Uncertainties on the Luminescence Ages and Anomalous Fading

Antoine Zink
2008 Geochronometria  
It is well known that some minerals give underestimated luminescence ages due to anomalous fading. The anomalous fading follows a logarithmic decay law characterized by its slope, the socalled fading rate or g-value. Using the fading rate, Huntley and Lamothe (2001) suggested some correction for the fading underestimation of young samples (<40-50 ka). For polymineral fine grains, we observe a fading rate of 0-4%/decade for TL and BL-OSL and 4-6%/decade for IR-OSL. Extending the laboratory
more » ... he laboratory observation to archaeological age, the underestimation on the age for 10 ka is estimated to a mean of 5% for TL, 10% for BL-OSL and 45% for IR-OSL. Due to the non-linearity of the Huntley and Lamothe's fading correction, the contribution of the fading to the total uncertainty is estimated by a Monte-Carlo simulation. The inference on dating shows that the uncertainty on the anomalous fading can be a significant term of the combined uncertainty on the age, even for low fading rates.
doi:10.2478/v10003-008-0027-4 fatcat:nwwixix4gvehrjvsbl3qye27ey