -6% 7% 28% 14% 20% 28%

100 DRd-D Actual 53% 40% 19% 33% 27% 19%

500 DRd Optimal 19% 19% 19% 19% 19% 19%

500 DRd Actual -1% 5% 7% -13% -10% 12%

500 DRd-D Actual 20% 14% 12% 32% 29% 7%

1000 DRd Optimal 18% 18% 18% 19% 19% 19%

1000 DRd Actual 10% 12% 13% 12% 15% 16%

1000 DRd-D Actual 8% 6% 5% 7% 4% 3%

2000 DRd Optimal 13% 13% 13% 13% 13% 13%

2000 DRd Actual 10% 11% 12% 10% 11% 13%

Continued on next page
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Table 5.8: Demand reductions and differences in demand reductions of the FW-
DDSM-CP and FW-DDSM-OGSA solutions for varying numbers of households

#House- Result TDP FW-DDSM-CP FW-DDSM-OGSA

holds Min Median Max Min Median Max

2000 DRd-D Actual 3% 2% 1% 3% 2% 0%

4000 DRd Optimal 13% 13% 13% 13% 13% 13%

4000 DRd Actual 9% 11% 11% 5% 10% 11%

4000 DRd-D Actual 4% 2% 2% 8% 3% 2%

6000 DRd Optimal 14% 14% 14% 15% 15% 15%

6000 DRd Actual 11% 13% 14% 8% 11% 13%

6000 DRd-D Actual 3% 1% 0% 7% 4% 2%

8000 DRd Optimal 10% 10% 10% 10% 10% 10%

8000 DRd Actual 8% 10% 11% 10% 11% 11%

8000 DRd-D Actual 2% 1% 0% 1% 1% 0%

10000 DRd Optimal 10% 10% 10% 11% 11% 11%

10000 DRd Actual 9% 10% 11% 6% 10% 11%

10000 DRd-D Actual 1% 1% 0% 5% 1% 0%

Table 5.9: Cost reductions and differences in cost reductions of the FW-DDSM-CP
and FW-DDSM-OGSA solutions for varying numbers of households

#House- Result TDP FW-DDSM-CP FW-DDSM-OGSA

holds Min Median Max Min Median Max

50 CR Optimal 11% 11% 11% 11% 11% 11%

50 CR Actual -453% -77% 6% -15% 6% 8%

50 CR-D Actual 464% 88% 5% 26% 5% 3%

100 CR Optimal 6% 6% 6% 6% 6% 6%

100 CR Actual -33% 4% 6% 5% 5% 6%

100 CR-D Actual 39% 2% 0% 1% 1% 0%

500 CR Optimal 12% 12% 12% 12% 12% 12%

500 CR Actual 5% 6% 9% -44% -38% 10%

500 CR-D Actual 7% 6% 3% 56% 50% 2%

1000 CR Optimal 7% 7% 7% 7% 7% 7%

Continued on next page
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Table 5.9: Cost reductions and differences in cost reductions of the FW-DDSM-CP
and FW-DDSM-OGSA solutions for varying numbers of households

#House- Result TDP FW-DDSM-CP FW-DDSM-OGSA

holds Min Median Max Min Median Max

1000 CR Actual 6% 6% 7% 6% 7% 7%

1000 CR-D Actual 1% 1% 0% 1% 0% 0%

2000 CR Optimal 9% 9% 9% 9% 9% 9%

2000 CR Actual 7% 8% 8% 8% 8% 8%

2000 CR-D Actual 2% 1% 1% 1% 1% 1%

4000 CR Optimal 14% 14% 14% 14% 14% 14%

4000 CR Actual 13% 13% 14% 13% 13% 13%

4000 CR-D Actual 1% 1% 0% 1% 1% 1%

6000 CR Optimal 13% 13% 13% 13% 13% 13%

6000 CR Actual 12% 12% 12% 12% 12% 12%

6000 CR-D Actual 1% 1% 1% 1% 1% 1%

8000 CR Optimal 9% 9% 9% 9% 9% 9%

8000 CR Actual 9% 9% 9% 9% 9% 9%

8000 CR-D Actual 0% 0% 0% 0% 0% 0%

10000 CR Optimal 13% 13% 13% 13% 13% 13%

10000 CR Actual 13% 13% 13% 12% 13% 13%

10000 CR-D Actual 0% 0% 0% 1% 0% 0%

• Analysis: The results demonstrate that:

1. The optimal or improved PARs were under 1.10 for more than 50 households,

which means the optimal or improved TDPs were mostly flat for any number

of households when there more than 50 households.

2. The cost reduction increased sublinearly with the number of households till

8000 households.

3. The maximum demand reduction reduced with the number of households.

4. All actual TDPs were better than the preferred TDPs. The distances of the

cost reductions were less than 2% for both versions of FW-DDSM.
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5. The distances of the maximum demand reductions were less than 5% for FW-

DDSM-CP and less than 8% for FW-DDSM-OGSA for more than 1000 house-

holds.

6. At least one of the five actual TDPs was better than the preferred TDP for less

than 1000 households.

• Findings: We have identified the following findings from the results:

1. We have validated our hypothesis (discussed in Section 4.5.3 of Chapter 4) that

based on the law of large numbers and the central limit theorem, when a larger

number of households and appliances (e.g. more than 1000 households with five

shiftable jobs each) were scheduled using a probability distribution calculated

from a sequence of step sizes that led to the optimal TDP or an improved

TDP, the actual TDP of all households was very close to or even as same as

this optimal or improved TDP.

2. In problem instances with more than 50 households, the optimal or improved

TDPs were mostly flat regardless of the number of households. The cost reduc-

tion increased with the number of households, however, less maximum demand

reduction was required to achieve a higher cost reduction when more households

were involved.

3. In problem instances with more than 1000 households, the actual TDPs were

very close to or as same as the optimal solutions. At least one of five TDPs

were very close to the optimal or improved TDP when there were less than

1000 households. In practice, households can generate several actual sched-

ules, report the corresponding demand profiles to the demand response service

provider (DRSP) (as they do during the iterations), and let the DRSP to choose

the best demand profiles for them.

For Instances with Batteries

We applied the FW-DDSM-CP on each problem instance to investigate the impacts of

including batteries on the optimality. Since we have demonstrated the effectiveness of the

probability-scheduling method in the results for the instances without batteries, we only
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evaluated the PARs, the maximum demands, the total inconvenience values and the total

supply costs of the optimal TDPs for this set of problem instances.

• Results: Figure 5.12 shows the averages of the optimal PAR, maximum demand,

total inconvenience value and total supply cost for each number of households.

Figure 5.12: PARs, maximum demands, inconvenience values and supply costs of the
optimal total demand profiles for varying numbers of households

• Analysis: The results show that including batteries further reduced the average of

the optimal PARs in most problem instances. Moreover, they further decreased the

averages of the maximum demands, the total inconvenience values and the supply

costs for all instances. Particularly, the inclusion of batteries reduced the total supply

cost values slightly, however, improved the total inconvenience value noticeably.

• Findings: The results have informed us that including batteries in households further

reduced the total supply cost value and the maximum demand slightly, however,

reduced the total inconvenience value noticeably.

5.5.5 Summary of Findings

We have summarised our main findings in experiments from demonstrations of the scala-

bility and the optimality as follows:

1. Scalability : The FW-DDSM was highly scalable.
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(a) The total run time (including the pricing time and the scheduling time) per

iteration increased nearly linearly with the number of households, however, the

number of households had minimal impact on the scheduling time per iteration

per household.

(b) The number of iterations for convergence was independent of the number of

households.

(c) The inclusion of batteries had minimum impacts on the number of iterations.

2. Optimality : The probability-based scheduling was very effective at approximating

the optimal solutions found by the FW-DDSM iterations.

(a) The objective values of the actual solutions were indeed very close to or even

as same as objective values of the optimal or improved solutions.

(b) For a larger number (more than 1000) of households, the actual total demand

profile of all households computed by the probability-based scheduling method

was very close to or even as same as the optimal total demand profile found at

the end of the FW-DDSM iterations.

(c) For a lesser number (less than 500) of households, at least one out of five actual

total demand profile was very close to the optimal total demand profile.

(d) The inclusion of batteries reduced the total supply cost value and the maximum

demand slightly, however, reduced the total inconvenience value noticeably.

(e) Implication: In practice, households can generate several actual schedules and

report the corresponding demand profiles to the DRSP (as they do during the

iterations) and allow DRSP to choose the best demand profiles for them.

5.6 Investigation of Problem Parameters

This section investigates the impacts of some problem parameters, such as the objective

weight, the number of sequential jobs, and the battery efficiency and capacity, on the

solutions and the scalability of our FW-DDSM.
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5.6.1 Investigation of Inconvenience Value Weight

This experiment evaluated the impacts of increasing the inconvenience value weight on

the PAR, the cost and maximum demand reductions, and the scalability of two versions

of our FW-DDSM: FW-DDSM-CP and FW-DDSM-OGSA.

• Problem Instance and Parameter Setting : We generated nine problem instances of

5000 households. Each problem instance had the same job data, however, the weight

of the inconvenience value varied from 1, 5, 10, 50, 1000, 500, 1000, 5000 to 10000.

We rescaled the pricing table for these 5000 households. We set the electricity cost

weight at λc = 1, the EST of each job to 0 and the LFT to the last time interval

(144), in order to minimise the impacts of the scheduling time constraints on the

run times and the solutions.

• Criteria : We evaluated the impacts using the number of iterations for convergence,

the time for solving the household scheduling subproblem per iteration, and the

PAR, the cost reduction and the maximum demand reduction of the optimal TDP.

• Results: We solved each problem instance using the FW-DDSM-CP and FW-DDSM-

OGSA, respectively. Table 5.10 presents the averages of the numbers of iterations

for convergence, the scheduling times per iteration, and the maximum demand re-

ductions, the PARs and supply cost reductions of the optimal and improved TDPs

of instances for each inconvenience value weight. Figure 5.13 illustrates the aver-

age supply cost reductions and maximum demand reductions of the optimal and

improved TDPs for the same inconvenience value weights and households.

• Analysis: The results show that:

1. The average number of iterations reduced with the inconvenience value weight.

2. The average scheduling time went up slightly when the weight went down,

however, the range of movement was limited.

3. The average cost and maximum demand reductions were was the same when

the weight was lower than 100, however, reduced gradually when the weight

went up from 100.



148 CHAPTER 5. EXPERIMENTAL RESULT

Table 5.10: Impacts of increasing the inconvenience value weight on the FW-DDSM-CP
and FW-DDSM-OGSA solutions for 5000 households

Result Weight
CP model and

data preprocessing
OGSA

Number of 1 28.6 24.0
iterations 5 24.6 24.6

10 24.6 24.0
50 21.4 20.4

100 22.2 18.6
500 13.6 12.6

1000 13.0 11.4
5000 13.2 6.6

10000 11.4 4.0

Scheduling time 1 0.2125 0.0006
per iteration 5 0.1843 0.0006
per household 10 0.1856 0.0006
(seconds) 50 0.1558 0.0005

100 0.1523 0.0005
500 0.1546 0.0004

1000 0.1564 0.0005
5000 0.1607 0.0004

10000 0.1616 0.0004

Maximum 1 16% 15%
demand 5 15% 16%
reduction 10 15% 15%

50 15% 15%
100 15% 15%
500 14% 13%

1000 13% 12%
5000 12% 9%

10000 10% 6%

Optimal or improved 1 1.03 1.04
PAR 5 1.04 1.03

10 1.04 1.04
50 1.04 1.04

100 1.04 1.04
500 1.05 1.06

1000 1.04 1.06
5000 1.08 1.12

10000 1.10 1.16

Cost 1 10% 10%
reduction 5 10% 10%

10 10% 10%
50 10% 10%

100 10% 10%
500 10% 10%

1000 10% 9%
5000 8% 6%

10000 7% 4%
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Figure 5.13: Impacts of increasing the inconvenience value weight on the FW-DDSM-CP
and FW-DDSM-OGSA solutions for 5000 households

4. The average optimal PAR increased gradually with the weight, however, it was

always below 1.1. That means the optimal or improved TDPs were quite flat

regardless of the weights.

