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Protein Interaction Hotspot Identification
Using Sequence-based Frequency-derived Features

Quang-Thang Nguyen, Ronan Fablet, and Dominique Pastor

Abstract—Finding good descriptors, capable of discriminating
hotspot residues from others, is still a challenge in many attempts
to understand protein interaction. In this paper, descriptors
issued from the analysis of amino acid sequences using digital
signal processing (DSP) techniques are shown to be as good as
those derived from protein tertiary structure and/or information
on the complex. The simulation results show that our descriptors
can be used separately to predict hotspots, via a random forest
classifier, with an accuracy of 79% and a precision of 75%.
They can also be used jointly with features derived from tertiary
structures to boost the performance up to an accuracy of 82%
and a precision of 80%.

Index Terms—Hotspots, protein interaction, sequence-based
features, DSP-based features, electron-ion interaction pseudo-
potential (EIIP), ionization constant (IC), resonant recognition
model (RRM)

I. INTRODUCTION

UNDERSTANDING the structure and the biological func-
tion of proteins, the elementary building blocks of all

living organisms, is among the most important topics in
biology [1]. Scientists are working together to answer the
question on how the primary amino acid sequence of the
protein defines its conformation and function [1]–[3]. Solving
this issue could open a new era in biology where most
bioactivities can be controlled, including curing diseases by
newly designed proteins with pre-defined functions (see [2]
amongst others).

Studies in biology have shown that proteins form cer-
tain active three-dimensional structures to interact with other
molecules through their interfaces [1]. “Most interfaces are
composed of two relatively large protein surfaces with good
shape and electrostatic complementarity for one another” [4].
It has also been shown that the distribution of binding energies
on these interfaces is not uniform [4]. Some residues are more
important than others as they comprise only a small fraction
of the interface but contribute most of the necessary energies
to the interaction [3]. If they are mutated, the interaction
may be affected and, as a result, the protein function may
be altered. These critical residues are commonly referred to
as hotspots [4], [5]. Fig.1 shows an example of such protein
hotspots. The characterization, detection and identification
of hotspots are then keys to the understanding of protein
interactions and functions. Much research, both experimental
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and computational, has been conducted to shed light on these
critical residues of the interfaces [3], [4], [6]–[17].

Experimentally, the energy contribution of a given residue to
the interaction of a protein with its target can be determined by
measuring the change in binding free energy when this residue
is in vitro mutated to alanine. When the measured change in
binding free energy is large enough, this residue is deemed as
a hotspot [5]. This method, also known as alanine scanning
mutagenesis (ASM), was used by Thorn and Borgan to analyze
hotspots and the database that they established is referred to
as the Alanine Scanning Energetics database (ASEdb) [18].
Unfortunately, such a widely accepted experimental method
requires significant effort and hence induces low throughput
[3] [6].

In the search for lower-cost methods applicable to high-
throughput analysis, computational approaches have been pro-
posed to identify hotspot residues in protein interfaces. In
this respect, Kortemme and Baker [19] introduced a simple
physical model for binding free energy. This model takes into
account packing interaction, polar interaction involving ion
pairs and hydrogen bonds, and solvation. Hotspots are then
identified by computational alanine scanning (Robetta) [6],
which involves the numerical evaluation of the change in this
binding free energy of protein-protein complexes due to com-
putational alanine mutations. These computationally identified
hotspots are shown to be in agreement with those identified
by in vitro experiments and reported in the ASEdb database.
Motivated by these works, other energy-based methods have
been proposed in [7] [8]. Other computational approaches also
investigated molecular dynamics (MD) simulations [9], graph
analysis [10] and machine learning [3], [11], [12]. Among
all the aforementioned methods, the most successful ones
require the structure of the complex — or, at least, the three-
dimensional structure of the protein — to be known. The
docking approach in [13], which requires simulating thousands
of possible docking poses for the protein complex, is among
the most popular in this respect.

Although the biological functions of proteins relate to cer-
tain active tertiary structures, it is assumed that all information
about their structures and, thus their functions, is primarily
embedded in amino acid sequences [1]. In other words, knowl-
edge of the three-dimensional structure of the protein or of
the complex is expected to be more than sufficient to identify
hotspots of the interfaces. In [3], Ofran and Rost showed that
hotspots can probably be predicted using only amino acid
sequence information. Albeit less accurate than methods based
on available three-dimensional (3D) structure information,
their sequence-based hotspot identification method yielded



2

relevant results. On the other hand, the introduction of the
Resonant Recognition Model (RRM) by I. Cosic in [20]
pointed out the existence of a characteristic frequency, which
represents a certain periodicity within the energy distribution
of valence electrons along the protein molecule. This finding
has inspired many attempts to detect hotspots by using digital
signal processing (DSP) methods, such as those based on
Short-time Fourier transform (STFT) [14], digital filters [15],
wavelet transform [16] and S-Transform filtering [17]. Though
tested on only a few individual sequences, these approaches
suggest time-series analysis as a relevant framework for
hotspot identification.

