
Geometric Control of Cooperating Multiple Quadrotor UAVs
with a Suspended Payload

Taeyoung Lee∗, Koushil Sreenath, and Vijay Kumar

Abstract— This paper investigates tracking controls for an
arbitrary number of cooperating quadrotor unmanned aerial
vehicles with a suspended load. Assuming that a point mass
is connected to multiple quadrotors by rigid massless links,
control systems for quadrotors are constructed such that the
point mass asymptotically follows a given desired trajectory and
quadrotors maintain a prescribed formation, either relative to
the point mass or with respect to the inertial frame. These are
developed in a coordinate-free fashion to avoid singularities
and complexities associated with local parameterizations. The
desirable features are illustrated by several numerical examples,
including a flying inverted spherical pendulum on a quadrotor.

I. INTRODUCTION

Quadrotor unmanned aerial vehicles (UAV) have been
envisaged for various applications such as surveillance or
mobile sensor networks as well as for educational purposes.
In particular, nonlinear control systems for complex ma-
neuvers of quadrotors have been studied, and aggressive
maneuvers are demonstrated experimentally by utilizing the
high thrust-to-weight ratio of quadrotors [1], [2], [3].

These properties of quadrotors are also desirable for load
carrying and transportation. Small-size single or multiple
autonomous vehicles are considered for load transportation
and deployment [4], [5], [6]. Nonlinear tracking control
systems are developed for a single quadrotor UAV with a
cable-suspended load in [7] and a companion paper [8].

Load transportation with multiple quadrotors is useful
when the load is heavy compared with the maximum thrust of
a single quadrotor, or when additional redundancy is required
for safety. But, this is challenging since dynamically coupled
quadrotors should cooperate safely to transport load. This is
in contrast to the existing results on formation control of
decoupled multi-agent systems.

In this paper, we consider an arbitrary number of quadro-
tors that are connected to a point mass via rigid links.
The equations of motion are derived from the variational
principle, and control systems are developed such that the
point mass asymptotically follows a given smooth desired
trajectory. Two formation flight modes are introduced to
control the formation of quadrotors with respect to the point
mass. In the existing control systems for a load-carrying
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quadrotor, such as [4], a quadrotor is designed to follow pre-
computed minimum swing trajectories while rejecting the
force and moment exerted by the load that are considered
as disturbances. The control systems proposed in this paper
explicitly consider the coupling effects between the load
dynamics and the dynamics of multiple quadrotors for safe
transportation along complex trajectories.

Another distinct feature is that the equations of motion and
the control systems are developed directly on the nonlinear
configuration manifold in a coordinate-free fashion. This
yields remarkably compact expressions for the dynamic
model and controllers, compared with local coordinates that
often require symbolic computational tools due to complexity
of multibody systems. Furthermore, singularities of local
parameterization are completely avoided to generate agile
maneuvers in a uniform way.

If the links are assumed to be rigid, the proposed control
system is also applied to the cases where selected quadro-
tors are below the load, to obtain so-called flying inverted
pendulum. Linear control systems have been developed and
implemented to stabilize few selected nominal trajectories
in [9]. The proposed control system is based on the full
nonlinear dynamics, and it guarantees exponential stability
of flying inverted pendulum for arbitrary desired trajectories.

Compared with the companion paper [8] that is focused
on tracking, differential flatness, and experiments of a single
quadrotor with a suspended load, this paper proposes a
cooperative framework of an arbitrary number of quadrotors.
Due to page limit constraint, all of the proofs are relegated
to [10].

II. DYNAMICS MODEL

Consider n quadrotor UAVs that are connected to a point
mass my via massless links, as illustrated at Fig. 1. We
choose an inertial reference frame {~e1, ~e2, ~e3} and body-
fixed frames {~bi1 ,~bi2 ,~b3i

} for i ∈ I , {1, . . . n}. Through-
out this paper, the subscript i is assumed to be an element
of the index set I. The origin of the i-th body-fixed frame
is located at the center of mass of the i-th quadrotor. The
third body-fixed axis ~bi3 is normal to the plane defined by
the centers of rotors, and it points downward.