• Finding : We have identified the following findings from the results:

1. Limited impacts on the cost and maximum demand reductions: Increasing the

inconvenience value weight decreased the cost reduction and the maximum

demand reduction slightly, however, the optimal or the improved TDPs were

relatively flat regardless.

2. Limited impacts on scalability : Increasing the inconvenience value weight in-

creased the scheduling time per iteration slightly, however, deceased the number

of iterations before convergence.

5.6.2 Investigation of Sequential Jobs

This experiment evaluated the impacts of increasing the number of sequential jobs per

household on the solutions of FW-DDSM-CP and FW-DDSM-OGSA. In particular, we
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investigated the impacts of the precedence constraints and/or the preceding delay con-

straints on the results of FW-DDSM-OGSA as this is a heuristic algorithm that allows

constraint violation to achieve a very short computation time.

• Problem Instance and Parameter Setting : We generated two sets of problem in-

stances. Each instance had ten households and ten jobs per household. In one set

of the instances, the jobs were fully flexible, which means each job had no EST

and LFT: it could start from or finish at any scheduling interval. In the other set

of instances, the jobs were semi-flexible, which means each job had an EST and a

LFT that were randomly selected using a uniform distribution. Within each set,

the number of sequential jobs varied from 0, 2, 4, 6 to 8. The pricing table was

rescaled for each problem instance. We set the electricity cost weight at λc = 1 and

the inconvenience value weight λu = 1.

• Criteria: We defined the following criteria to evaluate the differences in the solutions

of FW-DDSM-CP and FW-DDSM-OGSA:

1. PAR difference: the distance between the PAR of the optimal TDP and that

of the improved TDP, calculated as the following:

PAR difference = PAR of the optimal TDP− PAR of the improved TDP (5.7)

2. DRd difference: the difference between the maximum demand reduction of the

optimal TDP and that of the improved TDP, calculated as the following:

DRd difference = DRd of the optimal TDP− DRd of the improved TDP (5.8)

3. CR difference: the difference between the cost reduction of the optimal TDP

(calculated by FW-DDSM-CP) and that of the improved TDP (calculated by

FW-DDSM-OGSA), calculated as the following:
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CR difference = CR of the optimal TDP− CR of the improved TDP (5.9)

• Results: We solve each problem instance using FW-DDSM-CP and FW-DDSM-

OGSA, respectively. Table 5.11 shows the differences in PARs, maximum demand

reductions and supply cost reductions using FW-DDSM-CP and FW-DDSM-OGSA.

Table 5.11: Impacts of sequential jobs per household

Sequential
jobs

Fully flexible jobs Semi flexible jobs

Min Max Median Min Max Median

PAR difference = PAR of the optimal TDP - PAR of the improved TDP

0 0 0 0 0 0 0
2 -0.02 0 -0.01 -0.01 0.01 0
4 -0.06 0.01 -0.01 -0.01 0.01 0
6 -0.02 0.02 0 -0.01 0.02 0
8 -0.03 0.02 0 -0.01 0.01 0.01

DRd difference = DRd of the optimal TDP - DRd of the improved TDP

0 0% 0% 0% 0% 0% 0%
2 0% 2.0% 0% -1.0% 0% -1.0%
4 -1.0% 4.0% 0% 0% 1.0% 0%
6 -2.0% 1.0% -1.0% -1.0% 0% 0%
8 -2.0% 3.0% 0% -1.0% 0% 0%

CR difference = CR of the optimal TDP - CR of the improved TDP

0 0% 0% 0% 0% 0% 0%
2 0% 0% 0% 0% 0% 0%
4 0% 1.0% 0% 0% 0% 0%
6 0% 0% 0% 0% 0% 0%
8 0% 0% 0% 0% 0% 0%

• Analysis: The results have demonstrated that:

1. The optimal PAR (the PAR of the optimal TDP) and the improved PAR (the

PAR of the improved TDP) were the same when there was no sequential jobs.

However, the PAR differences were negative in some instances (some optimal

PAR were higher than the improved PARs), which means FW-DDSM-OGSA

indeed violated some precedence constraints and/or the preceding delay con-

straints and reduced PAR further than FW-DDSM-CP in these instances.
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2. The optimal demand reduction and the improved demand reduction were the

same when there was no sequential jobs. However, the maximum demand

reduction differences were negative in some instances, which again means FW-

DDSM-OGSA violated some precedence constraints and/or the preceding delay

constraints and reduced PAR further than FW-DDSM-CP in these instances.

3. The optimal cost reduction and the improved cost reduction were mostly the

same for any number of sequential jobs, except in one instances where the

cost reduction difference was position. This means that although FW-DDSM-

OGSA violated some constraints in some instances and therefore reduced the

maximum demand a little further, the extra maximum demand reduction was

not sufficient to yield more cost reduction.

• Findings: We have validated our hypothesis that FW-DDSM-OGSA is suitable when

few coupling constraints (see Definition 2.12 in Chapter 2) are used in households.

5.6.3 Investigation of Battery Capacity

This experiment investigated the impacts of the battery capacity per household on the

solution of FW-DDSM. The FW-DDSM-CP was used for this experiment.

• Problem Instance and Parameter Setting : Five sets of experiment data were gener-

ated. Each set had 2000 households with the same jobs. The EST of each job was

randomly selected between the first scheduling interval 0 and its PST, and the LFT

was randomly selected between the preferred finish time (PFT) and the last schedul-

ing interval 143. Each household had six jobs and three of them were sequential.

The maximum battery capacity for each household varied from 2, 4, 6, 8 to 10 kWh.

The minimum capacity was 0 kWh. We have assumed that the batteries were all

one-hour systems, which means the maximum power rate was always the same as

the maximum capacity. The efficiency was assumed to be 1.

20 problem instances were created in total. The pricing table was rescaled for each

problem instance. The electricity cost weight in the objective function was set to 1:

λc = 1. The inconvenience value weight was increased to 100: λu = 100, in order to

better demonstrate the impact of the battery capacity on the inconvenience value.
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• Criteria: We evaluated the impacts by comparing the inconvenience value and the

objective value of the optimal TDP for each problem instance.

• Results: Figure 5.14 shows the averages of the optimal inconvenience and objective

values for each data set (or each battery capacity per household).

Figure 5.14: Averages of the optimal inconvenience and objective values of the ext-FW-
DDSM solutions for increasing the battery capacity.

• Analysis: The results show that the optimal inconvenience value and objective values

decreased significantly when the battery capacity increased from 0 kWh to 2 kWh,

and then decreased slowly when the battery capacity increased from 4kW. Moreover,

the inconvenience value was reduced to 0 after the battery capacity reached 6 kWh.

• Findings: We have found that increasing the battery capacity reduced the objective

and inconvenience values of the optimal TDP. The inconvenience value reached zero

when the battery capacity was sufficiently large, and the objective value improved

no further after a certain capacity level, such as 8000 kWh in our experiments.

5.6.4 Investigation of Battery Efficiency

This experiment investigated the impacts of reducing the battery efficiency on solutions

of FW-DDSM. The FW-DDSM-CP was used for this experiment.

• Problem Instance and Parameter Setting : Five sets of experiment data were gener-

ated. Each set had five problem instances. Within each set, each problem instance

had 2000 households with the same jobs. The EST of each job was randomly selected

between the first scheduling interval 0 and its PST, and the LFT was randomly se-

lected between the PFT and the last scheduling interval 143. Each household had

six jobs and three of them were sequential.
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The battery efficiency varied from 1, 0.9, 0.8, 0.7 to 0.6. The maximum battery

capacity for each household was 2 kWh. The minimum capacity was 0 kWh. The

maximum power rate was always the same as the maximum capacity.

25 problem instances were created in total. The pricing table was rescaled in each

problem instance. The electricity cost weight in the objective function was set to 1:

λc = 1. The inconvenience value weight was set to 10: λu = 10.

• Criteria: We evaluated the impacts using the inconvenience value and objective

values of the optimal solution for each problem instance.

• Results: Figure 5.15 shows the averages of the optimal inconvenience and objective

values for each data set (or each battery capacity per household).

Figure 5.15: Average inconvenience and objective values of the ext-FW-DDSM solutions
for various battery efficiencies.

• Analysis: The results show that the optimal inconvenience and objective values

decreased gradually when the efficiency increased from 0.6 to 0.9, and decreased

significantly when the efficiency reached 1.

• Findings: We have found that decreasing the battery efficiency increased the incon-

venience and objective values, which means finding a practical value for the battery

efficiency is important for correctly evaluating the financial benefits of batteries.

5.6.5 Summary of Findings

We have summarised our main findings in experiments from investigations of problem

parameters as follows:

1. The inconvenience value weight had limited impacts on the scalability, and the cost

and maximum demand reductions.
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2. The FW-DDSM-OGSA violated constraints when the number of sequential jobs per

household increased.

3. Increasing the battery capacity decreased the inconvenience and objective values.

Although, the inconvenience value reached zero and the objective value improved no

further when the battery capacity became sufficiently large.

4. The battery efficiency had an important impact on the inconvenience and objective

values. This means, using a practical value for the battery efficiency is important

for evaluating the benefits of using a battery.

5.7 Summary

This chapter first compares the three types of methods proposed for solving the household

subproblem; second demonstrates the optimality and scalability of two versions of our

Frank-Wolfe-based distributed demand scheduling method (FW-DDSM): the version with

the modified constraint programming (CP) model and the data preprocessing algorithm as

the job scheduling method (FW-DDSM-CP), and the version with the Optimistic Greedy

Search Algorithm (OGSA) as the job scheduling method (FW-DDSM-OGSA); and third

investigates the impacts of some problem parameters, such as the objective weight, the

number of sequential jobs, and the battery efficiency and capacity, on the solutions and

the scalability of our FW-DDSM.

Firstly, when solving the household subproblem, we have found that the CP models

are the fastest especially when used with the data-preprocessing algorithm to compute the

optimal solution for a single household. OGSA provided a near-optimal solution, however,

it was significantly faster than the CP models and it is easy to implement without the need

of a solver. In practice, we propose that we can first use OGSA to find a good solution

and then use the CP model with the data preprocessing algorithm to find the optimal

solution if needed.

Secondly, when solving DSP-MBs, we have found that the FW-DDSM is highly scal-

able, as the number of iterations for convergence are independent of the number of house-

holds, and the scheduling time per household per iteration is minimally affected by the

number of households. Particularly, the objective values of the actual solutions produced
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by our probability-based scheduling method highly approximate, if not match, the ob-

jective values of the optimal solutions calculated by the FW-DDSM. The feasibility of

the FW-DDSM may be violated when OGSA is used for scheduling jobs in households,

however, this version of FW-DDSM is still suitable for scenarios when households have

limited coupling constraints and a low computation cost is the high priority.

Third, the inclusion of batteries in households has limited impacts on the scalability of

the FW-DDSM and the use of batteries yields lower total inconvenience values and more

supply cost reductions. Increasing the battery capacity reduces the optimal inconvenience

and objective values, however these optimal values reduce no further after the battery

capacity reaches a certain level. Moreover, decreasing the battery efficiency increases the

optimal inconvenience and objective values, which means incorporating a practical battery

efficiency in the problem model is important for correctly evaluating the financial benefits

of a battery.
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Conclusion

The objective of this thesis is to develop a scheduling algorithm that solves demand

scheduling problems (DSPs) especially for a large number of households with batteries

under real-time pricing (RTP) in a scalable and efficient manner. This algorithm should

ensure that the complex constraints such as the dependencies between appliances are en-

forced, various types of consumer requirements and preferences are met, peak demand is

reduced, and total consumption cost and inconvenience to consumers is minimised. More-

over, the computation time should be minimally affected by the number of households, and

minimum manual tuning of parameters and information broadcasting should be required

to achieve the best solutions. In order to achieve this goal, this thesis was divided into

four parts: literature review, problem model, method design and experimental results.