In this paper, we propose a new family of frequency-based
descriptors derived solely from the protein primary amino
acid sequence. These descriptors are extracted using a simple
in silico alanine scanning and DSP techniques based on the
discrete Fourier transform. To assess the relevance of the
proposed descriptors, a machine-learning-based classification
is carried out. The underlying idea is that once a classifier
successfully separates hotspots from non-hotspots via certain
given features, these features are then considered to be capable
of discriminating hotspots from non-hotspots. In other words,
these features are actually relevant to the hotspot identification
problem. In this study, Random Forests is used since it has
been shown to be one of the most powerful machine learning
methods [21]. The results on the dataset show that these
descriptors can be used to achieve an accuracy of 79% and
a precision of 75%. Without information on the protein three-
dimensional structure and/or the complex, our descriptors can
achieve performance comparable to that reported in [6] [22]
where such information is required. This is a key feature
since knowing the protein 3D structure, either computationally
or experimentally, is not straightforward, and actually, most
protein sequences are available without 3D structure informa-
tion. The experimental results also show that our sequence-
based frequency-derived descriptors can boost the prediction
up to an accuracy of 82% and a precision of 80% when
combined with the 3D structure-based features proposed in
[22]. Moreover, using DSP techniques, our method requires
very little computational load and thus can be applied to large-
scale analysis.

This paper is organized as follows. Section II will introduce
our sequence-based frequency-derived features. The learning-
based hotspot identification, the selected descriptors and the
ground-truth dataset will be presented in Section III with re-
sults reported in Section IV. Finally, Section V and Section VI
will bring the overall discussion, conclusion and perspectives.

II. SEQUENCE-BASED FREQUENCY-DERIVED FEATURES

A. Conversion to numerical sequence

The primary structure of a protein is given by the associated
sequence of amino acids. This sequence is often represented
by a string of characters sampled from an alphabet of 20
single characters representing the 20 different amino acids.
By properly mapping these character strings into numerical
sequences, time series analysis can be applied to design very
high throughput methods. This conversion from symbolic to

Fig. 1. An example of a protein with hotspots. In this figure, the barstar
molecule (right/violet) with hotspots (red) is shown to be in interaction
with barnase (left/blue), forming the complex barstar-barnase. The three-
dimensional structures of barstar and its target, barnase, are represented in
terms of basic secondary structure motifs (α-helices, β-sheets, turns) while
red balls indicate atoms of hotspot residues. The structure of the complex was
retrieved from the Protein Data Bank (PDB) using its identity 1brs. On the
other hand, information on the hotspot residues involved in this interaction
was provided by ASEdb.

numerical sequences may rely on assigning to each amino
acid numerical values that represent its physico-chemical and
biochemical properties. A number of such indices have been
introduced in the literature (more than 500 indices can be
found in the AAIndex database [23]). Among them, the
electron-ion interaction pseudo-potential (EIIP) values [20]
and the ionization constant (IC) parameters [24] are shown
to be very relevant to the protein bioactivity. For each amino
acid, the EIIP value describes the average energy states of all
valence electrons of its atoms, while the IC value measures its
acid dissociation constant from the corresponding ionization
reaction. The EIIP and IC values for the 20 amino acids
occurring in nature are listed in TABLE I. These two indices
have been shown to be very successful in the so-called
Resonant Recognition Model [20] [2] [24] (cf. Section V-B)
to get an insight into the physical characterization of protein
interactions as well as protein hotspots. In our work, these
indices will be used to obtain numerical sequences for further
DSP analysis.

B. In-sillico alanine scanning and frequency-based features

Experimental alanine scanning mutagenesis has been shown
to be an extremely useful tool for analyzing interactions in
protein interfaces (see [5], [6] amongst others). This technique
involves mutating an amino acid residue to alanine (i.e. delet-
ing the sidechain beyond Cβ carbon atom) and then evaluating
the effects of this mutation on the affinity of the protein
interaction. These effects can be measured by the change
in binding free energy (∆∆G) of the protein-target complex.
Although experimental ASM is very powerful in identifying
hotspot residue, it is still too expensive and laborious to be
easily applied to large-scale analysis, despite many advances
in molecular biology.

Here we investigate an alternative based on a purely com-
putational approach. More specifically, we propose an in silico
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TABLE I
EIIP AND IC NUMERICAL VALUES

Amino acid 3-Letter Code 1-Letter Code EIIP IC
Leucine LEU L 0.0000 2.4000
Isoleucine ILE I 0.0000 2.4000
Asparagine ASN N 0.0036 2.2000
Glycine GLY G 0.0050 2.4600
Valin VAL V 0.0057 2.3500
Glutamic Acid GLU E 0.0058 2.3000
Proline PRO P 0.0198 2.0000
Histidine HIS H 0.0242 2.3000
Lysine LYS K 0.0371 2.2000
Alanine ALA A 0.0373 2.3000
Tyrosine TYR Y 0.0516 2.2000
Tryptophan TRP W 0.0548 2.3700
Glutamine GLN Q 0.0761 2.0600
Methionine MET M 0.0823 2.1700
Serine SER S 0.0829 2.1000
Cysteine CYS C 0.0829 1.9600
Threonine THR T 0.0941 2.0900
Phenylalanine PHE F 0.0946 1.9800
Arginine ARG R 0.0959 1.8200
Aspartic Acid ASP D 0.1263 1.8800
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Fig. 2. Computational alanine scanning and DSP-based features deriving

alanine scanning approach inspired from the experimental
ASM. We proceed as in ASM, but computationally, by re-
placing subsequences of residues by alanines and looking
for frequency-related changes in the overall sequence. The
approach is very similar to the computational alanine scanning
method described in [6]. However, instead of investigating a
physical model or a single measure that relates to binding free
energy as in [6], we analyze changes in the frequency spectrum
caused by computational mutagenesis.

