Preparation of Low-Diacylglycerol Cocoa Butter Equivalents by Hexane Fractionation of Palm Stearin and Shea Butter

Jihyun Hwang, Heeju Jun, Seoye Roh, Seong Jae Lee, Jeong Min Mun, Seung Wook Kim, Min-Yu Chung, In-Hwan Kim, Byung Hee Kim
2021 Molecules  
Herein, we prepared 1,3-dipalmitoyl-2-oleoyl glycerol (POP)-rich fats with reduced levels of diacylglycerols (DAGs), adversely affecting the tempering of chocolate, via two-step hexane fractionation of palm stearin. DAG content in the as-prepared fats was lower than that in POP-rich fats obtained by previously reported conventional two-step acetone fractionation. Cocoa butter equivalents (CBEs) were fabricated by blending the as-prepared fats with 1,3-distearoyl-2-oleoyl glycerol (SOS)-rich
more » ... obtained by hexane fractionation of degummed shea butter. POP-rich fats achieved under the best conditions for the fractionation of palm stearin had a significantly lower DAG content (1.6 w/w%) than that in the counterpart (4.6 w/w%) prepared by the previously reported method. The CBEs fabricated by blending the POP- and SOS-rich fats in a weight ratio of 40:60 contained 63.7 w/w% total symmetric monounsaturated triacylglycerols, including 22.0 w/w% POP, 8.6 w/w% palmitoyl-2-oleoyl-3-stearoyl-rac-glycerol, 33.1 w/w% SOS, and 1.3 w/w% DAGs, which was not substantially different from the DAG content in cocoa butter (1.1 w/w%). Based on the solid-fat content results, it was concluded that, when these CBEs were used for chocolate manufacture, they blended with cocoa butter at levels up to 40 w/w%, without distinctively altering the hardness and melting behavior of cocoa butter.
doi:10.3390/molecules26113231 pmid:34072180 fatcat:vuo7beodufad5etaqqbke6rvfq