The details of these four parts have been provided in Chapter 2, 3, 4 and 5, respectively.

We have proposed a novel demand scheduling algorithm called the Frank-Wolfe-based

distributed demand scheduling method (FW-DDSM) to solve demand scheduling problems

for multiple households with batteries (DSP-MBs). This is an algorithm that satisfies the

requirements we expected for this thesis. The implementation of this algorithm can be

found at https://github.com/dorahee/FW-DDSM.

6.1 Significance

This thesis has contributed to the state-of-art of demand response (DR) by introducing a

novel demand scheduling algorithm that achieves efficiency, flexibility, optimality, feasibil-

ity and scalability for DSPs with linear constraints and convex objective functions. This
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algorithm uses primal decomposition, Frank-Wolfe (FW) method, a data preprocessing

algorithm and optimisation models including a constraint programming (CP) model and

a linear programming (LP) model.

To the best of our knowledge, this is the first work that applies FW and CP methods

to solve DSPs and studies the scalability and efficiency of the scheduling algorithms. The

FW algorithm is the key to achieve high efficiency and scalability without the need for

manual parameter tuning. CP methods are essential for reducing the computation time

for each household while achieving optimality and flexibility.

This algorithm is highly flexible. Unlike existing works that often require consumers

to schedule appliances or devices to the next (half an) hour periods. This work allows

consumers to choose the granularity of a scheduling time horizon, such as ten minutes or

even shorter, offering more flexibility in scheduling without increasing the computation

time too much. Consumers can also choose multiple optimisation modules and constraints

for their devices based on personal energy needs, such as adding an appliance scheduling

module and a battery scheduling module with coupling constraints, without altering the

complexity of the algorithm and compromising the optimality of solutions. Moreover, this

algorithm does not require manual tuning of parameters to achieve the best solutions,

making this algorithm adaptive to any problem instance.

This algorithm is highly scalable. The experimental results have shown that the num-

ber of iterations required for our algorithm to find the optimal solution is independent

of the number of households. Moreover, unlike existing works that require consumers to

schedule devices and broadcast information one by one to achieve the best solutions, this

work allows consumers to schedule devices in parallel, further decreasing the total compu-

tation time for our algorithm. The results have also shown that with parallel computing,

our algorithm can find the optimal solution for 10,000 households with battery energy

storage systems (batteries) under 10 seconds. This is a result that has set a new standard

in DR scheduling algorithms.

Technically, the main output of this thesis: FW-DDSM has the following benefits:

• The Frank-Wolfe (FW) algorithm has linearised the convex demand scheduling prob-

lem and removed the need for manual tuning of the step size to ensure convergence,

reducing the problem complexity and making the FW-DDSM adaptive to various

problem instances.
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• The CP optimisation model with a preprocessing algorithm is demonstrated to be

more efficient than a mixed-integer programming (MIP) model for scheduling appli-

ances for each household.

• A battery scheduling module can be easily integrated into each household without

compromising the scalability of the entire algorithm.

• The number of input parameters for the master problem and the subproblems are

the same for any number of households and any optimisation methods used by each

household, ensuring the scalability of this algorithm.

Practically, this FW-DDSM has many benefits for electricity suppliers and consumers,

the most significant of which are:

• Lowering costs of meeting peak demand by smoothing total demand profiles.

• Improving the reliability of electricity supply and the utilization rate of existing

generation and delivery infrastructure by shifting demand to off-peak times.

• Avoiding load synchronization by preventing consumers from shifting demand to the

same times with low prices.

• Allowing consumers to play a more important role in deciding the electricity cost by

involving them in DR.

• Protecting consumer privacy by not requiring consumers to expose their appliance

details and consumption requirements and preferences to any third parties.

Besides the main output of this research FW-DDSM, this thesis has also produced

interesting findings that contribute to the knowledge base of demand scheduling and op-

timisation. The most significant findings are:

• CP methods with data preprocessing are more efficient than MIP methods for solving

demand scheduling problems for a single household (DSP-SHs).

• Using all-purpose optimisation solvers such as Gurobi cannot solve large-scale DSPs

in an acceptable time frame.



160 CHAPTER 6. CONCLUSION

• Our FW-DDSM has successfully solved large-scale mixed-integer non-linear DR

problems with linear constraints efficiently, demonstrating the potential for being

transferable to other similar large-scale optimisation problems.

6.2 Application of this Research

A further contribution of this thesis is that the FW-DDSM can be implemented as part

of the software used by both utility companies and consumers to jointly manage demand,

in order to reduce peak demand and costs. At each household, this software can be imple-

mented on smart devices that connect to other devices such as batteries and appliances.

Consumers may set their consumption preferences on this smart device once before the

day starts. This software may then automatically collect pricing information from the

utility company or demand response service provider (DRSP), decide the best times to

use household appliances and batteries based on the consumption preferences, and control

appliances and batteries according to the best schedule through the smart device.

At the utility company or DRSP, this software can collect and analyse demand data

sent from households, calculate new pricing signals based on the total demand and send

these pricing signals back to households. The utility company or DRSP can use the money

saved from peak demand reductions to reward participants of DR programs.

6.3 Future Research

This thesis has raised some important questions that can form the basis of future research.

Firstly, the FW-DDSM developed in this research computes the best schedule in a day

ahead. If no consumption requirements and preferences are changed during the day, the

peak demand and cost will reduce as computed by this method. However, there are

uncertainties in practice. The consumption preferences or pricing information may change

during the day. Future work may consider implementing the FW-DDSM on a rolling

horizon and incorporating stochastic algorithms to incorporate uncertainties during the

day, making the algorithm more adaptive to changes.

Secondly, this thesis focuses on reducing costs for energy producers and consumers,

and ignores constraints and costs for distribution networks. When implementing FW-

DDSM on a large-scale in practice, it is important to consider restrictions on distribution
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networks, such as the maximum capacities of power lines and switches. The future work

can combine a distribution network model with the FW-DDSM to produce solutions that

are adaptive to limitations of underlying networks.

Thirdly, this thesis has adopted general appliance and battery models that are com-

monly used in the literature. These models are not specific to any devices in practice.

When implementing FW-DDSM in practice, it would be useful to produce more accurate

models for devices, in order to more accurately evaluate the benefits and costs of this DR

algorithm. Moreover, by incorporating more accurate battery models, this FW-DDSM

can be used to estimate how many batteries or how much flexibility in demand response

is required from consumers to produce the ideal load profile desired by energy providers.

Fourthly, the consumer take-up of the FW-DDSM is a big issue. It is important to

consider questions such as how would users react to the probability scheduling method of

FW-DDSM? What appliances are consumers comfortable with losing direct control over?

What are the cost and returns of adopting FW-DDSM for a household? Answering these

questions are vital for realising the full benefits of the FW-DDSM.

6.4 Summary

To summarise, this thesis has addressed the question of how to schedule a large number

of households efficiently under a dynamic pricing scheme to reduce the peak demand, and

minimise the electricity cost and inconvenience to consumers while meeting their energy

needs and minimising information collected from consumers. The FW-DDSM developed

in this thesis has expanded the knowledge of scheduling algorithms for DR and solving

algorithms for large-scale optimisation problems, as they relate to this thesis. This thesis

has also identified future research topics that can be continued in a research collaboration

with industry and communities.

Adapting to ever-changing new challenges in power systems is a long and winding road

but advances such as those presented in this thesis have provided more possibilities for

success. These new challenges, along with the rapid developments of technologies, have

made it an exciting time to work in demand management for power systems.
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Appendix A

Power Systems: Now and Then

A.1 Introduction

This chapter provides the background knowledge of power systems, demand response

(DR) and dynamic pricing schemes relevant to this thesis. Australian data are used for

illustrating the information due to the ease of access, however, the background knowledge

described in this chapter is not limited to the Australian electricity systems.

Historically, electricity is produced when it is needed and it must be consumed when it

is produced. Power stations and electricity networks had to be built to have the capacity

to satisfy electrical demand at any time and any where in the network. It is vital to have

a reliable and stable electricity supply at all times for our daily lives, however, there is a

trade-off between the reliability and the cost.

Meeting the demand at any time requires extra power stations specially built for peak

demand periods. However, these power stations are expensive to operate. Moreover, the

peak demand is significantly higher than the average demand and it only occurs for a very

short time of a year. It follows that the majority of capacity is idle for a great deal of the

time (Van Den Briel et al., 2013; Mishra et al., 2013). This means, the current way to

satisfy the peak demand is costly and cause low utilisation of system infrastructure.

Furthermore, current power systems worldwide were built decades ago, meaning that

these power stations and associated infrastructure are nearing their optimum working life

and required retirement. However, the increasing uses of battery energy storage systems

(batteries), electric vehicles (EVs) and electronic devices are introducing more variability

in our electrical demands, putting more pressure on ageing components.
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We could either keep building new power stations and associated infrastructure to

satisfy our growing demands as the traditional approach, which will be costly, or seek

alternative solutions to provide reliable electricity supply in a more economic and envi-

ronment friendly way (Finkel et al., 2017b).

Smart grids are the next-generation power systems that integrate modern information

and communication technologies (ICTs) to enable the development of more economic and

environment friendly solutions to the above challenges. One of the important goals of

smart grid is to realise DR that encourages consumers to better manage their electricity

consumption through financial incentives. A main goal of DR is to reduce the peak de-

mand, and make our demands more predictable and economic to satisfy. When consumers

can shift demands from peak times to other times of the day and smooth their demand

profiles in response to financial incentives, DR can effectively reduce the electricity demand

and costs in a more affordable way (Finkel et al., 2017a).

The successful implementation of DR requires the aid of smart grid technologies such as

sensing, monitoring, communication and computing technologies. This thesis is interested

in investing algorithms that are by computing technologies to facilitate the successful

implementation of DR. Before we present our studies on DR algorithms, this chapter

introduces the relevant background information on power systems, smart grid technologies

and financial incentives for enabling and implementing DR in practice. Specifically, this

chapter provides the details on power systems in Section A.2 and DR in Section A.3.

A.2 Power System

Electricity needs to be produced to satisfy our demand at all times of the day at an

affordable cost. Achieving these goals requires a network of infrastructure and facilities

for generating and delivering the energy, and a mechanism for dispatching power generators

at the lowest possible cost. This section introduces the major components in the current

power systems, the wholesale market for dispatching power stations, and the challenges

faced by current power systems. The information presented in this section is essential for

understanding the motivation and benefits of implementing DR, presented in Section A.3.
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A.2.1 Component

Traditionally, power systems have three primary physical components: power stations

for generating energy, electricity networks for delivering energy, and loads for consuming

energy at homes, offices and factories, illustrated in Figure A.1.

Figure A.1: Transport of Electricity (AEMO, 2020)

Power Stations

Power stations are factories that generate electricity by converting energy in primary

sources, such as fossil fuels (coal, natural gas, and oil), nuclear power or renewable energy

(e.g. wind and solar), into electrical energy (Biggar and Hesamzadeh, 2014b). Historically,

the electricity is supplied in a centralised manner. A few large power stations are built

to supply the demand for millions of consumers. Recent years have seen the increasing

use of photovoltaics (PVs) panels, batteries and EVs, transitioning electricity generation

towards a more distributed delivery model. It is expected that electricity will be produced

from large power stations and small generators at the demand side in the near future.
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Electricity Networks

Electricity networks are made up of networks of wires and poles that transport and dis-

tribute electricity from power stations to customers. These networks are divided into two

parts: transmission networks and distribution networks.