The proposed framework is sketched in Fig.2. Our alanine
scanning module computationally mutates residues around a
given position j of the input amino acid sequence s(n) to
alanines. Instead of replacing residue s(j) only, a window of
residues centered at position j is processed. All the residues of

the window are thus computationally mutated to alanines since
changing the value of one single sample will not significantly
affect the spectrum of the sequence. On the other hand, the
O-ring theory also claims that hotspots are surrounded by
other residues, less important in binding energy, but whose
role is likely to occlude bulk solvent from central residues to
form high affinity interactions [4]. To take these surrounding
residues into account, a window of length L = 5 — the tested
residue s(j) itself and two residues on each side — has been
empirically chosen. Furthermore, this choice is reasonable
with respect to cases where hotspots are very close to each
other.

After computational mutation, both the wild-type sequence
swt(n) and the mutated one sjmut(n) are converted into
numerical sequences (xwt(n) and xjmut(n), respectively) using
either EIIP or IC values. These two numerical sequences will
then be analyzed by the same DSP scheme and their associated
frequency-based characteristics will be further compared to
derive the proposed descriptor vector vj . Various DSP tech-
niques, both traditional and modern, are thinkable, including
Fast Fourier Transform (FFT), Short-time Fourier transform
(STFT) or wavelet transform. Similarly, many characteristics
could be considered, including peak frequencies, sub-bands
energies, and so on. Within our framework, as comparison
criteria, we consider spectrum peak changes, sub-band energy
changes and global energy changes. These features can be
regarded as the analysis at different levels of resolution, from
local to global, of the frequency spectrum.

a) Spectrum peak changes: Both the wild-type and the
computationally mutated numerical sequences (i.e. xwt(n) and
xjmut(n), respectively) are transformed into the frequency
domain by FFT. Peak frequencies are defined as the local max-
imum points of the wild-type sequence frequency amplitude
spectrum. For discrete sequences, we define the set I of these
peak frequencies as:

I={0<k<N : |Xwt(k)|≥max(|Xwt(k−1)|, |Xwt(k+1)|)}

where Xwt = FFT (xwt) is the FFT of xwt and the FFT
size N is chosen to be equal to the sequence length. The
DC component is removed from the input sequence before
FFT to avoid any spurious peak at the null frequency. Since
the amplitude spectrum is symmetric, only one half of it is
considered. In terms of the RRM [2], these peak frequencies
are regarded as potential characteristic frequencies of the
protein functions (cf. our discussion in Section V-B). Changes
in the amplitude spectrum at peak frequencies caused by
computational mutation are regarded as potential signatures of
hotspots. More precisely, we compute the following features:

PeakChangejk =
|Xwt(k)|
|Xj

mut(k)|

where Xj
mut = FFT (xjmut) and k is among the considered

peak frequencies. In this study, only the set of the three highest
peak changes will be retained and will be taken as descriptors.
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b) Sub-band energy changes: In addition to amplitude
changes at peak frequencies, local energy-changes in fre-
quency subbands are also considered. Specifically, sequences
are transformed into time-frequency representations using
STFT with a sliding window of length (N4 + 1), where the
number N of FFT points is now chosen to be the smallest
power of two greater than or equal to the sequence length.
This value is the default configuration of the Time-Frequency
Toolbox (http://tftb.nongnu.org/) that we use to perform time-
frequency analysis. To achieve a relevant time-frequency anal-
ysis, an analyzing window with small side-lobes is required.
According to [25], the 4-term Blackman-Harris window is
adopted here for its trade-off between the main-lobe width and
the side-lobe levels. Other windows with low side-lobe levels
such as the Blackman and the Gaussian windows were also
tested and provided similar results. Moderate windows, such
as Hamming and Hanning, were shown to be less efficient.
After the STFT, since the frequency spectra Sjmut(j, .) and
Swt(j, .) at mutated position j are also symmetric, the higher
halves can be discarded. The retained lower halves are then
evenly divided into 8 equal sub-bands. The change in energy
due to computational mutation will be considered in these 8
sub-bands by computing

SBEnergyChangejm =

∑
ν∈SBm

|Swt(j, ν)|2∑
ν∈SBm

|Sjmut(j, ν)|2
,m = 1..8

where
Swt = STFT (xwt)

Sjmut = STFT (xjmut)

and SBm is the m-th sub-band

SBm = {k : (m− 1)
N

16
≤ k < m

N

16
}.

c) Global energy changes: Global energy change is
defined as the ratio of the mutated sequence energy to that
of the wild-type one:

EnergyChangej =

∑L
n=1 |x

j
mut(n)|2∑L

n=1 |xwt(n)|2

where L is the sequence length. Of course, this energy ratio
can be equivalently computed in the frequency domain.

