A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Thermal Conductivity of a Supported Multiwalled Carbon Nanotube
2019
We have extracted temperature-dependent thermal conductivity values from scanning thermal microscopy measurements of a self-heated multiwalled carbon nanotube supported on a silicon substrate. A deliberately introduced segment of amorphous carbon served as an integrated nanoheater. Kelvin probe force microscopy was used to supplement the thermometry data with values for the nanotube's electrical resistivity. This way, both the spatially resolved temperature rise and the Joule heating power
doi:10.3929/ethz-b-000344963
fatcat:2b7ijb7fvzezrlr4jyknvvj3ze