Typically power stations are located close to their primary energy sources which are

far away from consumption centres (towns or cities) . When electricity is produced from

these power stations, it is transmitted through high-voltage transmission networks over

long distances to load centres. Then within these load centres, the electricity is distributed

to individual consumers through lower-voltage distribution networks. As an example,

Figure A.2 shows the image of the national electricity networks in Australia.

Loads

Loads are machines or electronic devices that consume electricity at homes, offices and

factories. The usage patterns of these loads follow people’s daily activities. As a result, the

total demand of loads varies over time. In Australia these days, the total demand reaches a

peak in the early morning and evening, and falls when they go to work or sleep. On a very

hot day, the total demand can be extremely high when most people use air-conditioners

at the same time,as shown in Figure A.3.

A.2.2 Wholesale Electricity Market

Some countries, such as Australia, have introduced a wholesale market for managing

the uses of power stations. Within this market, power stations sell electricity to utility

companies, however, power stations must compete to provide their services. The relation

between a wholesale market and a power system is shown in Figure A.4.

Economic dispatch and in some countries unit commitments are the key operations

of a electricity wholesale market (Callaway and Hiskens, 2011; Biggar and Hesamzadeh,

2014a). Unit commitment establishes power stations operating schedules in advance of the

operating time (e.g. before a day starts) and takes into account the ramping capabilities,

and start-up and shut-down costs of power stations. Economic dispatch is the process of

choosing the output levels for power stations that are already started, with the objective

of minimising the total cost of meeting demand.
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Figure A.2: Electricity Networks of the National Australia Market (AEMO, 2021)

These operations are managed by a third-party organization known as the market

operator. In Australia, the main steps of these operations include:
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Figure A.3: Total Demand and maximum temperatures for every 30-minute period from
10 to 31 December in 2015 of South Australia, Australia (AEMO, 2017)

Figure A.4: Electricity wholesale market (GloBird energy, 2021)
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• Before a day begins, generators submit an offer of the amount of electricity they

can supply at various price levels for every five-minute period of the following day.

The market operator schedule those generators in the order of their offer prices

from the lowest to the most expensive, which is known as the merit order, for every

five-minutes period.

• When the day starts, the market operates every five minutes, which means for every

five minutes, the market operator dispatch generators according to the pre-defined

schedule until the total demand is met in that period, and set a dispatch price for

that period the price of the most expensive generator dispatched in that period.

• In Australia, the wholesale market traded every 30 minutes before Nov 2021, which

means for every 30 minutes, the market operator calculated a spot price as the

average of all dispatch prices in that period, and paid all dispatched generators with

that price.

By dispatching generators in merit order until the demand is met, the market operator

can balance the demand and supply at the lowest possible cost. However, on a hot summer

day or a cold winter day, the dispatch price fluctuates significantly over time as the demand

varies dramatically. Figure A.5 shows the wholesale electricity price of Victoria on 13 April

in 2017. All generators are paid at the same spot price during each trading period despite

their actual operation costs, which provides a financial incentive for power stations to

improve their efficiencies and reduce costs to profit better from the wholesale market.

Bid Stacks

At each dispatch period, the Australian Electricity Market Operator (AEMO) stacks the

offers of all generators based on their prices from the lowest to the highest to determine

the dispatch order. This stack is called the bid stack. While the bid stack always starts

with the generators with the cheapest fuels such as wind and coal, and end with those with

the most expensive fuels such as diesel or other liquid fuels, the prices offered by the same

generators may change over time, depending on the available generators at each time.

These changes in prices can be significant when there is a high penetration of variable

renewable energy generators (REGs) in the power system.
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Figure A.5: Wholesale electricity prices of Victoria, Australia on 13 April 2017 (AEMO,
2017)

For example, two bid stacks of South Australia, Australia are provided in Table A.1

and Table A.2. The tables are also illustrated in Figure A.6. These stacks are for two

different dispatch periods on two different days. Note that not all generators in the stacks

were dispatched but only those were needed. We can observed from the tables that:

• Some generators submit the lowest negative possible bid price allowed by the market

regulations for some dispatch periods to ensure they are dispatched at those times.

For example, the wind turbines could not be switched off when the wind was blowing

so their offered prices were all $-1000/MWh. Moreover, some gas (and often also

coal) generators can take hours to start up and cool down and therefore their prices

were also $-1000/MWh when the wind resources were abundant.

• The dispatch price increases with the total amount of dispatched generation. How-

ever, this price increases slowly when the next dispatched generator uses the same

type of fuels, the jumps significantly when switching to another type of fuel. For ex-

ample, Table A.1 shows that if a liquid fuel generator was required, the price would

have jumped from $120.49/MWh to $351.35/MWh.

• The more wind outputs has been dispatched, the less fossil fuel outputs will be

required, therefore the lower the dispatch price will be. For example, Table A.1

shows the dispatch price is $79.99/MWh when the total dispatched wind output is
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1294 MW, and Table A.2 shows that the dispatch price is $159.99/MWh when the

total dispatched wind output is 675 MW.

These observations demonstrate that the design of the bid stacks can indeed help the

market operator to ensure the balance between the demand and supply is maintained at the

lowest possible cost. Moreover, these observations demonstrate that the cost of electricity

generation can indeed be reduced by reducing the peak demand, moving consumption to

off-peak times and moving consumption to times when REGs are available.

Table A.1: Bid stacks of South Australia, Australia on 05 Aug 2017 23:30

Fuel Type Price Quantity Dispatched Cumulative
($/MWh) (MW) (MW) Generation (MW)

Wind -1000 159 45 45
Wind -1000 130 114 159
Wind -1000 39 21 180
Wind -1000 144 126 306
Wind -1000 80 78 384
Wind -1000 102 89 473
Gas -1000 60 60 533
Wind -1000 53 46 579
Wind -1000 57 41 620
Gas -1000 60 60 680
Wind -1000 102 89 769
Gas -1000 340 340 1109
Wind -1000 126 110 1219
Wind -1000 71 62 1281
Wind -1000 132 116 1397
Wind -1000 99 87 1484
Gas -1000 140 140 1624
Gas 65.69 138 138 1762
Gas 79.99 100 55 1817
Gas 79.99 100 54 1871
Gas 120.49 43 0
Liquid Fuel 351.35 45 0
Gas 389.99 40 0
Gas 389.99 40 0
Gas 578.81 60 0
Liquid Fuel 592.37 7 0
Gas 1750.02 15 0
Liquid Fuel 1750.05 21 0
Gas 13100.02 46 0
Gas 13100.02 46 0
Gas 13100.02 31 0
Liquid Fuel 13958 44 0
Gas 13998.99 112 0
Liquid Fuel 14126 19 0
Gas 14200 42 0
Gas 14200 42 0
Liquid Fuel 14200 42 0
Gas 14200 124 0
Gas 14200 24 0
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Table A.2: Bid stacks of South Australia, Australia on 01 Aug 2017 07:30

Fuel Type Price Quantity Dispatched Cumulative
($/MWh) (MW) (MW) Generation (MW)

Wind -1000 159 5 5
Wind -1000 39 1 6
Gas -1000 74 74 80
Gas -1000 45 45 125
Gas -1000 340 340 465
Wind -1000 57 3 468
Gas -1000 60 60 528
Gas -1000 60 60 588
Wind -1000 43 43 631
Wind -1000 43 43 674
SA -1000 60 60 734
SA -1000 45 45 779
SA -1000 45 45 824
Wind -1000 102 4 828
SA -1000 140 140 968
Wind -150.01 102 4 972
Wind -60 130 1 973
Gas 65.69 140 140 1113
Gas 89.99 95 95 1208
Gas 89.99 55 55 1263
Gas 89.99 55 55 1318
Gas 89.99 105 105 1423
Gas 89.99 105 105 1528
Gas 89.99 55 55 1583
Gas 98.93 54 54 1637
Gas 112.99 10 10 1647
Gas 112.99 25 25 1672
Gas 112.99 15 15 1687
Gas 112.99 25 25 1712
Gas 112.99 20 20 1732
Gas 112.99 15 15 1747
Gas 120.49 54 54 1801
Gas 159.99 10 4 1805
Gas 159.99 5 5 1810
Gas 159.99 10 10 1820
Gas 159.99 5 5 1825
Gas 159.99 10 4 1829
Gas 212.99 5 0
Liquid Fuel 351.35 45 0
Gas 578.81 60 0
Gas 588.22 44 0
Liquid Fuel 592.37 7 0
Gas 1750.02 15 0
Liquid Fuel 1750.05 21 0
Gas 13100.02 46 0

A.2.3 Challenge and Issue

The current method of balancing the demand and supply has raised two challenges: low

utilisation of a power system’s capacity, and high generation costs at peak times.
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(a) 05 Aug 2017 23:30 (b) 01 Aug 2017 07:30

Figure A.6: Bid stacks of South Australia, Australia

Low Capacity Utilisation

To ensure reliable supply at any time, a power system must plan and build the capacity

so as to meet the peak electrical demand at any time (Elgerd, 1982). However, the peak

demand is significantly higher than the average demand and it only occurs for a very

short time of a year. It follows that the majority of capacity is idle for a great deal of the

time (Van Den Briel et al., 2013; Mishra et al., 2013).

As an example, the total demand of Victoria in Australia exceeds 70% of the highest

peak demand for only less than 5% of the time in 2011 to 2015. Figure A.7 shows the load

duration curves of Victoria state for the 2001-2005, 2006-2010, and 2011-2015 periods,

which are created by sorting the total demand of every 30-minute time interval for every

five-year period from the largest and the smallest, and normalising the total demand and

the time intervals to between 0% to 100%.

High Peak Generation Costs

As discussed in Section A.2.2, the wholesale market operator dispatches power stations

based on their offers and the demand every five minutes. Some generators are only dis-

patched during extreme high demand periods, however, extreme high demand only appears

for a small number of hours per year. Therefore, in order to make a profit, these generators

must ask for a very high price when they operate. To demonstrate the high cost of these
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Figure A.7: Load duration curves of Victoria, Australia for 2001 — 2015 (AEMO, 2017)

extreme high demand periods, Figure A.8 shows the actual generation, available gener-

ation capacity and the wholesale electricity price in Victoria for every 30-minute period

in 2016. Notice that on the hottest day of Victoria in Australia in 2016, the wholesale

electricity price in Victoria reached 9137.03 $/MWh of electricity at 3.30pm, which is 104

times higher than the price of the day before at the same time (87.66 dollars/MWh), and

247 times higher than the one of the day after (36.89 dollars/MWh). That means, the

extreme high demand is very expensive to satisfy.

Ageing Components and Increasing Demand Variability

In addition, current power systems in many countries including Australia have been built

decades ago. The ageing electrical components have become inefficient and easier to fail,

requiring higher repair and restoration costs. Consequently, these components are due

for replacements. In Australia, by 2035, 68% of the coal-fired power stations will be over

50 years old, reaching the end of their life (Finkel et al., 2017b) and having to exit the

electricity market. However, the increasing uses of batteries, EVs and electronic devices

are introducing more variability in our electrical demand. Particularly, the increasing use

of heating and cooling devices will increase the peak demand on hot or cold days, putting

more pressure on ageing components. These challenges are pushing us to seek alternative

solutions to satisfy our demand in a more economic and environment friendly way.
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Figure A.8: Generation outputs, available capacities and wholesale prices of Victoria,
Australia in 2016

A.2.4 Smart Grid

The challenges in current power systems have introduced pressure for network operators,

although they also provide an opportunity for electricity industries to re-think the design

of existing power systems, and seek alternative solutions to improve the efficiency and

reliability of electricity supply in a more cost-effective manner. These alternatives include

transitioning our current power systems into smarter systems that integrate advanced

ICTs from generation down to the consumer meters and end-use devices enabling high-

speed, two-way communication, sensing, and real-time coordination of key components in

power systems (Pratt et al., 2010). Such smarter power systems are known as smart grids.