III. LEARNING-BASED HOTSPOT IDENTIFICATION

In order to evaluate the relevance of the proposed descriptors
for hotspot identification, a learning-based recognition scheme
is developed. In this study, we exploit Random Forest (RF)
[21] as the learning-based classifier since it is among the most
powerful techniques for supervised classification issues. This
section first highlights the key features of the RF classifier. We
then present the evaluated features and the considered hotspot
dataset.

A. Learning-based recognition setting
Before presenting the RF classifier and discussing its ad-

vantages for hotspot identification, we begin with a brief
introduction to classification trees, the elementary components
of any RF.

1) Classification tree: A classification or decision tree [26]
is a tree-structured predictive model in which each internal
node is associated with a decision rule based on object features
v = (vi)

i=D
i=1 ∈ V (V is the so-called feature space) and each

terminal leaf is assigned to a class y (y ∈ {0, 1} for a binary
classification problem such as hotspot identification). Given a
decision tree, the class of an object is predicted by filtering its
features through the successive decision rules of the internal
nodes until a terminal leaf is reached. The class of the terminal
leaf is then assigned to the object. In the considered random
forest setting, decision trees are binary and the decision rule at
each internal node of the tree is a test on only one of the object
features, say vi. In this test, vi is compared to its associated
threshold λi. Objects with feature vi less (resp. greater) than
the threshold λi will be filtered to the left (resp. right) child
node. Fig.3 shows an example of a decision tree.

The construction of a binary decision tree is generally
performed on the basis of training samples. Starting from the
root node with all the training samples {(vj , yj), j = 1..L},
the decision tree is grown by recursively splitting nodes in such
a way that at each node tp, the training samples are divided
into two subsets (corresponding to two children nodes, tL and
tR) with maximum class homogeneity according to a decision
rule. The determination of the decision rule associated with
each split amounts to seeking the best feature vi and its best
threshold λi that maximize the information gain G defined by:

G = I(tp)− pLI(tL)− pRI(tR)

where pL (resp. pR) is the fraction of samples in tp that will
be sent to the child left node tL (resp. the right node tR) and
I(t) is the impurity of node t [26]. For binary classification
problems, node impurity can be interpreted as the proportion
of the less frequent class in the sample subset associated with
that node. In practice, Shannon’s entropy and Gini’s diversity
index are usually used [27] [26]. Using the aforementioned
splitting rules, the decision tree is recursively grown until
maximum homogeneity, i.e. minimum impurity, is obtained
in the terminal leaf nodes. The construction of a decision tree
can be regarded as an adapted quantization of the feature space
V into homogeneous regions, in which most training samples
are of the same class — and this class will be assigned to any
new sample observed in that region (cf. Fig.3).

2) Random forests: Random Forest [21] is an ensemble
classifier that combines N decision trees. These trees are
constructed using subsets of individuals that are independently
and randomly sampled from the original training set. The
search for the optimal splitting rule of each node is optimized
with respect to a randomly selected subset of features. The
classification of an input is obtained by aggregating the votes
of the individual trees in the forest. By combining two sources
of randomness, i.e. the random selection of training samples
and the random selection of features for the determination
of each splitting criterion, classification performance of RF
greatly improves compared to a single decision tree [21].
RF has been shown to be among the most efficient machine
learning schemes for a variety of issues, including mass
spectrometry data analysis [28], microarray data analysis [29]
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Fig. 3. Example of a classification tree. This example involves a two-
class dataset of objects in a 2-dimensional feature space (left). From training
samples of each class, represented as squares and circles in the left figure, the
classification (decision) tree in the right figure is built. The solid lines in the
left figure show the division of the feature space into homogeneous regions
in which only samples of the same class are present.

and protein interaction prediction [30]. The construction of
an RF involves only two parameters: the number nbTrees of
trees and the number mTry of randomly selected features for
the determination of each optimal splitting criterion. These key
characteristics make RF a good choice for hotspot data and,
particularly, for our purpose of assessing and comparing the
relevance of the descriptors.

B. Evaluated features

Our sequence-based frequency-derived features will be used
in place of or together with 3D structure-based descriptors as
the input of the RF classifier. In this way, we aim at showing
their capability of discriminating hotspot residues from non-
hotspot ones.

1) Frequency-derived features of amino acid sequences:
The frequency-based features presented in Section II-B, that
is, the 3 highest spectrum peak changes, the 8 sub-band
energy changes and the global energy changes, are considered.
Using these measures with both EIIP and IC values, a set of
24 different features is computed. The descriptors that best
discriminate hotspots from other residues will be selected.
This can help reduce the dimensionality of the feature space,
without affecting the original semantics of the descriptors,
thus providing the ability to interpret the result by domain
experts [31]. In this study, such a selection is performed by
using a decision tree-based feature ranking technique [32]. The
technique involves growing a decision tree based on a sample
set (cf. section III-A for more details) then pruning it at a
certain level. During the growing process, a decision tree, by
its nature, selects the best feature (in the sense of maximizing
the information gain) each time a node is split. In the pruning
phase, nodes that provide less entropy gain are eliminated.
Therefore, the features associated with internal nodes after
pruning are considered as the most relevant features. Using the
MATLAB treefit routine, the decision tree based on samples
extracted from [22] showed that the 3 highest spectrum peak
changes using EIIP, the energy change in the 7-th sub-band
using EIIP and the global energy band using IC are the
most appropriate candidates. These selected descriptors form

a 5-dimensional vector called the sequence-based frequency-
derived features in the sequel.