The location of the point mass my in the inertial frame is
denoted by y ∈ R3. The direction of the i-th link from the
i-th quadrotor toward the point mass is defined as qi ∈ S2,
where S2 = {q ∈ R3 | ‖q‖ = 1}. The attitude of the i-th
quadrotor is denoted by Ri ∈ SO(3) = {R ∈ R3×3 |RTR =
I, det[R] = 1}, which is the linear transformation of the
representation of a vector from the i-th body-fixed frame
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Fig. 1. Dynamics model: n quadrotors are connect to a point mass my

via massless links li. The corresponding configuration manifold is R3 ×
(S2 × SO(3))n.

to the inertial frame. Let li ∈ R be the length of the i-th
link, and it is assumed that each link is attached to the mass
center of the corresponding quadrotor. Then, the location of
the mass center of the i-th quadrotor, namely xi ∈ R3 is
given by xi = y − liqi. The corresponding configuration
manifold of this system is R3 × (S2 × SO(3))n.

The dynamic model of each quadrotor is identical to [1].
The mass and the inertia matrix of the i-th quadrotor are
denoted by mi ∈ R and Ji ∈ R3×3, respectively. The i-
th quadrotor can generates a thrust −fiRie3 ∈ R3 with
respect to the inertial frame, where fi ∈ R is the total thrust
magnitude and e3 = [0, 0, 1]T ∈ R3. It also generates a
moment Mi ∈ R3 with respect to its body-fixed frame. The
control input of this system corresponds to {fi,Mi}i∈I .

Throughout this paper, the 2-norm of a matrix A is denoted
by ‖A‖, and the dot product is denoted by x · y = xT y.

A. Equations of Motion

The kinematic equations for the direction of the i-th link,
and the attitude of the i-th quadrotor are given by

q̇i = ωi × qi = ω̂iqi, (1)

Ṙi = RiΩ̂i, (2)

where ωi ∈ R3 is the angular velocity of the i-th link,
satisfying qi · ωi = 0, and Ωi ∈ R3 is the angular velocity
of the i-th quadrotor expressed with respect to its body-
fixed frame. The hat map ·̂ : R3 → so(3) is defined by the
condition that x̂y = x× y for all x, y ∈ R3, and the inverse
of the hat map is denoted by the vee map ∨ : so(3)→ R3.

The velocity of the i-th quadrotor is given by ẋi =
ẏ − liq̇i. The kinetic energy of the system is composed of
the translational kinetic energy of the point mass, and the
translational and rotational kinetic energy of quadrotors:

T =
1

2
my‖ẏ‖2 +

n∑
i=1

1

2
mi‖ẏ − liq̇i‖2 +

1

2
Ωi · JiΩi. (3)

The gravitational potential energy is given by

U = −myge3 · y −
n∑
i=1

mige3 · (y − liqi), (4)

where it is assumed that the unit-vector e3 points downward
along the gravitational acceleration as shown at Fig. 1. The
corresponding Lagrangian of the system is L = T − U .

Coordinate-free form of Lagrangian mechanics on the two-
sphere S2 and the special orthogonal group SO(3) for various
multibody systems has been studied in [11], [12]. The key
idea is representing the infinitesimal variation of qi ∈ S2 in
terms of the exponential map:

δqi =
d

dε

∣∣∣∣
ε=0

exp(εξ̂i)qi = ξi × qi,

for a vector ξi ∈ R3 with ξi · qi = 0. Similarly, the variation
of Ri is given by δRi = Riη̂i for η ∈ R3.

By using these expressions, the equations of motion can
be obtained from Hamilton’s principle as follows:

Mq(ÿ − ge3) =

n∑
i=1

(−mili‖ωi‖2qi + u
‖
i ), (5)

ω̇i =
1

li
q̂i(ÿ − ge3)− 1

mili
q̂iu
⊥
i , (6)

JiΩ̇i + Ωi × JiΩi = Mi, (7)

where Mq = myI +
∑n
i=1miqiq

T
i ∈ R3×3, which is

symmetric, positive-definite for any qi. The vector ui ∈
R3 represents the control force at the i-th quadrotor, i.e.,
ui = −fiRie3, and the vectors u‖i and u⊥i ∈ R3 denote
the orthogonal projection of ui along qi, and the orthogonal
projection of ui to the plane normal to qi, respectively:

u
‖
i = (I + q̂2

i )ui = (qi · ui)qi = qiq
T
i ui, (8)

u⊥i = −q̂2
i ui = −qi × (qi × ui) = (I − qiqTi )ui. (9)

Therefore, ui = u
‖
i + u⊥i .

III. CONTROL SYSTEM DESIGN

A. Tracking Control Problem Formulation

Suppose that a desired trajectory of the point mass, namely
yd(t) ∈ R3 is given as a smooth function of time. The goal
is to design control inputs {fi,Mi}i∈I such that y → yd as
t→∞. This corresponds to a load transportation problem.