There have been various definitions of smart grids from different institutions (Wake-

field and McGranaghan, 2009; Alotaibi et al., 2020). Let us use the definition from the

US Department of Energy, which defines a smart grid as “self healing, enables active

participation of consumers, operates resiliently against attack and natural disasters, ac-

commodates all generation and storage options, enables introduction of new products,

services and markets, optimizes asset utilization and operates efficiently, provides power

quality for the digital economy” (U.S. Department of Energy, 2009). The technologies

that enable smart grids to achieve these goals and provide better sensing, communicating,

monitoring and control include:
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• digital sensors for any component of the systems,

• wide-area communications networks, servers and gateways,

• local-area home, commercial building and industrial energy management and control

systems,

• consumer information interfaces and decision support tools ,

• utility back-office systems, including billing systems.

Figure A.9 shows these enabling technologies and their interactions in a smart grid. A

key feature supported by these enabling technologies is DR, which aims to change the

consumption patterns of consumers in ways that reduce electricity costs and improve the

reliability and safety of the electricity supply.

Figure A.9: An overview of the smart grid technology 1

A.3 Demand Response

DR refers to demand management activities carried out by consumers to actively modify

their consumption patterns in response to financial incentives, in order to induce lower

electricity use at times of high wholesale market prices or when system reliability is jeop-

ardized (Albadi and El-Saadany, 2007; Good et al., 2017). The benefits of DR include:

1https://www.elprocus.com/overview-smart-grid-technology-operation-application-existing-power-
system/
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• Reducing consumption under emergency conditions or when the demand nears sys-

tem capacity to provide reliability at those times.

• Lowering the demand at peak times, which can reduce the need for expensive invest-

ment in additional generating capacity, smooth the variability in demand, improve

the capacity utilisation, and reduce the overall cost of electricity.

A.3.1 Financial Program

Two types of financial programs that implement DR have been considered in practice to

achieve those benefits. These programs are incentive-based or price-based programs.

Incentive-based programs reward consumers for reducing consumption at high demand

times or when power systems are under emergency conditions (Albadi and El-Saadany,

2007). These programs are often used on a small number of hours per year (Siano, 2014)

to avoid “demand fatigue” where participants decrease their responsiveness or exit from

the programs if they are called too frequently. For example, interrupting air-conditioners

on the hottest days too frequently can frustrate consumers to the point that they will

withdraw from a direct load control program during an emergency condition when their

services are needed the most (Callaway and Hiskens, 2011).

Price-based programs offer a dynamic pricing scheme that encourages consumers to

reduce the consumption at peak times. Typical pricing schemes include (Albadi and El-

Saadany, 2007; Siano, 2014):

• time-of-use (TOU) : TOU scheme sets a different rate for different periods of time.

For example, the simplest TOU has two rates: a higher rate for the peak period (e.g.

7am – 11pm from Monday to Friday), and a lower rate for the off-peak period (e.g.

all the other times). These rates reflect the average costs of electricity at different

periods, but they change infrequently in a year.

• critical peak pricing (CPP): CPP is similar to TOU, except the peak rate is raised

to several times higher than usual, on days when the demand is expected to be

exceptionally high relative to available supply. This critical peak rate is called during

contingencies or high wholesale electricity prices for a limited number of days or hours

per year (U.S. Department of Energy, 2006).
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• real-time pricing (RTP): RTP is a fully dynamic scheme where the rate varies hourly

(or more often) to reflect the actual variations in the system’s marginal electricity

cost in the wholesale market. Participants are informed about the prices on a day-

head, hour-ahead or more frequent basis.

These programs allow consumers to reduce their electricity bills by better determining

when they use electricity, making the demand more responsive to changes in system con-

ditions and reducing the costs of satisfying the peak demand.

A.3.2 Enabling Technology

Realising these DR programs require technologies that allow utility companies to know the

hourly consumption of consumers enrolled in a RTP program for billing purposes, and help

consumers to understand their existing consumption patterns to know their capability for

demand shifting and reductions. Smart grids provide the enabling technologies required

for implementing DR in practice. The technologies can be categorised as follows:

• sensing: metering the electricity at a high frequency

• monitoring and control: providing access to data generated by sensing and comput-

ing devices, and controlling devices remotely to switch them on and off or adjust

their consumption

• communication: transmitting data in an agreed and standardised way to ensure data

security and privacy

• computing: dealing with large amount of data generated by sensing devices in limited

time with constrained computation capacity.

Sensing technologies include digital sensors such as smart meters that measure elec-

tricity consumption at a higher frequency. Different from existing electricity meters, smart

meters can send meter readings to utility companies and receive data from utility com-

panies in real time or near real time through communication networks, enabling two-way

communication channels between consumers and utility companies (Pratt et al., 2010).

Some smart meters can connect to appliances and control their operations such as switch-

ing them on and off, or changing their operation modes. Figure A.10 shows this function-

ality of a smart meter.
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Figure A.10: Flow chart of smart meters’ operations 2

Monitoring technologies include devices that collect data from smart meters and dis-

play those data to consumers for decision making. Control technologies may include de-

vices that allow consumers to remotely control their household appliances. For example,

a smart plug is a power plug that can be attached to any electrical device, and allows con-

sumers to monitor and control the operation of that device through a wireless network. An

energy management system that incorporate these monitoring and control technologies for

managing appliances and devices at a household is known as a home energy management

system (HEMS). Figure A.11 displays such a system at a household.

Commonly used communication technologies for information exchange between sens-

ing, monitoring and controlling technologies include Home Area Networks (HAN), Field

and Neighbourhood Area Networks (FANs/NANs) and Wide Area Networks (WANs) (Siano,

2https://www.greencitytimes.com/smart-meters-a-more-efficient-use-of-utilities/
3https://www.jcwes.com/blog/2017/6/14/smart-energy-management-system-in-a-domesticated-

environment
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Figure A.11: A smart home energy management system 3

2014). A HAN provides the channel for information to transmit between sensors, the smart

meter and controllers in a household, so they work together to enable consumers to moni-

tor and control the devices remotely. A NAN connects smart meters and data centres, so

consumption readings are delivered to data centres for central storage. A WAN connects

the data centres and control centres of a power system, so the system operators have access

to all meter reading data. The structure of entire communication networks for demand

response is displayed in Figure A.12.

Computing technologies include computing devices, software and algorithms that pro-

cess and analyse the information and data collected from smart meters, utility companies

or another other data sources, such as weather forecasts. These technologies are crucial for

achieving the best outcomes of demand response. Consumers can use intelligent computer

algorithms such as machine learning algorithms and optimisation algorithms to learn pat-

terns from the data collected by smart meters, calculate the best times to use electrical

devices, and control those devices through smart plugs accordingly. Optimisation tech-

niques have been widely used as part of these computer algorithms to schedule devices for
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Figure A.12: Communication technologies for smart grids (Ebalance-plus, 2020)

consumers and maximise their benefits (Barbato and Capone, 2014; Deng, Yang, Chow

and Chen, 2015; Vardakas et al., 2015). The focus of this thesis is to develop a computer

algorithm that utilises optimisation techniques for maximising the benefit of DR for con-

sumers. More details of optimisation techniques used in this thesis will be discussed in

Chapter B.

A.4 Summary

The main goal of a power system is to provide reliable electricity supply to consumers at an

affordable cost. Reliability can be achieved when the power system can balance the supply

and demand at all times. A power system must have sufficient generation capability to

meet the extreme demand peaks plus excess capacities. However, those extreme demand

peaks occur over a very short time in a year, which results in low utilisation of the system

capacity. Furthermore, the ageing power system infrastructure and the growing uses of

electronic devices can also introduce problems to the reliability. Additional generation

capacities can be used to address this issue, however, this solution will significantly increase

the costs of electricity.

These challenges in power systems motivate the electricity industries to re-think the

design of power systems, to overcome the challenges in a more economically efficient way.
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A smart grid is the future electricity grid that uses ICTs to improve the efficiency of elec-

tricity generation, transportation, distribution and consumption at a lower cost. A main

goal of a smart grid is to provide better visibility and control of the resources at the demand

side, to reduce the costs of balancing the supply and demand in real time. This goal can

be achieved through DR, which are programs provided by utility companies to motivate

consumers to modify their consumption patterns through financial incentives. Various

technologies such as smart meters, HEMSs, advanced ICTs are provided by smart grids

to help consumers better manage their demand and reduce the costs for both electricity

providers and consumers themselves.

Intelligent computer algorithms such as machine learning algorithms and optimisation

algorithms can be used by computing technologies for DR, to automate the DR process

for consumers and maximise their benefits gained from the DR programs. Optimisation

techniques are such algorithms that can find the best way to using electricity for consumers.

This thesis focuses on the use of optimisation techniques for achieving the maximum

benefits for consumers. The next chapter will provide the background information of

optimisation techniques relevant to this thesis.
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Optimisation

B.1 Introduction

This chapter presents the optimisation techniques that support the algorithm development

in this thesis. Specifically, this chapter presents an overview on four types of optimisation

techniques that have been considered in the demand scheduling literature: mixed-integer

programming (MIP), constraint programming (CP), continuous optimisation (CO) and

problem decomposition. Firstly, we will introduce the methods for formulating an opti-

misation problem. Secondly, we will demonstrate the methods for solving an optimisation

problem using each type of technique. Thirdly, we will present the methods for solving

large-scale optimisation problems using decomposition. The methods introduced in this

chapter form the foundation for the development of demand scheduling algorithms in the

following chapters.

B.2 Optimisation Problem Formulation

Solving a demand scheduling problem (DSP) involves finding the best times to use appli-

ances including battery energy storage systems (batteries) in a way that satisfies consumer

requirements and preferences, and minimises costs. A DSP can be formulated as an opti-

misation problem where the best times to use appliances are decision variables, consumer

requirements and preferences are constraints, and costs are objectives of the problem.

In any optimisation problem, decision variables represent choices to be made that will

directly affect the gains or losses of a consumer. A decision variable is often a numerical

value that can be chosen from a range or a set of values. This range or set of values is

183
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called the variable domain of that decision. Constraints are requirements that decision

variables must satisfy to achieve a feasible outcome. The values of decision variables must

satisfy all constraints, otherwise the values are infeasible. Constraints are often described

as (in)equalities or logic relationships. When all decision variables have chosen values

that satisfy all constraints, a feasible solution is found to the optimisation problem. Each

solution has a objective value that evaluates the “goodness” of that solution. A feasible

solution is global optimal when its objective value is better (higher or lower) than the

objective value of all other feasible solutions. Let us write:

• decision variables: x = {x1, x2, ..., xn}, where xn ∈ Ωn and Ωn as the variable domain

of xn

• inequality constraints: gp(x) ≤ 0, p = 1, ..., P where P is the total number of

inequality constraints.

• equality constraints: hq(x) = 0, q = 1, ..., Q where Q is the total number of equality

constraints.

• objective function: f(x).