2) Structure-based features: For comparison purposes, we
consider the 3D-structure-based features proposed in [22],
namely, the solvent accessibility (accessible surface area
(ASA)), the pair potentials and the computational binding free
energy change in Robetta [6]. The conservation score is not
considered since it is sequence-based and was not included in
the best decision rule reported in [22]. It should be noted that
the conservation score is seemingly not discriminating enough
between hotspot and non-hotspot residues [12].

a) Solvent accessibility: The relative ASA in the com-
plex state and the relative difference ASA between the com-
plex and the monomer states of residue j are defined as in
[22]:

relCompASAj =
ASAjcomp

ASAjmax
× 100

relDiffASAj =
ASAjmono −ASAjcomp

ASAjmax
× 100

where ASAjmono (resp. ASAjcomp) is the ASA of the j-th
residue in monomer (resp. complex) state and ASAjmax is its
maximum ASA in a tri-peptide state.

b) Pair potentials: The contact potential of residue j is
defined as:

Potentialj = abs(

L∑
k=1

Pair(j, k))

where L is the number of residues and Pair(j, k) is the con-
tact potential of residues j and k. Two residues are considered
to be in contact if they are closer than 7.0Å to each other in
space and are separated by at least 3 residues in sequence [22].
We thus have

Pair(j, k) =

{
p(j, k) if d(j, k) ≤ 7.0 and |k − j| ≥ 4

0 otherwise

in which p(j, k) is the knowledge-based solvent-mediated
potential [33] between two residues at positions j and k while
d(j, k) is the distance between their centers.

c) Computational binding free energy change (Robetta):
These values, given by the Robetta server [6], are changes in
computational binding free energy. The calculation is based
on the energy function, proposed in [19], which takes into
account Lennard-Jones potential, hydrogen bonding and sol-
vation interaction.

The first three structure-based features can be retrieved
through the HOTPOINT server [34] and the fourth one from
the Robetta server [6].

C. Dataset

The evaluation is performed on the union of ground-truth
datasets considered in recent works [12], [22] dedicated to
hotspot detection. In this union, we consider only the experi-
mental alanine scanning data with available measured values
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TABLE II
AMINO ACID CHAINS PRESENT IN DATASET

PDB id Chain id Molecule
1a4y A RNase inhibitor

B Angiogenin
1ahw C Tissue factor
1brs A Barnase

D Barstar
1bxi A Colicin E9 immunity protein
1cbw D BPTI Trypsin inhibitor
1dan L Blood coagulation factor VIIA

T, U Soluble tissue factor
1dvf A, B FV D1.3
1f47 A Cell division protein FTSZ
1fc2 C Fragment B of protein A complex
1fcc C Streptococcal protein G (C2 fragment)
1gc1 C CD4
1jrh I Interferon-gamma receptor alpha chain
1jtg A Beta-lactamase tem

B Beta-lactamase inhibitory protein
1nmb L FAB NC10
1vfb A IGG1-KAPPA D1.3 FV (light chain)

B IGG1-KAPPA D1.3 FV (heavy chain)
C Hen egg white lysozyme

2ptc I Trypsin inhibitor
3hfm H HYHEL-10 IGG1 FAB (heavy chain)

L HYHEL-10 IGG1 FAB (light chain)
Y Hen egg white lysozyme

3hhr A Human growth hormone
B Human growth hormone receptor (hGHbp)

of ∆∆G. These data were extracted by Tuncbag [22] and
Cho [12] from the ASEdb [18] and the published dataset of
[19], after removing redundancy that could bias the training
and/or the classification performance measurements. More
specifically, they excluded homologous proteins with more
than 35% sequence identity. Furthermore, in [12], proteins
with high structural similarity (structure alignment score is
higher than 80) were also discarded. Data from BID (Binding
Interface Database) [35] are not included because they do not
provide the measured values of the change in binding free
energy (∆∆G).

To label the residues of the dataset, we proceed as in [22].
Specifically, residues associated with a value of ∆∆G greater
than or equal to 2.0 kcal/mol when mutated to alanines are
deemed as hotspots and those with ∆∆G less than 0.4 kcal/mol
are regarded as non-hotspots. The other residues are not
included in the dataset in order to better discriminate the two
classes. The final two-class dataset1 contains 221 residues in
which 76 are hotspots and 145 are non-hotspots. This dataset
is somewhat unbalanced with the hotspot class representing
only 34% of the samples. The amino acid chains considered
in the dataset are listed in TABLE II. The detailed information
on these sequences can be obtained from the Protein Data
Bank (PDB) [36] via their entry identities (PDB ids) and chain
identities (Chain ids).

IV. RESULTS

A. Hotspot identification performance assessment

To assess the identification performance, we consider six
evaluation measures: Accuracy (A), Precision (P ), Recall (R),

1The dataset will be available at http://perso.telecom-bretagne.eu/
quangnguyen/ upon the acceptance of the paper for publication.

