Diachronic Text Mining Investigation of Therapeutic Candidates for COVID-19 [article]

James Powell, Kari Sentz
2021 arXiv   pre-print
Diachronic text mining has frequently been applied to long-term linguistic surveys of word meaning and usage shifts over time. In this paper we apply short-term diachronic text mining to a rapidly growing corpus of scientific publications on COVID-19 captured in the CORD-19 dataset in order to identify co-occurrences and analyze the behavior of potential candidate treatments. We used a data set associated with a COVID-19 drug re-purposing study from Oak Ridge National Laboratory. This study
more » ... tified existing candidate coronavirus treatments, including drugs and approved compounds, which had been analyzed and ranked according to their potential for blocking the ability of the SARS-COV-2 virus to invade human cells. We investigated the occurrence of these candidates in temporal instances of the CORD-19 corpus. We found that at least 25% of the identified terms occurred in temporal instances of the corpus to the extent that their frequency and contextual dynamics could be evaluated. We identified three classes of behaviors: those where frequency and contextual shifts were small and positively correlated; those where there was no correlation between frequency and contextual changes; and those where there was a negative correlation between frequency and contextual shift. We speculate that the latter two patterns are indicative that a target candidate therapeutics is undergoing active evaluation. The patterns we detected demonstrate the potential benefits of using diachronic text mining techniques with a large dynamic text corpus to track drug-repurposing activities across international clinical and laboratory settings.
arXiv:2110.13971v1 fatcat:rliynfioozez7p4dqzlobp65pa