The formal formulation of an optimisation problem can be written as the following:

minimise f(x) (or F (x))

subject to gp(x) ≤ 0, p = 1, ..., P

hq(x) = 0, q = 1, ..., Q

x ∈ Ω

B.2.1 Multi-objectives

Sometimes, a consumer may want to minimise various types of costs, such as the mon-

etary cost of consuming electricity and the inconvenience or dissatisfaction cost due to

moving appliances away from their usual consumption times. These costs can be conflict-

ing, so a balance between these costs needs to be found instead. Finding a solution that

optimises multiple conflicting objectives simultaneously is known as multi-objective opti-

misation. Common ways to find the best balance between conflicting objectives include

the Scalarisation methods and the Pareto methods.
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Scalarisation method The Scalarisation methods translate all conflicting objectives

into one aggregate objective that contains contributions from all objectives. A common

feature required by these method is preferences or weights that indicate the importance

of each objective and these weights or preferences need to be decided before the multi-

objective optimisation problem (MOOP) is solved. The most commonly used Scalarisation

methods is called the weighted sum (WS) approach, which assign a weight to each objective

and sum up all the weighted objective linearly. As an example, a minimisation goal can

be written as the following:

miniminse F (x) =

i∑
1

λifi(x), (B.1)

where λi is the weight for each objective fi(x).

Pareto method Unlike Scalarisation methods, Pareto methods keep each objective

separately in the optimisation process (De Weck, 2004; Andersson, 2001) . They evaluate

each objective value of each solution separately and then find a set of solutions that cannot

improve any single criterion without adversely affecting other criteria. This set of solutions

is called Pareto optimal solutions and they are presented to decision makers to choose the

final solution. Unlike Scalarisation methods where the preferences and weights need to be

assigned before the optimisation process, Pareto methods assign the preferences after.

Each of these methods have their advantages and drawbacks. Scalarisation methods

are easy to understand and to implement therefore commonly used. However, the choices

of weights or preferences must be known in advance. Moreover, the weights can have

significant impacts on the solutions so their values should be chosen carefully. Although

Pareto methods avoid these problems, choosing Pareto optimal solutions can be a large

computational burden and decision markers can suffer from having to choose from too

many solutions (Andersson, 2001). This research has chosen the WS approach under the

Scalarisation methods for its simplicity and popularity. More importantly, this approach

has been widely used in the existing research of demand management to manage multiple

conflicting objectives (Mohsenian-Rad and Leon-Garcia, 2010; Ramchurn et al., 2011;

Chen et al., 2011; Li et al., 2011; Yu et al., 2011; Kim and Giannakis, 2013; Rahbari-Asr

et al., 2014; Barbato and Capone, 2014; Deng, Yang, Hou, Chow and Chen, 2015; Anvari-

Moghaddam et al., 2015; Vardakas et al., 2015; Hossain et al., 2019; Couraud et al., 2020).
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B.3 Optimisation Solving Method

The efficient methods for solving optimisation methods depend on the mathematical prop-

erties of the problems. This section introduces the mathematical properties commonly

considered in an optimisation problem and their solving methods. In addition, we present

decomposition methods for solving large-scale optimisation problems.

B.3.1 Mathematical Property

The mathematical properties of an optimisation problem include the properties of decision

variables, constraints and the objective function (Conejo et al., 2006). Decision variables

can be discrete (integers), continuous (real numbers) or binary (boolean). Constraints

can be linear or nonlinear. The objective function can be linear, convex, or nonlinear and

nonconvex.

B.3.2 Optimisation Solver and Modelling Language

MIP methods are widely used for solving problems with discrete and continuous variables,

linear constraints and linear objective functions. CP methods have been used for solving

problems with discrete variables regardless of properties of the objective function. Linear

programming (LP) methods are popular for solving problems with continuous variables,

linear constraints and linear objective functions.

Some software have implemented these optimisation methods as ready-to-use algo-

rithm packages, known as solvers. Users can describe an optimisation problem in a

solver-understandable modelling language, feed the model into a solver and retrieve the

optimal solution from the solver. Well known optimisation modelling languages include

MiniZinc (Stuckey et al., 2018), CVX (Grant and Boyd, 2014), Jualia (Bezanzon et al.,

2012) and AMPL (Fourer et al., 2003). Commonly used MIP and LP solvers include

Gurobi (Gurobi Optimization, LLC, 2021) and CPLEX (ILOG, Inc, 2006). The state-

of-art CP solvers (Lin et al., 2021) include Gecode (Gecode Team, 2017), Chuffed (Chu

et al., 2011, n.d.) and OR-Tools (Perron and Furnon, n.d.).
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B.3.3 Mixed-integer Programming

Mixed-integer programming (MIP) methods can solve optimisation problems with discrete

and continuous decision variables, linear constraints and linear objective functions. We

call these problems as MIP problems.

Branch and Bound

A popular MIP method is called Branch and Bound (BB) that finds the best value for each

decision variable by splitting the variable domain of each variables into smaller and smaller

partitions. This method first relaxes the integrity constraint of the MIP problem. The

resulting relaxed problem is a LP problem that can be solved by existing LP methods that

have become very mature after decades of research and development. Once the relaxed

LP problem is solved, BB will partition the variable domains and again solve a relaxed

LP subproblem with only the values in each partition. The optimal solutions to the LP

subproblems in all partitions will then be compared, in order to choose the partition that

has the best optimal solution. That partition will then be further partitioned. More

detailed descriptions of this method are provided as the following:

1. This method relaxes the integer constraints on the variables by treating all integer

variables as continuous variables, and solving the resulting relaxed LP problem using

LP methods. The primary method for solving a LP problem is Simplex introduced

by Dantzig (Dantzig, 1990; David G. Luenberger, 2016).

2. If the integer variables in the solution are assigned integer values, then the optimal

solution is found. Otherwise, this method will choose an integer variable whose

assigned value is continuous in the current solution using some variable selection

heuristics and create two subproblems. One subproblem has an additional constraint

that the bound of the selected integer variable must be less than or equal to the floor

of the assigned value, and another subproblem has a constraint that the bound must

be greater than the ceiling of the assigned value instead.

3. If a subproblem has a valid solution, the objective value of this solution will be used as

a new bound for the objective value of the original problem. Any other subproblems

with a lower or higher objective value will be discarded. This subproblem will then

choose another integer variable that has a continuous value in this valid solution
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to create two new subproblems. If a subproblem is unsatisfiable, then it will not

continue selecting another integer variable and create new subproblems.

4. The process of selecting integer variables and creating subproblems continues until

no more subproblems can be created or solved. Then the last found solution is

proven to be the optimal solution to the original problem or if no solution can be

found, the original problem is declared unsatisfiable.

In practice, the decision variables are often transformed into binary variables by turning

each value in the original variable domain into a new decision variable and each new

decision variable can only be assigned as zero or one. This transformation is done to

improve the efficiency of the partitioning.

B.3.4 Constraint Programming

CP methods are powerful for solving optimisation problems with discrete decision variables

(e.g. combinatorial problems). Different from MIP, CP does not consider the linearity

of constraints and objective functions. CP provides a general problem-solving paradigm

for problems of linear or nonlinear constraints, and linear, convex or nonlinear objective

functions. Constraint programming (CP) was first developed for solving constraint sat-

isfaction problems (CSPs), which are concerned with finding a value for each decision

variable where constraints specify the values that cannot be used together. The solving

methods for CSPs are divided into two broad categories: inference and search. Inference

involves propagating constraints to remove values for variables that will never satisfy a

constraint. Search involves systematically enumerating all possible values for each vari-

able to find a combination of values that satisfy all constraints. These two categories of

techniques are often used together to eliminate useless values sooner and find a feasible

solution quicker.

Typically, a backtracking depth-first search algorithm is used with constraint prop-

agation to solve a CSP. The solving process typically involves the following (van Beek,

2006):

1. Constraint propagation is executed to check if any values can be removed from the

variable domains. If no values are left after this step, this CSP is declared to be
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unsatisfiable. Otherwise, the search algorithm will recursively select variables and

assign values to the variables.

2. When a value is assigned to a selected variable, constraint propagation can be exe-

cuted to remove values of other variables that can never satisfy all constraints when

used together with the assigned value to the selected variable.

3. When all variables are assigned, a feasible solution to the CSP is found. If at any

point during the search, a variable has no value left to be assigned after propagation,

the search algorithm will jump back to the previous selected variable and its assigned

value, select a different value for that variable or a different variable to assign value,

and continue the search and propagation until a feasible solution is found.

4. If the search algorithm has tried all values for all variables and no feasible solution

can be found, this problem is declared to be unsatisfiable.

In some important application areas of CP such as scheduling and planning, in addi-

tional to satisfying constraints, an objective function must be optimised (van Beek, 2006).

To solve these problems, the common approach is to find a feasible solution by solving a

sequence of CSPs. Initially, search and propagation are executed to find a feasible solution

to the problem. Then a constraint that requires the objective value of the next solution

must be better than the objective value of the current solution is added to the CSP . A new

solution is then found for the augmented CSP. This process is repeated until the resulting

CSP is unsatisfied. The last solution found by this process is proven to the optimal.

Constraint-based Scheduling

Constraint-based scheduling (CBS) is a discipline that studies how to solve scheduling

problems by CP. A scheduling problem is about allocating scarce resources to a given set

of activities over time. CBS has grown into the most successful application of CP.

A CBS problem generally includes the following elements (Baptiste et al., 2006):

• activities: an activity has a start time, an end time, a processing time (duration), a

release time (the earliest start time), deadline (the latest end time), the latest start

time, the earliest end time and an optional due time (preferred start time).
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• activity types: an activity can be non-preemptive, which means it can not be in-

terrupted once it has started; or preemptive, which mean it can be interrupted and

resumed later; or elastic, which means the resources required by this activity can

vary over time but the total consumption of the resources must meet a given amount.

Both non-preemptive and preemptive activities consume a fixed amount of resources

over time.

• resource types: a resource can be disjunctive, which mean the resource can be used

by one activity at one type; or cumulative, which mean the resource can be used by

several activities in parallel provided that the resource capacity is not exceeded.

• temporal constraints: a temporal constraint describe the precedence of one activity

over another activity.

The decision variable of a CBS problem is usually the start time of each activity. The

common objectives includes minimising the total cost of consuming the resources, the

number of late activities, the peak or average resource utilisation, the lateness (the differ-

ence between the completion time and the due time of each activity) and the penalty for

each late job.

Global constrains

A unique and powerful feature in CP is the use of global constraints (van Hoeve and Ka-

triel, 2006). There are two major benefits of using these constraints. One is that using

global constraints allows users to describe complex constraints among multiple variables

in an easy-to-understand and descriptive way instead of simple inequalities or equalities.

For example, a constraint that requires several variables to take different values can be ex-

pressed as allldifferent (x1, x2, x3, ..., xn) in CP instead of x1 6= x2, x2 6= x3, ..., x(n−1) 6=

xn in using inequalities. Second is that global constraints allow dedicated propagation

algorithms to be implemented to eliminate useless values more efficiently, rather than

propagating each of inequalities using generic propagation algorithms. In CBS, a com-

monly used global constraint is cumulative, which is used for ensuring that a feasible

schedule for a set of tasks, with durations, durations, resource demands, will not exceed a

resource limit at any time.
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B.3.5 Continuous Optimisation

Continuous optimisation problems are often solved by an iterative process where a sequence

of solutions is generated. This process can be described as the following:

1. Choose an initial solution randomly or based on some heuristic.

2. Find a new solution that yields a better objective value than the current solution.

3. Repeat the previous step until a sequence of iterates, such as the gradient of the

objective function, reaches (nearly) zero.

Line search methods are commonly used to find a new solution in Step 2. Generally,

these methods have the form as the following:

xk+1 = xk + αk ∗ dk (B.2)

where:

• xk+1: the new solution found after Step 2 in the iteration k,

• xk: the current solution found before Step 2,

• dk: a descent direction where xk can travel along to reduce the objective value,

• αk: a step size or step length which is a scalar that tells how far xk will travel along

dk to become xk+1.