Specificity (Sp), F -measure (F1) and Matthews correlation
coefficient (MCC). These measures are defined as follows:

A =
TP + TN

TP + TN + FP + FN

P =
TP

TP + FP

R =
TP

TP + FN

Sp =
TN

TN + FP

F1 = 2× P ×R
P +R

MCC =
TP × TN − FP × FN√

(TP + FN)(TP + FP )(TN + FP )(TN + FN)

where: TP (resp. TN ) is the number of true positives (resp.
true negatives), defined as the number of samples that are
correctly predicted as hotspots (resp. non-hotspots); FP (false
positive) is the number of non-hotspots that are falsely pre-
dicted as hotspots, and FN (false negative) is the number of
hotspots that are not detected.

Because of the unavoidable trade-off between precision and
recall on the one hand, and between recall and specificity on
the other hand, both F1 and MCC are very usual in machine
learning as quality measures of binary classification. The F -
measure (F1) balances precision P and recall R only, whereas
the Matthews correlation coefficient (MCC) takes into account
the four terms TP , TN , FP , FN of the confusion matrix.
Let us note that a predictor should not perform worse than
the ‘random guess’, ‘all-are-positives’ and ‘all-are-negatives’
ones. Therefore, it should satisfy the following conditions:

MCC > MCCrand

F1 > max(F1rand, F1pos, F1neg)

where MCCrand and F1rand are expected values of MCC
and F1 scores for the ‘random guess’ predictor; F1pos and
F1neg are F -measure values for the ‘all-are-positives’ and the
‘all-are-negatives’ predictors, respectively. In case of a dataset
with p positives and n negatives, these conditions can easily
be proved to become MCC > 0 and F1 > 2p/(2p+ n). With
a simple calculation, the significant thresholds of MCC and
F1 can be found to be MCCthres = 0 and F1thres = 0.51 for
our evaluation dataset of 76 hotspots and 145 non-hotspots.

B. Results

To demonstrate the relevance of our sequence-based
frequency-derived features (1DFreq), we compare their pre-
dictive performance with that of 3D structure-based ones
(3DStruct), i.e. relCompASA, relDiffASA, Potential and Ro-
betta, in terms of the six aforementioned measures, especially
F1 and MCC. The results are also compared with those
obtained using the empirical rule introduced by Tuncbag
in HOTPOINT [34], which is shown in [22] to provide
similar results to Robetta [6] and outperform other state-of-
the-art methods including KFC (Knowledge-based FADE and
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Contacts) [11]. This empirical model only requires two out
of the four 3D structure-based features to achieve hotspot
recognition:

isHotspot=(relCompASA≤20%)AND(Potential≥18.0)

In the sequel, for the sake of convenience, the group of
these two features, i.e. relCompASA and Potential, will be
referred to as 3DHotpoint. The recognition results obtained by
combining structure-based features (3DStruct or 3DHotpoint)
with our sequence-based 1DFreq are also presented.

Quantitative evaluation is obtained through repeated 10-fold
cross-validations. In a 10-fold cross-validation, the dataset is
first randomly partitioned into 10 mutually exclusive subsets
(or folds) of nearly equal size. This partition is processed
in such a way that all folds contain approximately the same
proportion of hotspots and non-hotspots as the original dataset.
By such stratified sampling, each fold is a good representative
of the whole dataset. Given a partition, 10 training-testing
iterations are subsequently performed so that within each
iteration a different fold is taken as the test-set and the
remaining 9 folds serve as the training-set. The results from the
10 iterations are then combined to produce a single estimation
of the classification performance. To obtain a better estimation,
the 10-fold cross-validation can be repeated multiple times
with different stratified partitions. In this study, the 100×10-
fold cross-validation is used. The results2 for the considered
dataset are reported in TABLE III. The prediction performance
of HOTPOINT for the same dataset is also presented for
reference. In Fig.4, the boxplots of F1 and MCC scores
yielded by different groups of features are included for better
comparison. The statistical significance of the results is further
assessed by examining the p-values obtained using Student’s
t-tests. The statistical significance level is set to α = 0.01.
TABLE IV provides the results of different t-tests obtained
using the MATLAB Statistics Toolbox.

V. DISCUSSION

A. Relevance of sequence-based frequency-derived features
with respect to previous work

1) Sequence-based descriptors can predict hotspots: The
reported quantitative evaluation demonstrates the relevance of
the proposed frequency-based protein sequence features for
hotspot recognition compared to previous work. Their recog-
nition performance is actually better than that of 3DStruct
with respect to all six performance measures. More hotspots
are detected (59% compared to 54%) and they are detected
more precisely (75% compared to 67%). These features then
yield higher F1 and MCC scores than 3DStruct (0.66 and 0.52
compared to 0.60 and 0.43 respectively). The t-tests on F1 and
MCC stress the statistical significance of this improvement
with p-values ≈ 0 (�0.01). With an F1 score of 0.66 (>0.51)
and an MCC score of 0.52 (>0), the hotspot recognition based
on the proposed protein sequence features is meaningful.

