Pattern Mixture Models and Latent Class Models for the Analysis of Multivariate Longitudinal Data with Informative Dropouts

Etienne Dantan, Cécile Proust-Lima, Luc Letenneur, Helene Jacqmin-Gadda
2008 The International Journal of Biostatistics  
Missing data and especially dropouts frequently arise in longitudinal data. Maximum likelihood estimates are consistent when data are missing at random (MAR) but, as this assumption is not checkable, pattern mixture models (PMM) have been developed to deal with informative dropout. More recently, latent class models (LCM) have been proposed as a way to relax PMM assumptions. The aim of this paper is to compare PMM and LCM in order to tackle informative dropout in a longitudinal study of
more » ... e ageing measured by several psychometric tests. Using a multivariate longitudinal model with a latent process, a sensitivity analysis was performed to compare estimates under the MAR assumption, from a PMM and from two LCM. In the PMM, dropout patterns are included as covariates in the multivariate longitudinal model. In the simple LCM, they are predictors of the class membership probabilities while, in the joint LCM, the dropout time is jointly modeled using a proportional hazard model depending on latent classes. We show that parameter interpretation is different in the two kinds of models and thus can lead to different estimated values. PMM parameters are adjusted on the dropout patterns while LCM parameters are adjusted on the latent classes. This difference is highlighted in our data set because the latent classes exhibit much more heterogeneity than dropout patterns. We suggest several complementary analyses to investigate the characteristics of latent classes in order to understand the meaning of the parameters when using LCM to deal with informative dropout.
doi:10.2202/1557-4679.1088 pmid:22462120 fatcat:l4pnrsq5kng2deji4ci2gu3ygy