The key steps in this iterative process are the calculation of the descent direction

dk, the step size αk in the line search methods and the stopping condition in Step 3.

These steps determine if the iterative process can converge to the desired solution and the

convergence rate when convergence occurs. Each of these steps will be discussed in the

following paragraphs:

Step Size Calculation

The simplest way to choose the step size is to pick a fixed value that remains the same

at every iteration. However, this naive method can allow the step size to be either too

long or too short, leading to pre-mature convergence where only a near or close to optimal
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solution is found or oscillation where no solution can be found. Other methods have been

developed to choose the step size in a better way.

For example, exact line search methods find the best step size that yields the best

amount of decrease in the objective value at each iteration. Generally, these methods

require the step size αk to minimise f(xk + αk ∗ dk) (assuming the dk has already been

found) per iteration, turning the calculation of the step size into an additional optimisation

problem. These methods are expensive and more commonly used in the early research

studies (Robinson, 2020; Hauser, 2007; Vandenberghe and Boyd, 2004).

Inexact line search methods are more commonly used in recent works to address the

disadvantages of the exact line search methods. Generally, these methods first guess a

useful value for the initial step size and then update the step size at each iteration based

on using a chosen scalar and the value of the step size at the previous iteration. A

well-known example of such inexact methods is called backtracking- Armijo line search

method (Robinson, 2020; Hauser, 2007).

Descent Direction Calculation

In the optimisation literature, both the first and the second derivatives of the objective

function have been used for creating descent directions to guide the search in the iterative

process (Chong and Zak, 2001a,b,c). In the power system literature and the demand

response literature, methods that use the first derivatives (gradient) have been widely

used and these methods are called gradient methods.

Gradient methods work on the basis that 1) the gradient of a given function becomes

zero at the optimal solution and 2) given a small displacement at any given point, the

given function increase in the direction of the gradient than in any other direction(Chong

and Zak, 2001a) . In a minimisation problem, the idea of these methods is to move the

current solution along the negative direction of the gradient of the objective function at

each iteration to gradually reduce the objective value until the gradient becomes or is very

close to zero. The general procedure of these methods can be described as Algorithm 1

Simple Gradient Method The simplest gradient method uses the same fixed value

for the step size at each iteration. This method is easy to implement, however, the step

size needs to be chosen carefully to avoid being too short and too long.
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Algorithm 1 The gradient methods

1: Set iteration counter k = 0 and make an initial guess of the minimum point x0.
2: repeat
3: Calculate the gradient of the objective function f at xk: −Of(xk).
4: Calculate the step size αk using the fixed value methods, the exact line search

methods or the inexact line search methods
5: Update xk+1 = xk + αk ∗ Of(xk).
6: until Stopping condition is satisfied.

The Method of Steepest Descent A more complex version called the method of

steepest descent uses the exact line search methods to calculate a new step size at each

iteration instead. This version finds the best step size at each iteration but increases the

computational costs significantly.

Neither the simple gradient method nor the method of steepest descent considers con-

straints when moving the current solution. The new solution may be outside the feasible

domain even if the step size is well chosen. This problem can be addressed by other gra-

dient methods such as projected gradient methods and the conditional gradient method.

Projected Gradient Methods The projected gradient methods add a projection step

after a new solution is found at each iteration. This projection step involves constructing

a projection matrix that projects the new solution to a feasible solution that is closest to

this new solution and replace this new solution with its closest feasible solution (Nesterov,

2013; Chong and Zak, 2001d).

Conditional Gradient Method/Frank-Wolfe Algorithm The conditional gradient

method, more widely known as the Frank-Wolfe algorithm, calculates a feasible descent

direction that ensures the new solution is also feasible (Luenberger and Ye, 2016). This

feasible direction is calculated at each iteration by first solving the linear approximation of

the objective function at the current solution and then computing the difference between

the solution of approximation function and the current solution. The procedure can be

described as Algorithm 2. Compared to the projected gradient methods, the Frank-Wolfe

algorithm has the benefits of ensuring the feasibility of the solution by simply solving a

linear approximation function without needing to construct a complex projection matrix,

reducing the computational cost significantly. However, the Frank-Wolfe algorithm is
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limited to solving convex optimisation problems with linear constraints. The projected

gradient methods can solve more general problems.

Algorithm 2 The Frank-Wolfe algorithm (the conditional gradient method)

1: Set iteration counter k = 0 and make an initial guess of the minimum point x0.
2: repeat
3: Solve the linear approximation of the objective function at point xk: Fxk(x) =
f(xk) + Of(xk)(x − xk). Let us write the solution of this approximation function as
yk.

4: Calculate the descent direction as dk := yk − xk.
5: Choose the step size αk ∈ [0, 1]
6: Update xk+1 = xk + αk ∗ dk.
7: until Stopping condition is satisfied.

Stopping Conditions

Multiple stopping conditions have been used in the literature (Chong and Zak, 2001a). A

common stopping condition is when the gradient at xk+1 is zero. However, in practice the

gradient will rarely be exactly zero. A practical modification is to check if the norm of

the gradient is less than a predefined threshold ε as the following:

‖Of(xk+1)‖ ≤ ε, (B.3)

An alternative is to check whether the different between the objective function values of

two successive iterations is less than a predefined threshold ε as the following:

| f(xk+1)− f(xk) |≤ ε, (B.4)

Another alternative is to check if the norm of the difference between two successive solu-

tions is less than a predefined threshold ε as the following:

| xk+1 − xk |≤ ε. (B.5)

B.3.6 Decomposition Method

In practice, many optimisation problems have a complexity that grows more than linearly.

Moreover, some of these problems have large numbers of decision variables and constraints.

Solving these problems using standard optimisation methods is not possible within an



B.3. OPTIMISATION SOLVING METHOD 195

acceptable time frame even on a super computer (Boyd et al., 2015). However, there are

times when optimality is important but computational times and resources are limited.

Alternatives methods are required to tackle these problems in a more scalable manner.

Fortunately, some of these problems are decomposable. That means, a problem can

be decomposed into smaller subproblems that can be solved independently in parallel or

sequentially. The solutions to the subproblems can be combined together in such a way

as to solve the original problem. The subproblems typically have a lower complexity and

therefore can be solved on one or multiple lower-level computers, eliminating the need for

a super computer. Moreover, solving subproblems in parallel or even sequentially can save

the computational time and resources substantially when the original problem complexity

grows more than linearly with the problem size.

Although decomposing a problem can save computational times and resources, decom-

posing can be difficult when the problem has complicating constraints and/or complicating

variables (Conejo et al., 2006). A complicating variable couples multiple constraints to-

gether and a complicating constraint couple multiple variables together, making it difficult

to separate the original problem easily.

Complicating constraints These constraints involve multiple decision variables. As

an example, let us consider the following, of the form:

minimise f(x) = f1(x1) + f2(x2)

subject to x1 ∈ Ω1, x2 ∈ Ω2

h1(x1) + h2(x2) ≤ 0

(B.6)

The constraint h1(x1)+h2(x2) ≤ 0 involves both decision variables x1 and x2. Without this

constraint, the original problem can be separated into subproblems f1 and f2. Therefore

this constraint is considered a complicating constraint.

Complicating Variables These variables are involved in multiple terms of the objective

function. Let us consider an example, of the form:

minimise f(x) = f1(x1, y) + f2(x2, y) (B.7)
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The decision variable y presents in the both terms f1 and f2 of the objective function.

Without this variable, the original problem can be divided into two subproblems f1 and

f2. Therefore this variable is called a complicating variable.

Decomposition methods have been proposed to address the challenges of separating

problems with complicating constraints and variables. Typical decomposition methods

include the primal decomposition method and the dual decomposition method (Conejo

et al., 2006; Boyd et al., 2015).

Primal Decomposition

The primal decomposition method separates the original problem into a master problem

and subproblems based on its primal variables (in contrast to dual decomposition that

separates based on its dual variables). The primal decomposition method works well

when the original problem has few complicating variables and the subproblems are fast

to solve (Boyd et al., 2015). The methods for decomposing with complicating variables

and with complicating constraints are different but similar. We focus on describing the

method with complicating variables as this method is used in Chapter 4.

Decomposing with Complicating Variables First, the primal decomposition method

splits the variables into public variables and private variables. Second, it creates the mas-

ter problem with the public variables and the subproblems with the private variables.

Third, it solves the master problems and subproblems in an iterative manner to find the

solution to the original problem.

Let us consider the problem example B.6. y is shared by both f1 and f2, therefore it

is a public variable. In fact, the public variable is the complicating variable. x1 only exists

in f1, x2 only exists in f2, therefore they are private variables.

When the public variable y is fixed, f1 and f2 become separable, so a subproblem can

be created for f1 and f2, respectively, as the following:

x1 = arg min
x1∈Ω1

f1(x1, y) (B.8)

x2 = arg min
x2∈Ω2

f2(x2, y) (B.9)
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When these subproblems are solved, the private variables x1 and x2 become fixed. If we

write f1 with fixed x1 as θ1(y), and f2 with fixed x2 as θ2(y), the original problem can be

written as the following:

minimise θ(y) = θ1(y) + θ2(y) (B.10)

This problem is called the master problem. This problem inherits the mathematical prop-

erties of the original problem. For example, if the original problem is convex, the master

problem is also convex (Boyd et al., 2015).

After the master problem and the subproblems are created, they are solved iteratively

to search for the solution to the original problem. In each iteration, the subproblems are

solved independently given some values of the public variables and the master problem is

solved given the solutions to the subproblems. The subproblems can be solved by standard

optimisation methods such as MIP or CP methods. The master problem is often solved

by gradient methods. An example of such iterations is described in Algorithm 3. The

stopping condition can be same as those in standard gradient methods.

Algorithm 3 Primal Decomposition with Complicating Variables

1: Set iteration counter k = 0 and make an initial guess of the public variable y0.
2: repeat
3: Given yk, find the optimal solution xi,k to each subproblem fi using MIP/CP.

4: Update each private variable xi ← x̄i,k

5: Given xi,k, solve the master problem using a gradient method

6: Calculate a descent direction dk of the master problem function θ(y)
7: Calculate a step size αk using an inexact line search method
8: Update the public variable yk+1 ← yk − αk ∗ dk
9: until Stopping condition is satisfied.

Decomposing with Complicating Constraints The example B.6 contain compli-

cating variables only. When complicating constraints present, the primal decomposition

method separates the complicating constraints into each subproblem in addition to the

private variables. Then a dual variable is introduced for each separated constraint and

this method solves both the private variables and the dual variables in each subproblem.

The descent direction in the master problem can be updated using the dual variables from

the subproblems instead (Boyd et al., 2015).
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Dual Decomposition

The dual decomposition method transforms the original problem into its Lagrangian dual

problem and separates problems based on its dual variables. An advantage of using the

dual decomposition method is that the dual function is always concave even when the

original problem is not convex (Boyd and Vandenberghe, 2004). That means, the dual

problem is easier to solve even if the original is nonlinear and very difficult to solve.

Decomposing with Complicating Variables The procedure of decomposing with

complicating variables using the dual decomposition method is similar to that using the

primal decomposition method, with additional steps of replacing the primal complicat-

ing variables with a complicating constraints and introducing dual variables as the new

complicating variables. Let us consider the problem example B.6 again.

First, the dual decomposition method creates a local version of the complicating vari-

able y for each potential subproblem: y1 and y2 and a consistency constraint y1 = y2 that

requires all local versions have the same value, shown as the following:

minimise f(x) = f1(x1, y1) + f2(x2, y2)

subject to y1 = y2

(B.11)

Second, this modified original problem is transformed into its Lagrangian dual problem

as the following:

L(x1, y1, x2, y2, v) = f1(x1, y1) + f2(x2, y2) + vT y1 − vT y2. (B.12)

where v is the dual variable. Now this dual variable exists in all terms in the objective and

therefore it becomes the new public/complicating variable and original variables become

the private variables.