2The Matlab code yielding these results will be available at http://perso.
telecom-bretagne.eu/quangnguyen/ upon the acceptance of the paper for
publication.
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Fig. 4. Boxplots of F1 (left) and MCC (right) score values yielded by
different sets of features. These boxplots were obtained using the MATLAB
boxplot routine with the default parameters. For a given boxplot, the extremes
of the triangular notch represent the endpoints of the so-called comparison
interval of the median at the 5% significance level. Two medians are
considered to be significantly different if their comparison intervals do not
overlap.

Besides the improvement of hotspot recognition perfor-
mance with respect to previous works, especially those re-
lying on features extracted from the 3D protein structure,
an additional advantage of the proposed approach is its low
complexity. It only relies on the analysis of the numerical rep-
resentations of the 1D sequence of amino acid using frequency
analysis. By contrast, the reconstruction of the 3D structure of
a protein is a complex task requiring complex experimental ex-
pertise, especially regarding protein crystallization to achieve a
3D imaging of the protein structure. Such crystallization issues
are particularly complex for large compounds [1]. Relying
only the 1D sequence, we enlarge the potential application
field of hotspot recognition techniques, especially for newly-
sequenced proteins presenting weak homologies to proteins
with known 3D structures [37], [38].

2) The combination of 3D structure characteristics and 1D
frequency-based features improves the recognition of hotspots:
We also evaluated the combination of the proposed 1D
sequence features and descriptors of the 3D structure. As
reported in TABLE III, the combination [3DStruct+1DFreq]
leads to significant recognition statistics (p-values<0.01) with
an accuracy of 82% and a precision of 80%. It is proved to
reach better recognition performance than the 1D sequence
features (i.e. 1DFreq) alone or the combination [3DHot-
point+1DFreq] (respectively, 82% vs. 79% and 80% for recog-
nition accuracy and 80% vs. 75% and 75% for recognition
precision). It is also worth noticing that [3DStruct+1DFreq]
returns a significant gain for all six assessment indices.

These results show that the proposed frequency-based 1D
sequence features provide discriminative information comple-
mentary to the descriptors issued from the classical local char-
acteristics of the 3D structure of the protein. It then provides
the means to improve recognition performance for a subset
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TABLE III
CLASSIFICATION PERFORMANCE RESULTS (MEAN(±STANDARD DEVIATION))

Features Accuracy (A) Precision (P ) Recall (R) Specificity (Sp) F1 MCC

3DHotpoint a, d 0.729 0.629 0.513 0.841 0.565 0.375
3DStruct b 0.751(±0.010) 0.672(±0.021) 0.541(±0.018) 0.861(±0.012) 0.599(±0.016) 0.427(±0.024)
1DFreq c 0.790(±0.013) 0.748(±0.025) 0.589(±0.029) 0.896(±0.014) 0.659(±0.023) 0.518(±0.031)
3DHotpoint+1DFreq 0.798(±0.014) 0.751(±0.025) 0.616(±0.031) 0.893(±0.013) 0.676(±0.025) 0.537(±0.033)
3DStruct+1DFreq 0.824(±0.009) 0.801(±0.017) 0.649(±0.017) 0.915(±0.009) 0.716(±0.015) 0.597(±0.020)
a 3DHotpoint: relCompASA and Potential.
b 3DStruct: relCompASA, relDiffASA, Potential and Robetta.
c 1DFreq: our proposed sequence-based frequency-derived features.
d The results presented in this row are obtained by HOTPOINT while others are yielded by using RF with nbTrees= 1000 classification

trees. For RF, all possible values of mTry are tested and the best results are provided.

TABLE IV
RESULTS GIVEN BY DIFFERENT t-TESTS a

Null hypothesis (H0) Alternative hypothesis (H1) F1 MCC
Accept (h) p-value Accept (h) p-value

1DFreq ≤ 3DHotpoint b 1DFreq > 3DHotpoint H1 2.62× 10−63 H1 2.08× 10−69

1DFreq ≤ 3DStruct 1DFreq > 3DStruct H1 5.04× 10−50 H1 7.70× 10−58

[3DHotpoint+1DFreq] ≤ 1DFreq [3DHotpoint+1DFreq] > 1DFreq H1 2.89× 10−07 H1 2.60× 10−05

[3DStruct+1DFreq] ≤ 1DFreq [3DStruct+1DFreq] > 1DFreq H1 1.21× 10−48 H1 1.37× 10−50

a Right-side t-tests were performed. In this table, the notation FeasA > FeasB (resp. FeasA ≤ FeasB) implies that the mean performance
score provided by FeasA is greater than (resp. less than or equal to) that yielded by FeasB.

b The results reported in this row are obtained using one-sample t-test while others are provided by two-sample ones.

of protein sequences whose 3D structures are known. It may
also provide the basis for similar improvements for protein
sequences having high homology (typically, greater than 35%
of residue identity) with a protein whose 3D structure is
known. For such a homology level, it is indeed generally
assumed that the 3D structure of the analyzed protein can
be inferred from its homologue [37]. One may expect that the
combination of the proposed 1D sequence features and of 3D
features extracted from the inferred structure could also lead
to substantial improvement of hotspot recognition compared
to 1D sequence features alone.