If there are multiple quadrotors, the formation of quadro-
tors with respect to the point mass, or equivalently the
direction of links can be controlled as well. We consider two
cases, namely relative formation control that is formulated
for any number of quadrotors, and inertial formation control
that can be formulated only if n ≥ 3.

1) Relative Formation Control Mode (n ≥ 1): This is
similar to virtual structure approaches in formation con-
trol [13], [14], where the desired motion for quadrotors in
formation is described as a motion of a virtual rigid body
rotating about the point mass. The relative configuration
between quadrotors is controlled, but the orientation of the
formation with respect to the inertial frame may change.

In this case, a relative configuration frame {~c1,~c2,~c3} is
introduced, and the desired relative configuration between
quadrotors is specified by {rid ∈ S2}i∈I with respect to the
relative configuration frame. More explicitly, it is desired



that qi → qid , Qrid as t → ∞ for all i ∈ I, for an
rotation matrix Q ∈ SO(3) representing the transformation
from the relative configuration frame to the inertial frame.
Consequently, the j-th column of the matrix Q corresponds
to the direction of ~cj represented with respect to the inertial
frame for j ∈ {1, 2, 3}. As this is to specify the relative
configuration between quadrotors, the rotation matrix Q is
completely arbitrary, and later it is designed to follow the
given command yd for the load.

Without loss of generality, it is assumed that

r1d
· e2 = 0,

∑n
i=1 rid

‖
∑n
i=1 rid‖

= e3, (10)

where e2 = [0, 1, 0]T , e3 = [0, 0, 1]T ∈ R3. These state that
the desired direction of the first link q1d

lies in the plane
spanned by ~c1 and ~c3, and the sum of the desired direction
vectors qid is parallel to ~c3. There is no restriction caused by
(10), as the orientation of the relative configuration frame or
Q is arbitrary. But, it is assumed that

rid · e3 6= 0, for every i ∈ I. (11)

The above equation states that qid is not perpendicular to
~c3. This assumption is required since the third-axis ~c3 of the
relative configuration frame is chosen as the direction of the
desired resultant force later, and if qid is normal to ~c3 then
it cannot contribute to the desired resultant force at all.

Note that when n = 1, the desired relative configuration
satisfying (10), (11) is uniquely given by r1d

= e3. In this
case, the direction of the link is completely determined by
the objective to track the desired trajectory yd.

When n ≥ 2, after the links are converged to the desired
relative configuration with respect to the point mass, there
exists additional one-dimensional degree of freedom in the
control system, which corresponds to the rotation of the
quadrotor formation about ~c3. To resolve this, the desired
direction of the first link, namely sd ∈ S2, with respect to
the inertial frame is introduced. The control system is chosen
such that q1 also asymptotically follows sd. As there is only
one-dimensional remaining degree of freedom in controls,
we cannot guarantee that q1 exactly follows sd in general.
Instead, q1 asymptotically converges to the plane spanned by
~c3 and sd. The detailed convergence properties are described
more precisely in the subsequent developments. In short, the
relative configuration between quadrotors with respect to the
point mass is specified by rid satisfying (10), (11), and the
heading angle of the desired formation is specified by sd.

2) Inertial Formation Control Mode (n ≥ 3): When there
are more than two quadrotors, the desired direction of the
links with respect to the inertial frame is specified by smooth
curves {qid(t) ∈ S2}i∈I . A control system is designed such
that qi → qid as t → ∞. It is assumed that at least three
desired directions are mutually linearly independent for all
t ≥ 0. These two modes are compared further at Remark 1.

B. Control System Design for a Simplified Dynamics Model

At (5), (6), the total thrust of the i-th quadrotor is given by
ui = −fiRie3. This implies that the total thrust magnitude fi

can be arbitrarily chosen, but the thrust vector is always along
the third body-fixed axis of the quadrotor. As the rotational
dynamics of quadrotors given by (7) are not affected by the
dynamics of the mass and the links, in this subsection, we
first construct a control system only (5), (6) by assuming that
ui is a control input that can be arbitrarily chosen. The effects
of the rotational dynamics of quadrotors are incorporated in
the next subsection for the complete dynamics model.