Third, similar to the primal decomposition, we decompose this problem based on its

public and private variables. The subproblems gi minimise over the private variables xi

and yi given a fixed dual variable v as the following:

g1(v) = inf
x1,y1

(f1(x1, y1) + vT y1) (B.13)
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g2(v) = inf
x2,y2

(f1(x2, y2) + vT y2) (B.14)

The master problem maximise over the dual variable v given the fixed private variables

as the following:

maximise g(v) = g1(v) + g2(v) (B.15)

Fourth, again similar to the primal decomposition, the master problem and subprob-

lems can be solved iteratively using standard optimisation methods.

Decomposing with Complicating Constraints Decomposing problems with com-

plicating constraints using the dual decomposition is straightforward. The procedure is

the same as decomposing with complicating variables but without the first step.

B.4 Summary

This section has introduced the optimisation techniques that support the algorithm devel-

opment in this thesis. A DSP is often formulated as an optimisation problem that finds

the best times to use appliances in ways to minimise the costs of consumers. An optimisa-

tion problem includes three basic elements: decision variables, constraints and objectives.

Some optimisation problems include multiple conflicting objectives. The Scalarisation

methods and the Pareto methods can be used to find the best balance between these

conflicting objectives.

Solving an optimisation problem requires firstly understanding the mathematical prop-

erties of a problem and secondly choosing an optimisation technique according to the

mathematical property. Mixed-integer programming (MIP) techniques are best for op-

timisation problems with both discrete decision variables and continuous variables, and

convex constraints and objective functions. Linear programming (LP) can be considered

as a subset of MIP for solving problems whose decision variables are continuous only, and

constraints and objective functions are linear. Constraint programming (CP) is best for

optimisation problems with discrete variables, however, constraints and objective functions

can be linear, convex or nonlinear and nonconvex.

Some optimisation problems are much larger and difficult to be solved as a whole. Some

of these problems have complicating constraints or complicating variables which allow
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the original problems to be decomposed into smaller and more achievable subproblems.

When complicating constraints present in an optimisation problem, primal decomposition

method can be used for breaking down large optimisation problems into smaller and

more achievable subproblems. When complicating variables present, dual decomposition

method can be used instead.

The methods introduced in this chapter for formulating, solving and decomposing

an optimisation problem will form the foundation for developing algorithms for solving

demand scheduling problems for multiple households with batteries (DSP-MBs) in this

thesis. Each of the following chapter will demonstrate how these methods will contribute

to the final research outcomes of this thesis.
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Additional Data, Code and

Figures

Figure C.1: Sample Input Data for the initial MIP/CP Models

1 num_intervals = 144;

2

3 prices = array1d(INTERVALS ,[141 , 141, 141, 141, 141, 141, 141, 141, 141, 141,

141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141,

141, 143, 143, 143, 142, 142, 142, 148, 148, 148, 189, 189, 189, 163, 163,

163, 145, 145, 145, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141,

141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141, 141,

141, 141, 141, 141, 141, 141, 142, 142, 142, 141, 141, 141, 146, 146, 146, 158,

158, 158, 203, 203, 203, 313, 313, 313, 1155, 1155, 1155, 1155, 1155, 1155,

1446, 1446, 1446, 616, 616, 616, 616, 616, 616, 363, 363, 363, 363, 363, 363,

313, 313, 313, 427, 427, 427, 221, 221, 221, 158, 158, 158, 148, 148, 148, 158,

158, 158, 143, 143, 143, 142, 142, 142, 144, 144, 144]);

4

5 num_tasks = 10;

6 preferred_starts = [41, 135, 96, 115, 6, 120, 71, 31, 73, 46];

7 earliest_starts = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

8 latest_ends = [143, 143, 143, 143, 143, 143, 143, 143, 143, 143];

9 durations = [3, 3, 1, 2, 3, 4, 3, 6, 3, 4];

10 demands = [55, 15, 300, 700, 80, 2400, 3500, 1500, 400, 15]; % in w

11 care_factors = [1, 0, 9, 2, 1, 4, 3, 2, 1, 7];

12 inconvenience_weight = 500;

13 cost_weight = 1;

14

15 num_precedences = 2;

16 predecessors = [1, 7];

17 successors = [9, 10];

18 prec_delays = [62, 127];

19 max_demand = 6275;

20

201
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Algorithm 4 Data Preprocessing Algorithm for the Optimisation Model in Chapter ??

Input: th,i = {eh,d, θh,d, sah,d, s
p
h,d, s

e
h,d, f

l
h,d, ηh,d,D

p
h,d, θ̄h,d | d ∈ [1, Dh]}, P = {pt | t ∈

[1,M ]}, M , λu, λc

1: objs← []
2: for all d ∈ [1, Dh] do
3: objsPerTask ← []
4: for all t ∈ [1,M ] do
5: if seh,d ≤ t ≤ f lh,d − θh,d + 1 then

6: objsPerTaskPerInterval = |t− sph,d| ∗ ηh,d ∗ λ
u +

∑t+θh,d
t2=t pt2 ∗ eh,d * λc

7: else
8: objsPerTaskPerInterval← 999999

9: append objsPerTaskPerInterval to objsPerTask

10: append objsPerTask to objs

Return: objs

Algorithm 5 Optimistic Greedy Search Algorithm

for solving a demand scheduling problem for a single household (DSP-SH)

Input: job data and the household demand limit Ē.
1: for all job i ∈ [1, D] do
2: find the maximum run cost of this job:
3: find all time intervals whose run costs are cheaper than the maximum run cost and

set those intervals as the feasible start times of this job
4: if job i is a successor of another job then
5: remove feasible start times that are earlier than the actual finish time of the

preceding job
6: remove feasible start times that are later than the actual finish time of the

preceding job plus the maximum delay:

7: if job i is a preceding job then
8: for all k ∈ all successors do
9: remove feasible start times that are later than the latest finish time (LFT)

of the successor
10: if len(feasible start times) > 1 then
11: find the smallest run cost of the remaining feasible start times , select feasible

start times whose run costs has the smallest run cost and set those start times as the
cheapest feasible start times

12: choose one cheapest feasible start time randomly
13: schedule this job at the chosen cheapest feasible start time
14: calculate the temporary household demand profile
15: calculate the temporary max demand of this household
16: if temporary max demand > Ē and len(feasible start times)> 0 then
17: archive this temporary start time and the associating max demand
18: remove this temporary start time from the feasible start times
19: go to Step 11

20: if len(feasible start time) == 0 then
21: choose the archived start time whose associating max demand is the lowest
22: schedule this job at this archived start time

23: else schedule this job at the only feasible start time

24: update the actual household demand profile

Return: scheduled/actual start times of jobs
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Figure C.2: Sample Input Data for the modified MIP and CP Models

1 num interva l s =144;
2

3 num tasks =10;
4 durat ions =[3 , 3 , 1 , 2 , 3 , 4 , 3 , 6 , 3 , 4 ] ;
5 demands =[55 , 15 , 300 , 700 , 80 , 2400 , 3500 , 1500 , 400 , 1 5 ] ;
6

7 num precedences =2;
8 p r e d e c e s s o r s =[1 , 7 ] ;
9 s u c c e s s o r s =[9 , 1 0 ] ;

10 p r e c d e l a y s =[62 , 1 2 7 ] ;
11 max demand=6275;
12

13 r u n c o s t s =
14 [ |2 3 3 0 6 , 23305 , 23304 , 23303 , 23302 , 23301 , 23300 , 23299 , 23298 ,

23297 , 23296 , 23295 , 23294 , 23293 , 23292 , 23291 , 23290 , 23289 ,
23288 , 23287 , 23286 , 23285 , 23284 , 23283 , 23282 , 23391 , 23500 ,
23609 , 23553 , 23497 , 23441 , 23770 , 24099 , 24428 , 26682 , 28936 ,
31190 , 29759 , 28328 , 26897 , 25906 , 24915 , 23926 , 23707 , 23488 ,
23269 , 23270 , 23271 , 23272 , 23273 , 23274 , 23275 , 23276 , 23277 ,
23278 , 23279 , 23280 , 23281 , 23282 , 23283 , 23284 , 23285 , 23286 ,
23287 , 23288 , 23289 , 23290 , 23291 , 23292 , 23293 , 23294 , 23295 ,
23296 , 23297 , 23298 , 23299 , 23355 , 23411 , 23467 , 23413 , 23359 ,
23305 , 23581 , 23857 , 24133 , 24794 , 25455 , 26116 , 28592 , 31068 ,
33544 , 39595 , 45646 , 51697 , 98008 , 144319 , 190630 , 190631 , 190632 ,
190633 , 206639 , 222645 , 238651 , 193002 , 147353 , 101704 , 101705 ,
101706 , 101707 , 87793 , 73879 , 59965 , 59966 , 59967 , 59968 , 57219 ,
54470 , 51721 , 57992 , 64263 , 70534 , 59205 , 47876 , 36547 , 33083 ,
29619 , 26155 , 25606 , 25057 , 24508 , 25059 , 25610 , 26161 , 25337 ,
24513 , 23689 , 23635 , 23581 , 23527 , 23638 , 23749 , 23860 , 99999999 ,
99999999 |6345 , 6345 , 6345 , 6345 , 6345 , 6345 , 6345 , 6345 , 6345 ,
6345 , 6345 , 6345 , 6345 , 6345 , 6345 , 6345 , 6345 , 6345 , 6345 , 6345 ,
6345 , 6345 , 6345 , 6345 , 6345 , 6375 , 6405 , 6435 , 6420 , 6405 , 6390 ,
6480 , 6570 , 6660 , 7275 , 7890 , 8505 , 8115 , 7725 , 7335 , 7065 , 6795 ,
6525 , 6465 , 6405 , 6345 , 6345 , 6345 , 6345 , 6345 , 6345 , 6345 , 6345 ,
6345 , 6345 , 6345 , 6345 , 6345 , 6345 , 6345 , 6345 , 6345 , 6345 , 6345 ,
6345 , 6345 , 6345 , 6345 , 6345 , 6345 , 6345 , 6345 , 6345 , 6345 , 6345 ,
6345 , 6360 , 6375 , 6390 , 6375 , 6360 , 6345 , 6420 , 6495 , 6570 , 6750 ,
6930 , 7110 , 7785 , 8460 , 9135 , 10785 , 12435 , 14085 , 26715 , 39345 ,
51975 , 51975 , 51975 , 51975 , 56340 , 60705 , 65070 , 52620 , 40170 ,
27720 , 27720 , 27720 , 27720 , 23925 , 20130 , 16335 , 16335 , 16335 ,
16335 , 15585 , 14835 , 14085 , 15795 , 17505 , 19215 , 16125 , 13035 ,
9945 , 9000 , 8055 , 7110 , 6960 , 6810 , 6660 , 6810 , 6960 , 7110 , 6885 ,
6660 , 6435 , 6420 , 6405 , 6390 , 6420 , 6450 , 6480 , 99999999 ,
9 9 9 9 9 9 9 9 | . . . . . . | . . . . . . | . . . . . . | . . . . . . | . . . . . . | . . . . . . | . . . . . . | ] ;

15
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(a) Feb. average price profile

(b) Mar.average price profile
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(c) Apr.average price profile

(d) May.average price profile



206 APPENDIX C. ADDITIONAL DATA, CODE AND FIGURES

(e) Jun.average price profile

(f) Aug. average price profile
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(g) Sep.average price profile

(h) Oct.average price profile



208 APPENDIX C. ADDITIONAL DATA, CODE AND FIGURES

(i) Nov.average price profile

(j) Dec. average price profile

Figure C.-1: Run times of the CP models for various search strategies and different price
profiles
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