B. Physico-chemical interpretation of the proposed features

The analysis of frequency-based features of 1D numerical
representations of the protein amino acid sequence was ini-
tially motivated by the RRM [20], a physico-mathematical
model which was originally introduced as an attempt to get an
insight into the selectivity of protein interactions. By assigning
to each amino acid a physical parameter value relevant to
the protein bioactivity and analyzing the resulting numerical
sequence, the RRM has successfully revealed the existence
of frequency characteristics that characterize how a protein
can recognize its target in an interaction. From the RRM
perspective, proteins of the same family, sharing the same
biological function, also share some frequency-based features.
In particular, their frequency spectra exhibit a common char-
acteristic frequency [2]. This characteristic frequency was
identified from the consensus spectrum, which is defined as
the multiple cross-spectrum function of the Fourier transforms
of all the sequences of the protein family as in [2]:

M(n) = |X1(n)|.|X2(n)|...|XK(n)|, n = 0, 1, ..., N − 1

where Xi(n), i = 1, 2, ...,K are the discrete Fourier transform
coefficients of the numerical representation of the i-th protein
sequence of the family, K is the number of family sequences
and N is the length of the longest sequence. Shorter sequences
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Fig. 5. Characteristic frequency of the fibroblast growth factor (FGF) protein
family: the consensus Fourier spectrum shows that the FGF protein family
members share a common characteristic frequency at fc = 0.4567

are filled up with their mean value to have the same length
N . Fig.5 reports the consensus spectrum of the fibroblast
growth factor (FGF) family. This consensus spectrum clearly
exhibits a characteristic frequency at fc = 0.4567, which is
significantly present in all the sequences of the FGF family.

It was conjectured in [2] that these characteristic frequencies
are associated with the common function of the proteins of a
given family. Since hotspots are referred to as the key positions
that determine the protein function, they were defined by Cosic
et al. [2] as the residues that are most affected by any change
made to the amplitude spectrum at the characteristic frequency
corresponding to the protein biological function. Although
some evidence of the correlation between the hotspots defined
by RRM and those detected by ASM were reported [14], [15],
[17], the recognition performance was limited to very few
examples. Besides, earlier applications of the RRM required
the functional family of the protein to be known to compute
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the corresponding characteristic frequency.
Compared to this previous work, our contribution is twofold.

First, whereas the determination of RRM-based hotspots ini-
tially requires the computation of the characteristic frequency
of a family of proteins, we do not impose such a constraint.
Second, rather than a purely DSP-based approach as in [2],
[14]–[17] aimed at detecting local residues associated with
the characteristic frequency, we combine DSP tools and mu-
tagenesis principles. We locally determine frequency-related
energy changes resulting from the computational mutation of
residue subsets to alanines. Considering the alanine mutations
as a reference model, our procedure can be applied to newly
sequenced or unclassified proteins, which might enlarge its
potential application domain. Moreover, we have reported
an actual evaluation of hotspot recognition performance with
respect to a reference database of experimental ASM hotspots.

Our results bring new evidence to support the conjecture
of Cosic et al. [2] that protein hotspots are associated with
frequency features of physico-chemical characteristics of the
amino acid sequence. Whereas this statement was analyzed in
[2] for the RRM model associated with electron-ion interaction
potentials, we have shown here that protein hotspots may also
involve specific frequency-related features for other physico-
chemical characteristics such as ionization constants. Future
work should further investigate, from both the computational
and the biophysical point of view, the characterization and the
interpretation of such frequency-related properties of protein
and associated hotspots.

VI. CONCLUSION

In this paper, an in-silico alanine scanning framework with
frequency-derived features of numerical representations of the
amino acid sequences has been introduced for protein hotspot
recognition. It outperforms previous work on a ground-truth
database of protein hotspots [12], [22]. We have also shown
that improved recognition performance can be achieved when
the 3D structure of the protein is available, i.e. from the
combination of the proposed 1D frequency-related features and
local descriptors of the 3D structure.

The reported experiments support the assumption that all
functionalities of a protein are basically encoded into its
primary amino acid sequence. But how this encoding is
performed is still an open question. In this respect, it could
be profitable to get a better insight into the physico-chemical
meaning of the frequency-related descriptors introduced in this
paper.

From an engineering point of view, the analysis of one-
dimensional (1D) sequences requires very little computational
load, making our approach much less complex than those
based on docking, MD simulations, graph analysis or 3D
structure information derived descriptors. As a result, our
method should be capable of dealing with large-scale datasets,
which become a crucial problem as more and more proteomic
data are available in the public domain [39] [16].

As mentioned in Section II-B, other time series analyses
can be involved in the proposed framework to provide new
hotspot descriptors. The use of DSP techniques such as those

in [14]–[17] might be investigated to derive descriptors that
could further be compared to and/or combined with ours for
proteins belonging to the same functional family.

The main focus of this paper was not the classifier itself, but
rather the relevance — assessed by classification performance
measurements — of the proposed descriptors as hotspots
signatures. Therefore, it can be expected that the classifica-
tion performance could perhaps be even further improved by
combining RF with other classifiers such as SVM, neural
networks and so forth. An exhaustive study of this type could
be addressed in future work.
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