The dynamics of the mass and the links given by (5),
(6) have distinct features: the acceleration ÿ of the point
mass is controlled by the parallel components u

‖
i at (5),

and the angular acceleration ω̇i of each link is controlled
by the normal components u⊥i at (6). These motivate the
following controller structures. The parallel components u‖i
are designed to follow the desired trajectory yd. This also
constructs the desired direction qid of each link for the
relative formation control mode. The normal components u⊥i
are designed such that qi converges to qid .

1) Design of the Parallel Components u‖i : The parallel
component of the control input is chosen such that

u
‖
i = mili‖ωi‖2qi + µi +

mi

my
qiq

T
i

n∑
j=1

µj , (12)

where µi ∈ R3 is a virtual control input that is defined later at
(19). It is chosen such that µi is parallel to qi, and qiqTi at the
last term corresponds to the projection along qi. Therefore,
the right hand side of (12) is also parallel to qi. We can
show that −µi corresponds to the force exerted by the i-th
link to the i-th quadrotor for the controlled dynamics, and
the corresponding tension of the i-link is given by −qi · µi.
Substituting it into (5),

Mq(ÿ − ge3) = (I +

n∑
i=1

mi

my
qiq

T
i )

n∑
j=1

µj =
1

my
Mq

n∑
j=1

µj .

Multiplying both sides by M−1
q and substituting it into (6),

the equations of motion for y and ωi are simplified as

my(ÿ − ge3) =

n∑
i=1

µi, (13)

ω̇i =
1

myli
q̂i

n∑
j=1
j 6=i

µj −
1

mili
q̂iu
⊥
i . (14)

These are used for subsequent control system developments.
Define the tracking error variable ey ∈ R3 as

ey = y − yd. (15)

A simple PD-type control force to track the given command
yd is chosen as follows:

Fd = my(−kyey − kẏ ėy + ÿd − ge3), (16)

where ky, kẏ are positive constants. It is straightforward to
check that if

∑n
i=1 µi = Fd at (13), then the zero equilibrium

of the tracking errors (ey, ėy) is exponentially stable.
However, the virtual control input µi cannot be arbitrarily

chosen as µi is constrained to be parallel to qi at (13), and



the desired formation of quadrotors with respect to the point
mass is also specified. Next, the virtual control input µi is
designed to follow the given desired trajectory yd and the
desired formation for each of the relative formation control
mode and the inertial formation control mode.

2) Design of µi for Relative Formation Control: Here,
we construct the desired directions qid of the links with
respect to the inertial frame such that Fd is equal to

∑n
i=1 µi

and the given desired relative configuration of quadrotors are
satisfied when qi = qid . More explicitly, the rotation matrix
from the relative configuration frame to the inertial frame is

Q =

[
− F̂ 2

d sd

‖F̂ 2
d sd‖

, − F̂dsd

‖F̂dsd‖
, − Fd

‖Fd‖

]
, (17)

where it is assumed that sd is nonparallel with Fd. From
this definition, it can be verified that Q ∈ SO(3) always.
The desired direction of each link is given by

qid = Qrid . (18)

Therefore, the given desired relative formation of quadrotors
with respect to the point mass is satisfied by (18) if qi = qid .
Furthermore, since r1d

· e2 = 0, we have Qr1d
· Qe2 =

q1d
· Qe2 = 0. This implies that q1d

is normal to Fd × sd,
i.e., q1d

lies in the plane spanned by Fd and sd. Therefore,
the heading angle command is also satisfied if qi = qid .

Based on these, the virtual control input µi is chosen as

µi =
1

(rid · e3)‖
∑n
i=1 rid‖

(Fd · qi)qi. (19)

It is designed such that the resultant control force
∑
i µi

becomes the desired force Fd if qi = qid as follows. From
(18), (10), and (17), we can show that

n∑
i=1

µi

∣∣∣∣
qi=qid

= −‖Fd‖Qe3 = Fd. (20)

In summary, for the relative formation control mode, the
parallel component of the control input is given by (12),
where the virtual control input is given by (19). The desired
direction of each link with respect to the inertial frame,
namely qid is also specified by (18) to satisfy the given
relative formation command.

3) Design of µi for Inertial Formation Control (n ≥ 3):
In the inertial formation control mode, the desired direc-
tion of the links are specified by qid(t) at the problem
formulation. Since n ≥ 3, finding µi that is parallel to qi
such that

∑n
i=1 µi = Fd is exactly determined (n = 3) or

underdetermined (n > 3). It is chosen as

µi = [ST (SST )−1Fd]iqi, (21)

where S = [q1, q2, . . . qn]3×n, and [x]i denotes the i-th
element of a vector x ∈ Rn. This corresponds to the
minimum-norm solution, and we can easily show that

n∑
i=1

µi = S(ST (SST )−1Fd) = Fd. (22)

4) Design of the Normal Components u⊥i : For both of the
relative formation control mode and the inertial formation
control mode, the normal components are chosen such that
qi → qid as t→∞ at (14). This corresponds to the tracking
problem on S2, which has been studied in [15], [16]. In [16],
the direction error vector eqi ∈ R3 and the angular velocity
error vector eωi

∈ R3 are defined as follows:

eqi = qid × qi, eωi
= ωi + q̂2

i ωid , (23)

where the desired angular velocity of the i-th link is denoted
by ωid = qid × q̇id ∈ R3. The normal components u⊥i are
designed such that

ω̇i = −kqeqi − kωeωi
− (qi · ωid)q̇i − q̂2

i ω̇id , (24)

for positive constants kq, kω . From (14), and using the fact
that −q̂2

i u
⊥
i = u⊥i , we obtain

u⊥i = miliq̂i(−kqeqi − kωeωi − (qi · ωid)q̇i − q̂2
i ω̇id)

− mi

my
q̂2
i

n∑
j=1
j 6=i

µj . (25)

The total control force is given by

ui = u
‖
i + u⊥i . (26)

The corresponding stability properties of the proposed con-
trol system for the simplified dynamics model are summa-
rized as follows.

Proposition 1: Consider a simplified dynamics model de-
fined by (1), (5), and (6), and two tracking control modes
formulated at Section III-A. Control inputs are designed as
(26), where the desired direction of links and the virtual con-
trol input for the relative formation control problem are given
by (18) and (19), respectively, and the virtual control input
of the inertial formation control problem is given by (21).
Then, there exist controller gains ky, kẏ, kq, kω such that
the zero equilibrium of the tracking errors (ey, ėy, eqi , eωi)
is exponentially stable. For the relative formation control
problem, the direction of the first link q1 asymptotically
converges to the plane spanned by ÿd − ge3 and sd.

Proof: See [10].

C. Control System Design for the Full Dynamics Model

The above control system for a simplified dynamics model
is generalized to the full dynamics model that includes the
attitude dynamics (7) of each quadrotor. The control force
of the full dynamic model is given by −fiRie3. Here,
the attitude of each quadrotors is controlled such that the
direction of its third body-fixed axis becomes parallel with
−ui given at (26) sufficiently fast for singular perturbation.

The construction of the attitude controller is similar
with [1]. The desired direction of the third body-fixed axis
of the i-th quadrotor is given by

b3i
= − ui
‖ui‖

. (27)

There is additional one-dimensional degree of freedom cor-
responding to rotation about the third-body fixed axis. A



desired direction of the first body-fixed axis, namely b1i
(t) ∈

S2 is introduced to resolve it. The corresponding desired
attitude is chosen as

Rci =

[
− (b̂3i)

2b1i

‖(b̂3i
)2b1i

‖
,

b̂3ib1i

‖b̂3i
b1i
‖
, b3i

]
, (28)

and the corresponding desired angular velocity is obtained
by Ωci = (RTciṘci)

∨ ∈ R3. Define the error variables for
the attitude dynamics as

eRi
=

1

2
(RTciRi −R

T
i Rci)

∨, eΩi
= Ωi −RTi RciΩci .

The thrust magnitude and the moment vector of quadrotors
are chosen as

fi = −ui ·Rie3, (29)

Mi = −kR
ε2
eRi
− kΩ

ε
eΩi

+ Ωi × JiΩi

− Ji(Ω̂iRTi RciΩci −RTi RciΩ̇ci), (30)

where ε, kR, kΩ are positive constants [1].
Proposition 2: Consider the full dynamics model defined

by (1), (2), (5), (6), and (7), and two tracking control
modes formulated at Section III-A. Control inputs are de-
signed as (29) and (30), where the desired control force
is given by (26). Then, there exist ε∗ > 0, such that for
all ε < ε∗, the zero equilibrium of the tracking errors
(ey, ėy, eqi , eωi

, eRi
, eΩi

) is exponentially stable. For the
relative formation control problem, the direction of the first
link q1 asymptotically converges to the plane spanned by
ÿd − ge3 and sd.

Proof: See [10].
Remark 1: When n ≥ 3, either the relative formation

control mode or the inertial formation control mode can
be applied. In the relative formation control mode, the
direction of the links are controlled with respect to the
relative configuration frame defined by Q at (17). Therefore,
the direction of the links changes according to the direction
of the desired force Fd, which asymptotically converges to
my(ÿd− ge3) from (16). Furthermore, the magnitude of the
virtual control input, or tension, becomes identical for all
quadrotors, i.e., ‖µi‖ → ‖Fd‖

‖
∑n

i=1 rid‖
as t→∞ for all i ∈ I.

For the inertial formation control mode, the direction of
the links is arbitrarily controlled by qid with respect to the
inertial frame. In contrast to the relative formation control
mode, the sum of the virtual control input is equal to the
desired force always at (22), even if qi 6= qid . Therefore,
this mode exhibits better initial transient responses.

Remark 2: The proposed control system with n = 1 can
be used for an inverted spherical pendulum on a quadrotor.
Since the desired relative configuration satisfying (10), (11)
is given by r1d

= e3 for n = 1, the desired direction
of the first link becomes q1d

= − Fd

‖Fd‖ = − ÿd−ge3
‖ÿd−ge3‖ at

steady-state. As ‖ÿd‖ < g in general, we have q1d
· e3 > 0,

i.e., the direction from the quadrotor to the point mass is
pointing downward. This is desirable if the quadrotor and
the point mass are actually connected by a flexible string, as
the corresponding tension along the string becomes positive.

But, if it is assumed that the link is rigid, the sign of
the desired direction can be simply reversed to obtain q1d

=
+ Fd

‖Fd‖ . The expressions for other parts of the control system
remain unchanged. In this case, there is no effect on the
steady-state tracking performance as (20) still holds. But,
we have q1d

· e3 < 0, which implies that the point mass is
above the quadrotor. This corresponds to tracking control of
an inverted spherical pendulum attached to a quadrotor.

IV. NUMERICAL EXAMPLES

Properties of n = 4 quadrotors and a load are given by

mi = 0.755 kg, Ji = diag[0.0820, 0.0845, 0.1377] kgm2,

my = 0.4 kg, l = [0.6, 0.8, 0.6, 1.0] m.

The initial conditions are chosen as

y(0) = [1, 0, 0]T m, θi = (i− 1)90◦, φ = 80◦,

qi(0) = [cos θi sinψ, sin θi sinφ, cosφ]T , Ri = I.

All of the initial velocities are chosen to be zero. The desired
trajectory of the load is

yd(t) = 0.8[sin 2t, 0.1t, 0.5 cos t]T m

where t is written in seconds. The following three cases are
considered.

Relative Formation Control (n = 4): The desired
relative configuration is chosen as

rid = [cos θid sinφd, sin θid sinφd, cosφd]
T ,

θid = (i− 1)90◦, φd = 30◦, sd = −e2, b1i
= −e1.

Simulation results are illustrated at Fig. 2. The first subfigure
is a snapshot of quadrotors, where the dotted red line is the
desired trajectory and the solid blue line is the controlled
trajectory over the last 1.2 seconds. At the given instant,
the desired force Fd is pointing upper left side as the load
is moving left, and quadrotors are aligned relative to the
direction of Fd in this relative formation control mode. As a
result, the overall formation of quadrotors are tilted left. The
next subfigures show the position of the load, the attitude
errors, and the link direction errors, and these illustrate good
tracking performances even for large initial attitude errors
that are close to 180◦.

Inertial Formation Control (n = 4): The desired
inertial configuration of quadrotors is chosen as

qid = [cos θid sinφd, sin θid sinφd, cosφd]
T ,

θid = (i− 2)90◦, φd = 30◦, b1i
= −e1.

Simulation results are illustrated at Fig. 3. Compared with
the previous relative formation control mode, the averaged
direction of the links from quadrotors to the mass is pointing
downward at Fig. 3(a), as specified by qid . Instead, the
attitudes of quadrotors are rotated left to generate the desired
force Fd pointing upper left side. At Fig. 3(b), it exhibits
a better initial transient response than the above relative
formation control mode, especially for the third component
of y corresponding to height. This is because (22) is satisfied
for any qi, even before qi asymptotically converges to qid .
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Fig. 2. Relative formation control n = 4
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Fig. 3. Inertial formation control n = 4

Flying inverted spherical pendulum (n = 1): It is
assumed that only the first quadrotor is available, and the
sign of q1d

is flipped to represent a flying inverted spherical
pendulum model as discussed at Remark 2. Fig. 4 illustrates
good tracking performances even for large initial errors in
the attitude of quadrotor and the direction of the link.
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